Spaces:
Sleeping
Sleeping
Commit
·
008cd30
1
Parent(s):
f6373d7
add file
Browse files- README.md +50 -5
- app.py +232 -0
- requirements.txt +15 -0
README.md
CHANGED
|
@@ -1,12 +1,57 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
colorFrom: blue
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version:
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
---
|
| 11 |
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Image Captioning
|
| 3 |
+
emoji: 🖼️
|
| 4 |
colorFrom: blue
|
| 5 |
+
colorTo: pink
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: "4.40.0"
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
---
|
| 11 |
|
| 12 |
+
# Image Captioning — Hugging Face Space
|
| 13 |
+
|
| 14 |
+
Triển khai inference cho mô hình image captioning bằng TensorFlow/Keras, với giao diện Gradio đơn giản cho upload ảnh và nhận caption.
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
# Image Captioning — Hugging Face Space
|
| 18 |
+
|
| 19 |
+
Triển khai inference cho mô hình image captioning dùng TensorFlow/Keras, EfficientNetV2B0 và giao diện Gradio.
|
| 20 |
+
|
| 21 |
+
## Cấu trúc tệp cần có
|
| 22 |
+
```text
|
| 23 |
+
.
|
| 24 |
+
├── app.py # UI Gradio cho Hugging Face Space
|
| 25 |
+
├── flickr30k.py # Logic model + tiền xử lý (đã cung cấp)
|
| 26 |
+
├── best_model.keras # Trọng số mô hình (đặt cùng thư mục)
|
| 27 |
+
├── tokenizer.pkl # Tokenizer đã fit
|
| 28 |
+
├── model_config.pkl # Chứa max_length, vocab_size
|
| 29 |
+
├── requirements.txt
|
| 30 |
+
└── README.md
|
| 31 |
+
```
|
| 32 |
+
|
| 33 |
+
Các hàm sử dụng trực tiếp từ `flickr30k.py`: `load_caption_model`, `load_tokenizer_and_config`, `load_feature_extractor`, `extract_features_from_image`, `generate_caption`.
|
| 34 |
+
|
| 35 |
+
## Chạy cục bộ
|
| 36 |
+
```bash
|
| 37 |
+
python -m venv .venv
|
| 38 |
+
. .venv/bin/activate # Windows: .venv\Scripts\activate
|
| 39 |
+
pip install --upgrade pip
|
| 40 |
+
pip install -r requirements.txt
|
| 41 |
+
|
| 42 |
+
# Đảm bảo 3 tệp đã có:
|
| 43 |
+
# best_model.keras, tokenizer.pkl, model_config.pkl
|
| 44 |
+
|
| 45 |
+
python app.py
|
| 46 |
+
```
|
| 47 |
+
Mở URL Gradio hiển thị trong terminal.
|
| 48 |
+
|
| 49 |
+
## Triển khai lên Hugging Face Spaces
|
| 50 |
+
1) Tạo Space mới: SDK = Gradio, chọn CPU hoặc GPU tùy trọng số.
|
| 51 |
+
2) Đẩy các tệp: `app.py`, `flickr30k.py`, `requirements.txt`, `README.md`, và 3 tệp trọng số/cấu hình.
|
| 52 |
+
3) Sau khi build hoàn tất, Space sẽ mở UI upload ảnh và trả caption.
|
| 53 |
+
|
| 54 |
+
## Ghi chú tương thích
|
| 55 |
+
- Mặc định dùng `tensorflow==2.12.0`. Nếu bạn dùng trọng số huấn luyện ở phiên bản khác, cần đồng bộ phiên bản TensorFlow/Keras tương ứng.
|
| 56 |
+
- Sử dụng `opencv-python-headless` thay vì `opencv-python` để tránh lỗi GUI trên môi trường server.
|
| 57 |
+
- Nếu thiếu tài nguyên trên Space Free, hạ kích thước mô hình hoặc chuyển phần cứng sang GPU trả phí.
