Spaces:
Running
on
Zero
Running
on
Zero
| # -*- coding: utf-8 -*- | |
| # @Author : xuelun | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from torch import Tensor | |
| from typing import Type, Callable, Union, List, Optional | |
| def conv3x3(in_planes: int, out_planes: int, stride: int = 1, groups: int = 1, dilation: int = 1) -> nn.Conv2d: | |
| """3x3 convolution with padding""" | |
| return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, | |
| padding=dilation, groups=groups, bias=False, dilation=dilation) | |
| def conv1x1(in_planes: int, out_planes: int, stride: int = 1) -> nn.Conv2d: | |
| """1x1 convolution""" | |
| return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) | |
| class BasicBlock(nn.Module): | |
| expansion: int = 1 | |
| def __init__( | |
| self, | |
| inplanes: int, | |
| planes: int, | |
| stride: int = 1, | |
| downsample: Optional[nn.Module] = None, | |
| groups: int = 1, | |
| base_width: int = 64, | |
| dilation: int = 1, | |
| norm_layer: Optional[Callable[..., nn.Module]] = None | |
| ) -> None: | |
| super(BasicBlock, self).__init__() | |
| if norm_layer is None: | |
| norm_layer = nn.BatchNorm2d | |
| if groups != 1 or base_width != 64: | |
| raise ValueError('BasicBlock only supports groups=1 and base_width=64') | |
| if dilation > 1: | |
| raise NotImplementedError("Dilation > 1 not supported in BasicBlock") | |
| # Both self.conv1 and self.downsample layers downsample the input when stride != 1 | |
| self.conv1 = conv3x3(inplanes, planes, stride) | |
| self.bn1 = norm_layer(planes) | |
| self.relu = nn.ReLU(inplace=True) | |
| self.conv2 = conv3x3(planes, planes) | |
| self.bn2 = norm_layer(planes) | |
| self.downsample = downsample | |
| self.stride = stride | |
| def forward(self, x: Tensor) -> Tensor: | |
| identity = x | |
| out = self.conv1(x) | |
| out = self.bn1(out) | |
| out = self.relu(out) | |
| out = self.conv2(out) | |
| out = self.bn2(out) | |
| if self.downsample is not None: | |
| identity = self.downsample(x) | |
| out += identity | |
| out = self.relu(out) | |
| return out | |
| class Bottleneck(nn.Module): | |
| # Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2) | |
| # while original implementation places the stride at the first 1x1 convolution(self.conv1) | |
| # according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385. | |
| # This variant is also known as ResNet V1.5 and improves accuracy according to | |
| # https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch. | |
| expansion: int = 4 | |
| def __init__( | |
| self, | |
| inplanes: int, | |
| planes: int, | |
| stride: int = 1, | |
| downsample: Optional[nn.Module] = None, | |
| groups: int = 1, | |
| base_width: int = 64, | |
| dilation: int = 1, | |
| norm_layer: Optional[Callable[..., nn.Module]] = None | |
| ) -> None: | |
| super(Bottleneck, self).__init__() | |
| if norm_layer is None: | |
| norm_layer = nn.BatchNorm2d | |
| width = int(planes * (base_width / 64.)) * groups | |
| # Both self.conv2 and self.downsample layers downsample the input when stride != 1 | |
| self.conv1 = conv1x1(inplanes, width) | |
| self.bn1 = norm_layer(width) | |
| self.conv2 = conv3x3(width, width, stride, groups, dilation) | |
| self.bn2 = norm_layer(width) | |
| self.conv3 = conv1x1(width, planes * self.expansion) | |
| self.bn3 = norm_layer(planes * self.expansion) | |
| self.relu = nn.ReLU(inplace=True) | |
| self.downsample = downsample | |
| self.stride = stride | |
| def forward(self, x: Tensor) -> Tensor: | |
| identity = x | |
| out = self.conv1(x) | |
| out = self.bn1(out) | |
| out = self.relu(out) | |
| out = self.conv2(out) | |
| out = self.bn2(out) | |
| out = self.relu(out) | |
| out = self.conv3(out) | |
| out = self.bn3(out) | |
| if self.downsample is not None: | |
| identity = self.downsample(x) | |
| out += identity | |
| out = self.relu(out) | |
| return out | |
| class ResNet(nn.Module): | |
| def __init__( | |
| self, | |
| block: Type[Union[BasicBlock, Bottleneck]], | |
| layers: List[int], | |
| num_classes: int = 1000, | |
| zero_init_residual: bool = False, | |
