Spaces:
Running
Running
remove Trust & Safety tab
Browse files- app.py +33 -189
- src/display/utils.py +6 -6
- src/populate.py +1 -1
app.py
CHANGED
|
@@ -3,14 +3,13 @@ import pandas as pd
|
|
| 3 |
|
| 4 |
from src.about import CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, INTRODUCTION_TEXT, LLM_BENCHMARKS_TEXT, TITLE
|
| 5 |
from src.display.css_html_js import custom_css
|
| 6 |
-
from src.display.utils import COLS, TS_COLS,
|
| 7 |
from src.envs import CRM_RESULTS_PATH
|
| 8 |
from src.populate import get_leaderboard_df_crm
|
| 9 |
|
| 10 |
-
original_df
|
| 11 |
|
| 12 |
leaderboard_df = original_df.copy()
|
| 13 |
-
leaderboard_ts_df = ts_df.copy()
|
| 14 |
# leaderboard_df = leaderboard_df.style.format({"accuracy_metric_average": "{0:.2f}"})
|
| 15 |
|
| 16 |
|
|
@@ -39,18 +38,6 @@ def update_table(
|
|
| 39 |
return df.style.map(highlight_cost_band_low, props="background-color: #b3d5a4")
|
| 40 |
|
| 41 |
|
| 42 |
-
def update_ts_table(
|
| 43 |
-
hidden_df: pd.DataFrame,
|
| 44 |
-
columns: list,
|
| 45 |
-
llm_query: list,
|
| 46 |
-
llm_provider_query: list,
|
| 47 |
-
):
|
| 48 |
-
filtered_df = filter_llm_func(hidden_df, llm_query)
|
| 49 |
-
filtered_df = filter_llm_provider_func(filtered_df, llm_provider_query)
|
| 50 |
-
df = select_columns_ts_table(filtered_df, columns)
|
| 51 |
-
return df
|
| 52 |
-
|
| 53 |
-
|
| 54 |
# def highlight_cols(x):
|
| 55 |
# df = x.copy()
|
| 56 |
# df.loc[:, :] = "color: black"
|
|
@@ -90,21 +77,6 @@ def init_leaderboard_df(
|
|
| 90 |
)
|
| 91 |
|
| 92 |
|
| 93 |
-
def init_leaderboard_ts_df(
|
| 94 |
-
leaderboard_df: pd.DataFrame,
|
| 95 |
-
columns: list,
|
| 96 |
-
llm_query: list,
|
| 97 |
-
llm_provider_query: list,
|
| 98 |
-
):
|
| 99 |
-
|
| 100 |
-
return update_ts_table(
|
| 101 |
-
leaderboard_df,
|
| 102 |
-
columns,
|
| 103 |
-
llm_query,
|
| 104 |
-
llm_provider_query,
|
| 105 |
-
)
|
| 106 |
-
|
| 107 |
-
|
| 108 |
def filter_accuracy_method_func(df: pd.DataFrame, accuracy_method_query: str) -> pd.DataFrame:
|
| 109 |
return df[df["Accuracy Method"] == accuracy_method_query]
|
| 110 |
|
|
@@ -139,6 +111,10 @@ def filter_llm_provider_func(df: pd.DataFrame, llm_provider_query: list) -> pd.D
|
|
| 139 |
return df[df["LLM Provider"].isin(llm_provider_query)]
|
| 140 |
|
| 141 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
| 143 |
always_here_cols = [
|
| 144 |
AutoEvalColumn.model.name,
|
|
@@ -148,14 +124,6 @@ def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
|
| 148 |
return filtered_df
|
| 149 |
|
| 150 |
|
| 151 |
-
def select_columns_ts_table(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
| 152 |
-
always_here_cols = [
|
| 153 |
-
TSEvalColumn.model.name,
|
| 154 |
-
]
|
| 155 |
-
filtered_df = df[always_here_cols + [c for c in TS_COLS if c in df.columns and c in columns]]
|
| 156 |
-
return filtered_df
|
| 157 |
-
|
| 158 |
-
|
| 159 |
demo = gr.Blocks(css=custom_css)
|
| 160 |
with demo:
|
| 161 |
gr.HTML(TITLE)
|
|
@@ -164,34 +132,17 @@ with demo:
|
|