|
app.py
ADDED
|
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import cv2
|
| 3 |
+
import numpy as np
|
| 4 |
+
import pickle
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import matplotlib.pyplot as plt
|
| 7 |
+
import tensorflow as tf
|
| 8 |
+
from tensorflow.keras import layers
|
| 9 |
+
from tensorflow.keras.models import load_model, Model
|
| 10 |
+
from tensorflow.keras.applications import EfficientNetV2B0
|
| 11 |
+
from tensorflow.keras.applications.efficientnet import preprocess_input as efficientnet_preprocess
|
| 12 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
| 13 |
+
from tensorflow.keras.preprocessing.image import img_to_array
|
| 14 |
+
from tqdm import tqdm
|
| 15 |
+
import random
|
| 16 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
| 17 |
+
|
| 18 |
+
import tempfile
|
| 19 |
+
import traceback
|
| 20 |
+
from pathlib import Path
|
| 21 |
+
from huggingface_hub import hf_hub_download
|
| 22 |
+
|
| 23 |
+
import gradio as gr
|
| 24 |
+
from PIL import Image
|
| 25 |
+
import pickle
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
# -----------------------------
|
| 30 |
+
# Custom attention layers
|
| 31 |
+
# -----------------------------
|
| 32 |
+
|
| 33 |
+
class ChannelAttention(layers.Layer):
|
| 34 |
+
def __init__(self, ratio=8, **kwargs):
|
| 35 |
+
super(ChannelAttention, self).__init__(**kwargs)
|
| 36 |
+
self.ratio = ratio
|
| 37 |
+
|
| 38 |
+
def build(self, input_shape):
|
| 39 |
+
self.gap = layers.GlobalAveragePooling1D()
|
| 40 |
+
self.gmp = layers.GlobalMaxPooling1D()
|
| 41 |
+
self.shared_mlp = tf.keras.Sequential([
|
| 42 |
+
layers.Dense(units=1280 // self.ratio, activation='relu'),
|
| 43 |
+
layers.Dense(units=1280)
|
| 44 |
+
])
|
| 45 |
+
self.sigmoid = layers.Activation('sigmoid')
|
| 46 |
+
super(ChannelAttention, self).build(input_shape)
|
| 47 |
+
|
| 48 |
+
def call(self, inputs):
|
| 49 |
+
gap = self.gap(inputs)
|
| 50 |
+
gmp = self.gmp(inputs)
|
| 51 |
+
gap_mlp = self.shared_mlp(gap)
|
| 52 |
+
gmp_mlp = self.shared_mlp(gmp)
|
| 53 |
+
channel_attention = self.sigmoid(gap_mlp + gmp_mlp)
|
| 54 |
+
return inputs * tf.expand_dims(channel_attention, axis=1)
|
| 55 |
+
|
| 56 |
+
def get_config(self):
|
| 57 |
+
config = super(ChannelAttention, self).get_config()
|
| 58 |
+
config.update({'ratio': self.ratio})
|
| 59 |
+
return config
|
| 60 |
+
|
| 61 |
+
@classmethod
|
| 62 |
+
def from_config(cls, config):
|
| 63 |
+
return cls(**config)
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
class SpatialAttention(layers.Layer):
|
| 68 |
+
def __init__(self, **kwargs):
|
| 69 |
+
super(SpatialAttention, self).__init__(**kwargs)
|
| 70 |
+
|
| 71 |
+
def build(self, input_shape):
|
| 72 |
+
self.conv = layers.Conv1D(1, kernel_size=3, padding='same', activation='sigmoid')
|
| 73 |
+
super(SpatialAttention, self).build(input_shape)
|
| 74 |
+
|
| 75 |
+
def call(self, inputs):
|
| 76 |
+
spatial_attention = self.conv(inputs)
|
| 77 |
+
return inputs * spatial_attention
|
| 78 |
+
|
| 79 |
+
def get_config(self):
|
| 80 |
+
return super(SpatialAttention, self).get_config()
|
| 81 |
+
|
| 82 |
+
@classmethod
|
| 83 |
+
def from_config(cls, config):
|
| 84 |
+
return cls(**config)
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
# -----------------------------
|
| 89 |
+
# Load model + tokenizer
|
| 90 |
+
# -----------------------------
|
| 91 |
+
|
| 92 |
+
def load_caption_model(model_path):
|
| 93 |
+
custom_objects = {
|
| 94 |
+
'ChannelAttention': ChannelAttention,
|
| 95 |
+
'SpatialAttention': SpatialAttention
|
| 96 |
+
}
|
| 97 |
+
model = load_model(model_path, custom_objects=custom_objects)
|
| 98 |
+
print("✅ Đã load model thành công!")