| groups: int = 1, | |
| width_per_group: int = 64, | |
| replace_stride_with_dilation: Optional[List[bool]] = None, | |
| norm_layer: Optional[Callable[..., nn.Module]] = None | |
| ) -> None: | |
| super(ResNet, self).__init__() | |
| if norm_layer is None: | |
| norm_layer = nn.BatchNorm2d | |
| self._norm_layer = norm_layer | |
| self.inplanes = 64 | |
| self.dilation = 1 | |
| if replace_stride_with_dilation is None: | |
| # each element in the tuple indicates if we should replace | |
| # the 2x2 stride with a dilated convolution instead | |
| replace_stride_with_dilation = [False, False, False] | |
| if len(replace_stride_with_dilation) != 3: | |
| raise ValueError("replace_stride_with_dilation should be None " | |
| "or a 3-element tuple, got {}".format(replace_stride_with_dilation)) | |
| self.groups = groups | |
| self.base_width = width_per_group | |
| self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, | |
| bias=False) | |
| self.bn1 = norm_layer(self.inplanes) | |
| self.relu = nn.ReLU(inplace=True) | |
| # self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) | |
| self.layer1 = self._make_layer(block, 64, layers[0]) | |
| self.layer2 = self._make_layer(block, 128, layers[1], stride=2, | |
| dilate=replace_stride_with_dilation[0]) | |
| self.layer3 = self._make_layer(block, 256, layers[2], stride=2, | |
| dilate=replace_stride_with_dilation[1]) | |
| # self.layer4 = self._make_layer(block, 512, layers[3], stride=2, | |
| # dilate=replace_stride_with_dilation[2]) | |
| # self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) | |
| # self.fc = nn.Linear(512 * block.expansion, num_classes) | |
| # | |
| # for m in self.modules(): | |
| # if isinstance(m, nn.Conv2d): | |
| # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') | |
| # elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): | |
| # nn.init.constant_(m.weight, 1) | |
| # nn.init.constant_(m.bias, 0) | |
| # | |
| # # Zero-initialize the last BN in each residual branch, | |
| # # so that the residual branch starts with zeros, and each residual block behaves like an identity. | |
| # # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 | |
| # if zero_init_residual: | |
| # for m in self.modules(): | |
| # if isinstance(m, Bottleneck): | |
| # nn.init.constant_(m.bn3.weight, 0) # type: ignore[arg-type] | |
| # elif isinstance(m, BasicBlock): | |
| # nn.init.constant_(m.bn2.weight, 0) # type: ignore[arg-type] | |
| def _make_layer(self, block: Type[Union[BasicBlock, Bottleneck]], planes: int, blocks: int, | |
| stride: int = 1, dilate: bool = False) -> nn.Sequential: | |
| norm_layer = self._norm_layer | |
| downsample = None | |
| previous_dilation = self.dilation | |
| if dilate: | |
| self.dilation *= stride | |
| stride = 1 | |
| if stride != 1 or self.inplanes != planes * block.expansion: | |
| downsample = nn.Sequential( | |
| conv1x1(self.inplanes, planes * block.expansion, stride), | |
| norm_layer(planes * block.expansion), | |
| ) | |
| layers = [block(self.inplanes, planes, stride, downsample, self.groups, | |
| self.base_width, previous_dilation, norm_layer)] | |
| self.inplanes = planes * block.expansion | |
| for _ in range(1, blocks): | |
| layers.append(block(self.inplanes, planes, groups=self.groups, | |
| base_width=self.base_width, dilation=self.dilation, | |
| norm_layer=norm_layer)) | |
| return nn.Sequential(*layers) | |
| def _forward_impl(self, x: Tensor) -> Tensor: | |
| # See note [TorchScript super()] | |
| # x = self.conv1(x) # (2, 64, 320, 320) | |
| # x = self.bn1(x) # (2, 64, 320, 320) | |
| # x1 = self.relu(x) # (2, 64, 320, 320) | |
| # x2 = self.maxpool(x1) # (2, 64, 160, 160) | |
| # x2 = self.layer1(x1) # (2, 64, 160, 160) | |
| # x3 = self.layer2(x2) # (2, 128, 80, 80) | |
| # x4 = self.layer3(x3) # (2, 256, 40, 40) | |
| # x = self.layer4(x) # (2, 512, 20, 20) | |
| # x = self.avgpool(x) # (2, 512, 1, 1) | |
| # x = torch.flatten(x, 1) # (2, 512) | |
| # x = self.fc(x) # (2, 1000) | |
| x0 = self.relu(self.bn1(self.conv1(x))) | |
| x1 = self.layer1(x0) # 1/2 | |
| x2 = self.layer2(x1) # 1/4 | |
