Spaces:
Running
on
Zero
Running
on
Zero
| import argparse | |
| import shutil | |
| from typing import Optional, List, Dict, Any | |
| import multiprocessing | |
| from pathlib import Path | |
| import pycolmap | |
| from . import logger | |
| from .utils.database import COLMAPDatabase | |
| from .triangulation import ( | |
| import_features, import_matches, estimation_and_geometric_verification, | |
| OutputCapture, parse_option_args) | |
| def create_empty_db(database_path: Path): | |
| if database_path.exists(): | |
| logger.warning('The database already exists, deleting it.') | |
| database_path.unlink() | |
| logger.info('Creating an empty database...') | |
| db = COLMAPDatabase.connect(database_path) | |
| db.create_tables() | |
| db.commit() | |
| db.close() | |
| def import_images(image_dir: Path, | |
| database_path: Path, | |
| camera_mode: pycolmap.CameraMode, | |
| image_list: Optional[List[str]] = None, | |
| options: Optional[Dict[str, Any]] = None): | |
| logger.info('Importing images into the database...') | |
| if options is None: | |
| options = {} | |
| images = list(image_dir.iterdir()) | |
| if len(images) == 0: | |
| raise IOError(f'No images found in {image_dir}.') | |
| with pycolmap.ostream(): | |
| pycolmap.import_images(database_path, image_dir, camera_mode, | |
| image_list=image_list or [], | |
| options=options) | |
| def get_image_ids(database_path: Path) -> Dict[str, int]: | |
| db = COLMAPDatabase.connect(database_path) | |
| images = {} | |
| for name, image_id in db.execute("SELECT name, image_id FROM images;"): | |
| images[name] = image_id | |
| db.close() | |
| return images | |
| def run_reconstruction(sfm_dir: Path, | |
| database_path: Path, | |
| image_dir: Path, | |
| verbose: bool = False, | |
| options: Optional[Dict[str, Any]] = None, | |
| ) -> pycolmap.Reconstruction: | |
| models_path = sfm_dir / 'models' | |
| models_path.mkdir(exist_ok=True, parents=True) | |
| logger.info('Running 3D reconstruction...') | |
| if options is None: | |
| options = {} | |
| options = {'num_threads': min(multiprocessing.cpu_count(), 16), **options} | |
| with OutputCapture(verbose): | |
| with pycolmap.ostream(): | |
| reconstructions = pycolmap.incremental_mapping( | |
| database_path, image_dir, models_path, options=options) | |
| if len(reconstructions) == 0: | |
| logger.error('Could not reconstruct any model!') | |
| return None | |
| logger.info(f'Reconstructed {len(reconstructions)} model(s).') | |
| largest_index = None | |
| largest_num_images = 0 | |
| for index, rec in reconstructions.items(): | |
| num_images = rec.num_reg_images() | |
| if num_images > largest_num_images: | |
| largest_index = index | |
| largest_num_images = num_images | |
| assert largest_index is not None | |
| logger.info(f'Largest model is #{largest_index} ' | |
| f'with {largest_num_images} images.') | |
| for filename in ['images.bin', 'cameras.bin', 'points3D.bin']: | |
| if (sfm_dir / filename).exists(): | |
| (sfm_dir / filename).unlink() | |
| shutil.move( | |
| str(models_path / str(largest_index) / filename), str(sfm_dir)) | |
| return reconstructions[largest_index] | |
| def main(sfm_dir: Path, | |
| image_dir: Path, | |
| pairs: Path, | |
| features: Path, | |
| matches: Path, | |
| camera_mode: pycolmap.CameraMode = pycolmap.CameraMode.AUTO, | |
| verbose: bool = False, | |
| skip_geometric_verification: bool = False, | |
| min_match_score: Optional[float] = None, | |
| image_list: Optional[List[str]] = None, | |
| image_options: Optional[Dict[str, Any]] = None, | |
| mapper_options: Optional[Dict[str, Any]] = None, | |
| ) -> pycolmap.Reconstruction: | |
| assert features.exists(), features | |
| assert pairs.exists(), pairs | |
| assert matches.exists(), matches | |
| sfm_dir.mkdir(parents=True, exist_ok=True) | |
| database = sfm_dir / 'database.db' | |
| create_empty_db(database) | |
| import_images(image_dir, database, camera_mode, image_list, image_options) | |
| image_ids = get_image_ids(database) | |
| import_features(image_ids, database, features) | |
| import_matches(image_ids, database, pairs, matches, | |
| min_match_score, skip_geometric_verification) | |
| if not skip_geometric_verification: | |
| estimation_and_geometric_verification(database, pairs, verbose) | |
| reconstruction = run_reconstruction( | |
| sfm_dir, database, image_dir, verbose, mapper_options) | |
| if reconstruction is not None: | |
| logger.info(f'Reconstruction statistics:\n{reconstruction.summary()}' | |
| + f'\n\tnum_input_images = {len(image_ids)}') | |
| return reconstruction | |
| if __name__ == '__main__': | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument('--sfm_dir', type=Path, required=True) | |
| parser.add_argument('--image_dir', type=Path, required=True) | |
| parser.add_argument('--pairs', type=Path, required=True) | |
| parser.add_argument('--features', type=Path, required=True) | |
| parser.add_argument('--matches', type=Path, required=True) | |
| parser.add_argument('--camera_mode', type=str, default="AUTO", | |
| choices=list(pycolmap.CameraMode.__members__.keys())) | |
| parser.add_argument('--skip_geometric_verification', action='store_true') | |
| parser.add_argument('--min_match_score', type=float) | |
| parser.add_argument('--verbose', action='store_true') | |
| parser.add_argument('--image_options', nargs='+', default=[], | |
| help='List of key=value from {}'.format( | |
| pycolmap.ImageReaderOptions().todict())) | |
| parser.add_argument('--mapper_options', nargs='+', default=[], | |
| help='List of key=value from {}'.format( | |
| pycolmap.IncrementalMapperOptions().todict())) | |
| args = parser.parse_args().__dict__ | |
| image_options = parse_option_args( | |
| args.pop("image_options"), pycolmap.ImageReaderOptions()) | |
| mapper_options = parse_option_args( | |
| args.pop("mapper_options"), pycolmap.IncrementalMapperOptions()) | |
| main(**args, image_options=image_options, mapper_options=mapper_options) | |