|
| 99 |
+
return model
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def load_tokenizer_and_config(tokenizer_path, config_path):
|
| 103 |
+
with open(tokenizer_path, 'rb') as f:
|
| 104 |
+
tokenizer = pickle.load(f)
|
| 105 |
+
with open(config_path, 'rb') as f:
|
| 106 |
+
config = pickle.load(f)
|
| 107 |
+
return tokenizer, config['max_length'], config['vocab_size']
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
# -----------------------------
|
| 111 |
+
# Feature extractor - EfficientNetV2B0
|
| 112 |
+
# -----------------------------
|
| 113 |
+
|
| 114 |
+
def load_feature_extractor():
|
| 115 |
+
base_model = EfficientNetV2B0(include_top=False, weights='imagenet', pooling='avg')
|
| 116 |
+
return Model(inputs=base_model.input, outputs=base_model.output)
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
def extract_features_from_image(image_path, extractor):
|
| 120 |
+
image = cv2.imread(image_path)
|
| 121 |
+
if image is None:
|
| 122 |
+
print(f"❌ Không đọc được ảnh: {image_path}")
|
| 123 |
+
return None
|
| 124 |
+
image = cv2.resize(image, (224, 224))
|
| 125 |
+
image = img_to_array(image)
|
| 126 |
+
image = np.expand_dims(image, axis=0)
|
| 127 |
+
image = efficientnet_preprocess(image)
|
| 128 |
+
feature = extractor.predict(image, verbose=0)
|
| 129 |
+
return feature
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
# -----------------------------
|
| 133 |
+
# Generate caption
|
| 134 |
+
# -----------------------------
|
| 135 |
+
|
| 136 |
+
def generate_caption(model, tokenizer, image_features, max_length):
|
| 137 |
+
in_text = 'startseq'
|
| 138 |
+
for _ in range(max_length):
|
| 139 |
+
sequence = tokenizer.texts_to_sequences([in_text])[0]
|
| 140 |
+
sequence = pad_sequences([sequence], maxlen=max_length)
|
| 141 |
+
yhat = model.predict([image_features, sequence], verbose=0)
|
| 142 |
+
yhat = np.argmax(yhat)
|
| 143 |
+
word = tokenizer.index_word.get(yhat)
|
| 144 |
+
if word is None or word == 'endseq':
|
| 145 |
+
break
|
| 146 |
+
in_text += ' ' + word
|
| 147 |
+
return in_text.replace('startseq ', '')
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
# -----------------------------
|
| 151 |
+
# Chạy test
|
| 152 |
+
# -----------------------------
|
| 153 |
+
|
| 154 |
+
MODEL_REPO = "slyviee/img_cap"
|
| 155 |
+
|
| 156 |
+
# Khởi tạo tài nguyên toàn cục khi app start
|
| 157 |
+
model_path = hf_hub_download(repo_id=MODEL_REPO, filename="best_model.keras")
|
| 158 |
+
tokenizer_path = hf_hub_download(repo_id=MODEL_REPO, filename="tokenizer.pkl")
|
| 159 |
+
config_path = hf_hub_download(repo_id=MODEL_REPO, filename="model_config.pkl")
|
| 160 |
+
|
| 161 |
+
model = None
|
| 162 |
+
tokenizer = None
|
| 163 |
+
max_length = None
|
| 164 |
+
vocab_size = None
|
| 165 |
+
extractor = None
|
| 166 |
+
ready = False
|
| 167 |
+
startup_error = ""
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
def _startup():
|
| 171 |
+
global model, tokenizer, max_length, vocab_size, extractor, ready, startup_error
|
| 172 |
+
try:
|
| 173 |
+
# Kiểm tra sự tồn tại của các tệp cần thiết
|
| 174 |
+
missing = [p for p in [model_path, tokenizer_path, config_path] if not Path(p).exists()]
|
| 175 |
+
if missing:
|
| 176 |
+
startup_error = "Thiếu tệp: " + ", ".join(missing)
|
| 177 |
+
ready = False
|
| 178 |
+
return
|
| 179 |
+
|
| 180 |
+
print("🔄 Đang tải model...")