| x3 = self.layer3(x2) # 1/8 | |
| return x1, x2, x3 | |
| def forward(self, x: Tensor) -> Tensor: | |
| return self._forward_impl(x) | |
| def load_state_dict(self, state_dict, *args, **kwargs): | |
| for k in list(state_dict.keys()): | |
| if k.startswith('layer4.'): state_dict.pop(k) | |
| if k.startswith('fc.'): state_dict.pop(k) | |
| return super().load_state_dict(state_dict, *args, **kwargs) | |
| class ResNetFPN_8_2(nn.Module): | |
| """ | |
| ResNet+FPN, output resolution are 1/8 and 1/2. | |
| Each block has 2 layers. | |
| """ | |
| def __init__(self, config): | |
| super().__init__() | |
| # Config | |
| block = BasicBlock | |
| # initial_dim = config['initial_dim'] | |
| block_dims = config['block_dims'] | |
| # Class Variable | |
| # self.in_planes = initial_dim | |
| # Networks | |
| # self.conv1 = nn.Conv2d(1, initial_dim, kernel_size=7, stride=2, padding=3, bias=False) | |
| # self.bn1 = nn.BatchNorm2d(initial_dim) | |
| # self.relu = nn.ReLU(inplace=True) | |
| # self.layer1 = self._make_layer(block, block_dims[0], stride=1) # 1/2 | |
| # self.layer2 = self._make_layer(block, block_dims[1], stride=2) # 1/4 | |
| # self.layer3 = self._make_layer(block, block_dims[2], stride=2) # 1/8 | |
| self.encode = ResNet(Bottleneck, [3, 4, 6, 3]) # resnet50 | |
| # 3. FPN upsample | |
| self.layer3_outconv = conv1x1(block_dims[5], block_dims[3]) | |
| self.layer2_outconv = conv1x1(block_dims[4], block_dims[3]) | |
| self.layer2_outconv2 = nn.Sequential( | |
| conv3x3(block_dims[3], block_dims[3]), | |
| nn.BatchNorm2d(block_dims[3]), | |
| nn.LeakyReLU(), | |
| conv3x3(block_dims[3], block_dims[2]), | |
| ) | |
| self.layer1_outconv = conv1x1(block_dims[3], block_dims[2]) | |
| self.layer1_outconv2 = nn.Sequential( | |
| conv3x3(block_dims[2], block_dims[2]), | |
| nn.BatchNorm2d(block_dims[2]), | |
| nn.LeakyReLU(), | |
| conv3x3(block_dims[2], block_dims[1]), | |
| ) | |
| for m in self.modules(): | |
| if isinstance(m, nn.Conv2d): | |
| nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') | |
| elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): | |
| nn.init.constant_(m.weight, 1) | |
| nn.init.constant_(m.bias, 0) | |
| def _make_layer(self, block, dim, stride=1): | |
| layer1 = block(self.in_planes, dim, stride=stride) | |
| layer2 = block(dim, dim, stride=1) | |
| layers = (layer1, layer2) | |
| self.in_planes = dim | |
| return nn.Sequential(*layers) | |
| def forward(self, x): | |
| # ResNet Backbone | |
| # x0 = self.relu(self.bn1(self.conv1(x))) | |
| # x1 = self.layer1(x0) # 1/2 | |
| # x2 = self.layer2(x1) # 1/4 | |
| # x3 = self.layer3(x2) # 1/8 | |
| # x1: (2, 64, 320, 320) | |
| # x2: (2, 128, 160, 160) | |
| # x3: (2, 256, 80, 80) | |
| x1, x2, x3 = self.encode(x) | |
| # FPN | |
| x3_out = self.layer3_outconv(x3) # (2, 256, 80, 80) | |
| x3_out_2x = F.interpolate(x3_out, scale_factor=2., mode='bilinear', align_corners=True) # (2, 256, 160, 160) | |
| x2_out = self.layer2_outconv(x2) # (2, 256, 160, 160) | |
| x2_out = self.layer2_outconv2(x2_out+x3_out_2x) # (2, 196, 160, 160) | |
| x2_out_2x = F.interpolate(x2_out, scale_factor=2., mode='bilinear', align_corners=True) # (2, 196, 320, 320) | |
| x1_out = self.layer1_outconv(x1) # (2, 196, 320, 320) | |
| x1_out = self.layer1_outconv2(x1_out+x2_out_2x) | |
| return [x3_out, x1_out] | |
| if __name__ == '__main__': | |
| # Original form | |
| # config = dict(initial_dim=128, block_dims=[128, 196, 256]) | |
| # model = ResNetFPN_8_2(config) | |
| # # output (list): | |
| # # 0: (2, 256, 80, 80) | |
| # # 1: (2, 128, 320, 320) | |
| # output = model(torch.randn(2, 1, 640, 640)) | |
| # model = ResNet(BasicBlock, [2, 2, 2, 2]) | |
| # # weights = torch.load('resnet18(5c106cde).ckpt', map_location='cpu') | |
| # # model.load_state_dict(weights) | |
| # output = model(torch.randn(2, 3, 640, 640)) | |
| config = dict(initial_dim=128, block_dims=[64, 128, 196, 256]) | |
| model = ResNetFPN_8_2(config) | |
| # output (list): | |
| # 0: (2, 256, 80, 80) | |
| # 1: (2, 128, 320, 320) | |
| output = model(torch.randn(2, 3, 640, 640)) | |