| 164 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 165 |
with gr.TabItem("🏅 Leaderboard", elem_id="llm-benchmark-tab-table", id=0):
|
| 166 |
with gr.Row():
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
c.name
|
| 179 |
-
for c in fields(AutoEvalColumn)
|
| 180 |
-
if c.displayed_by_default and not c.hidden and not c.never_hidden
|
| 181 |
-
],
|
| 182 |
-
label="Select columns to show",
|
| 183 |
-
elem_id="column-select",
|
| 184 |
-
interactive=True,
|
| 185 |
-
)
|
| 186 |
-
# with gr.Column(min_width=320):
|
| 187 |
-
# # with gr.Box(elem_id="box-filter"):
|
| 188 |
-
# filter_columns_type = gr.CheckboxGroup(
|
| 189 |
-
# label="Model types",
|
| 190 |
-
# choices=[t.to_str() for t in ModelType],
|
| 191 |
-
# value=[t.to_str() for t in ModelType],
|
| 192 |
-
# interactive=True,
|
| 193 |
-
# elem_id="filter-columns-type",
|
| 194 |
-
# )
|
| 195 |
with gr.Row():
|
| 196 |
with gr.Column():
|
| 197 |
filter_llm = gr.CheckboxGroup(
|
|
@@ -202,13 +153,22 @@ with demo:
|
|
| 202 |
interactive=True,
|
| 203 |
)
|
| 204 |
with gr.Column():
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 212 |
with gr.Row():
|
| 213 |
filter_use_case = gr.CheckboxGroup(
|
| 214 |
choices=list(original_df["Use Case Name"].unique()),
|
|
@@ -244,14 +204,6 @@ with demo:
|
|
| 244 |
# multiselect=True,
|
| 245 |
# interactive=True,
|
| 246 |
# )
|
| 247 |
-
# with gr.Column():
|
| 248 |
-
# filter_metric_area = gr.CheckboxGroup(
|
| 249 |
-
# choices=["Accuracy", "Speed (Latency)", "Trust & Safety", "Cost"],
|
| 250 |
-
# value=["Accuracy", "Speed (Latency)", "Trust & Safety", "Cost"],
|
| 251 |
-
# label="Metric Area",
|
| 252 |
-
# info="",
|
| 253 |
-
# interactive=True,
|
| 254 |
-
# )
|
| 255 |
with gr.Column():
|
| 256 |
filter_accuracy_method = gr.Radio(
|
| 257 |
choices=["Manual", "Auto"],
|
|
@@ -267,22 +219,6 @@ with demo:
|
|
| 267 |
info="Range: 0.0 to 4.0",
|
| 268 |
interactive=True,
|
| 269 |
)
|
| 270 |
-
# with gr.Column():
|
| 271 |
-
# filter_llm = gr.CheckboxGroup(
|
| 272 |
-
# choices=list(original_df["Model Name"].unique()),
|
| 273 |
-
# value=list(leaderboard_df["Model Name"].unique()),
|
| 274 |
-
# label="Model Name",
|
| 275 |
-
# info="",
|
| 276 |
-
# interactive=True,
|
| 277 |
-
# )
|
| 278 |
-
# with gr.Column():
|
| 279 |
-
# filter_llm_provider = gr.CheckboxGroup(
|
| 280 |
-
# choices=list(original_df["LLM Provider"].unique()),
|
| 281 |
-
# value=list(leaderboard_df["LLM Provider"].unique()),
|
| 282 |
-
# label="LLM Provider",
|
| 283 |
-
# info="",
|
| 284 |
-
# interactive=True,
|
| 285 |
-
# )
|
| 286 |
|
| 287 |
leaderboard_table = gr.components.Dataframe(
|
| 288 |
# value=leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
|
@@ -311,19 +247,6 @@ with demo:
|
|
| 311 |
datatype=TYPES,
|
| 312 |
visible=False,
|
| 313 |
)
|
| 314 |
-
# search_bar.submit(
|
| 315 |
-
# update_table,
|
| 316 |
-
# [
|
| 317 |
-
# hidden_leaderboard_table_for_search,
|
| 318 |
-
# shown_columns,
|
| 319 |
-
# filter_columns_type,
|
| 320 |
-