|
| 181 |
+
model = load_caption_model(model_path)
|
| 182 |
+
print("✅ Model đã được tải.")
|
| 183 |
+
|
| 184 |
+
print("🔄 Đang tải tokenizer và config...")
|
| 185 |
+
tokenizer, max_length, vocab_size = load_tokenizer_and_config(tokenizer_path, config_path)
|
| 186 |
+
print("✅ Tokenizer và config đã được tải.")
|
| 187 |
+
|
| 188 |
+
print("🔄 Đang tải feature extractor...")
|
| 189 |
+
extractor = load_feature_extractor()
|
| 190 |
+
print("✅ Feature extractor đã được tải.")
|
| 191 |
+
|
| 192 |
+
ready = True
|
| 193 |
+
except Exception as e:
|
| 194 |
+
startup_error = f"Khởi tạo lỗi: {e}\n{traceback.format_exc()}"
|
| 195 |
+
ready = False
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
def predict(pil_image: Image.Image):
|
| 199 |
+
if not ready:
|
| 200 |
+
return f"Hệ thống chưa sẵn sàng. {startup_error or 'Thiếu model/tokenizer/config.'}"
|
| 201 |
+
|
| 202 |
+
try:
|
| 203 |
+
# Lưu ảnh tạm để tái sử dụng hàm extract_features_from_image (đọc bằng cv2)
|
| 204 |
+
with tempfile.NamedTemporaryFile(suffix=".jpg", delete=False) as tmp:
|
| 205 |
+
pil_image.convert("RGB").save(tmp.name, format="JPEG")
|
| 206 |
+
tmp_path = tmp.name
|
| 207 |
+
|
| 208 |
+
features = extract_features_from_image(tmp_path, extractor)
|
| 209 |
+
os.unlink(tmp_path)
|
| 210 |
+
|
| 211 |
+
if features is None:
|
| 212 |
+
return "Không đọc được ảnh đầu vào."
|
| 213 |
+
caption = generate_caption(model, tokenizer, features, max_length)
|
| 214 |
+
return caption
|
| 215 |
+
except Exception as e:
|
| 216 |
+
return f"Lỗi trong quá trình dự đoán: {e}\n{traceback.format_exc()}"
|
| 217 |
+
|
| 218 |
+
DESCRIPTION = (
|
| 219 |
+
"Upload ảnh và nhận caption sinh ra bởi mô hình. "
|
| 220 |
+
)
|
| 221 |
+
|
| 222 |
+
demo = gr.Interface(
|
| 223 |
+
fn=predict,
|
| 224 |
+
inputs=gr.Image(type="pil", label="Ảnh vào"),
|
| 225 |
+
outputs=gr.Textbox(label="Caption"),
|
| 226 |
+
title="Image Captioning — Gradio",
|
| 227 |
+
description=DESCRIPTION,
|
| 228 |
+
)
|
| 229 |
+
|
| 230 |
+
if __name__ == '__main__':
|
| 231 |
+
_startup()
|
| 232 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Core runtime
|
| 2 |
+
tensorflow==2.20
|
| 3 |
+
numpy<2
|
| 4 |
+
pillow>=9.5.0
|
| 5 |
+
opencv-python-headless==4.9.0.80
|
| 6 |
+
matplotlib>=3.7.0
|
| 7 |
+
|
| 8 |
+
# NLP + metrics
|
| 9 |
+
nltk>=3.8.1
|
| 10 |
+
|
| 11 |
+
# UI
|
| 12 |
+
gradio
|
| 13 |
+
|
| 14 |
+
# Progress bars
|
| 15 |
+
tqdm>=4.66.0
|