# filter_columns_precision,
|
| 321 |
-
# filter_columns_size,
|
| 322 |
-
# deleted_models_visibility,
|
| 323 |
-
# search_bar,
|
| 324 |
-
# ],
|
| 325 |
-
# leaderboard_table,
|
| 326 |
-
# )
|
| 327 |
for selector in [
|
| 328 |
shown_columns,
|
| 329 |
filter_llm,
|
|
@@ -333,10 +256,6 @@ with demo:
|
|
| 333 |
filter_use_case_area,
|
| 334 |
filter_use_case,
|
| 335 |
filter_use_case_type,
|
| 336 |
-
# filter_columns_type,
|
| 337 |
-
# filter_columns_precision,
|
| 338 |
-
# filter_columns_size,
|
| 339 |
-
# deleted_models_visibility,
|
| 340 |
]:
|
| 341 |
selector.change(
|
| 342 |
update_table,
|
|
@@ -350,81 +269,6 @@ with demo:
|
|
| 350 |
filter_use_case_area,
|
| 351 |
filter_use_case,
|
| 352 |
filter_use_case_type,
|
| 353 |
-
# filter_columns_type,
|
| 354 |
-
# filter_columns_precision,
|
| 355 |
-
# filter_columns_size,
|
| 356 |
-
# deleted_models_visibility,
|
| 357 |
-
# search_bar,
|
| 358 |
-
],
|
| 359 |
-
leaderboard_table,
|
| 360 |
-
queue=True,
|
| 361 |
-
)
|
| 362 |
-
with gr.TabItem("🏅 Trust & Safety", elem_id="llm-benchmark-tab-table", id=2):
|
| 363 |
-
with gr.Row():
|
| 364 |
-
with gr.Column():
|
| 365 |
-
with gr.Row():
|
| 366 |
-
shown_columns = gr.CheckboxGroup(
|
| 367 |
-
choices=[c.name for c in fields(TSEvalColumn) if not c.hidden and not c.never_hidden],
|
| 368 |
-
value=[
|
| 369 |
-
c.name
|
| 370 |
-
for c in fields(TSEvalColumn)
|
| 371 |
-
if c.displayed_by_default and not c.hidden and not c.never_hidden
|
| 372 |
-
],
|
| 373 |
-
label="Select columns to show",
|
| 374 |
-
elem_id="column-select",
|
| 375 |
-
interactive=True,
|
| 376 |
-
)
|
| 377 |
-
with gr.Row():
|
| 378 |
-
with gr.Column():
|
| 379 |
-
filter_llm = gr.CheckboxGroup(
|
| 380 |
-
choices=list(ts_df["Model Name"].unique()),
|
| 381 |
-
value=list(ts_df["Model Name"].unique()),
|
| 382 |
-
label="Model Name",
|
| 383 |
-
info="",
|
| 384 |
-
interactive=True,
|
| 385 |
-
)
|
| 386 |
-
with gr.Column():
|
| 387 |
-
filter_llm_provider = gr.CheckboxGroup(
|
| 388 |
-
choices=list(ts_df["LLM Provider"].unique()),
|
| 389 |
-
value=list(ts_df["LLM Provider"].unique()),
|
| 390 |
-
label="LLM Provider",
|
| 391 |
-
info="",
|
| 392 |
-
interactive=True,
|
| 393 |
-
)
|
| 394 |
-
|
| 395 |
-
leaderboard_table = gr.components.Dataframe(
|
| 396 |
-
value=init_leaderboard_ts_df(
|
| 397 |
-
leaderboard_ts_df,
|
| 398 |
-
shown_columns.value,
|
| 399 |
-
filter_llm.value,
|
| 400 |
-
filter_llm_provider.value,
|
| 401 |
-
),
|
| 402 |
-
headers=[c.name for c in fields(TSEvalColumn) if c.never_hidden] + shown_columns.value,
|
| 403 |
-
datatype=TS_TYPES,
|
| 404 |
-
elem_id="leaderboard-table",
|
| 405 |
-
interactive=False,
|
| 406 |
-
visible=True,
|
| 407 |
-
)
|
| 408 |
-
|
| 409 |
-
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
| 410 |
-
value=ts_df[TS_COLS],
|
| 411 |
-
headers=TS_COLS,
|
| 412 |
-
datatype=TS_TYPES,
|
| 413 |
-
visible=False,
|
| 414 |
-
)
|
| 415 |
-
|
| 416 |
-
for selector in [
|
| 417 |
-
shown_columns,
|
| 418 |
-
filter_llm,
|
| 419 |
-
filter_llm_provider,
|
| 420 |
-
]:
|
| 421 |
-
selector.change(
|
| 422 |
-
update_ts_table,
|
| 423 |
-
[
|
| 424 |
-
hidden_leaderboard_table_for_search,
|
| 425 |
-
shown_columns,
|
| 426 |
-
filter_llm,
|
| 427 |
-
filter_llm_provider,
|
| 428 |
],
|
| 429 |
leaderboard_table,
|
| 430 |
queue=True,
|
|
|
|
| 3 |
|
| 4 |
from src.about import CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, INTRODUCTION_TEXT, LLM_BENCHMARKS_TEXT, TITLE
|
| 5 |
from src.display.css_html_js import custom_css
|
| 6 |
+
from src.display.utils import COLS, TS_COLS, TYPES, AutoEvalColumn, fields
|
| 7 |
from src.envs import CRM_RESULTS_PATH
|
| 8 |
from src.populate import get_leaderboard_df_crm
|
| 9 |
|
| 10 |
+
original_df = get_leaderboard_df_crm(CRM_RESULTS_PATH, COLS, TS_COLS)
|
| 11 |
|
| 12 |
leaderboard_df = original_df.copy()
|
|
|
|
| 13 |
# leaderboard_df = leaderboard_df.style.format({"accuracy_metric_average": "{0:.2f}"})
|
| 14 |
|
| 15 |
|
|
|
|
| 38 |
return df.style.map(highlight_cost_band_low, props="background-color: #b3d5a4")
|
| 39 |
|
| 40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
# def highlight_cols(x):
|
| 42 |
# df = x.copy()
|
| 43 |
# df.loc[:, :] = "color: black"
|
|
|
|
| 77 |
)
|
| 78 |
|
| 79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
def filter_accuracy_method_func(df: pd.DataFrame, accuracy_method_query: str) -> pd.DataFrame:
|
| 81 |
return df[df["Accuracy Method"] == accuracy_method_query]
|
| 82 |
|
|
|
|
| 111 |
return df[df["LLM Provider"].isin(llm_provider_query)]
|
| 112 |
|
| 113 |
|
| 114 |
+
def filter_metric_area_func(df: pd.DataFrame, metric_area_query: list) -> pd.DataFrame:
|
| 115 |
+
return df[df["Metric Area"].isin(metric_area_query)]
|
| 116 |
+
|
| 117 |
+
|
| 118 |
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
| 119 |
always_here_cols = [
|
| 120 |
AutoEvalColumn.model.name,
|
|
|
|
| 124 |
return filtered_df
|
| 125 |
|
| 126 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
demo = gr.Blocks(css=custom_css)
|
| 128 |
with demo:
|
| 129 |
gr.HTML(TITLE)
|
|
|
|
| 132 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 133 |
with gr.TabItem("🏅 Leaderboard", elem_id="llm-benchmark-tab-table", id=0):
|
| 134 |
with gr.Row():
|
| 135 |
+
shown_columns = gr.CheckboxGroup(
|
| 136 |
+
choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden],
|
| 137 |
+
value=[
|
| 138 |
+
c.name
|
| 139 |
+
for c in fields(AutoEvalColumn)
|
| 140 |
+
if c.displayed_by_default and not c.hidden and not c.never_hidden
|
| 141 |
+
],
|
| 142 |
+
label="Select columns to show",
|
| 143 |
+
elem_id="column-select",
|
| 144 |
+
interactive=True,
|
| 145 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
with gr.Row():
|
| 147 |
with gr.Column():
|
| 148 |
filter_llm = gr.CheckboxGroup(
|
|
|
|
| 153 |
interactive=True,
|
| 154 |
)
|
| 155 |
with gr.Column():
|
| 156 |
+
with gr.Row():
|
| 157 |
+
filter_llm_provider = gr.CheckboxGroup(
|
| 158 |
+
choices=list(original_df["LLM Provider"].unique()),
|
| 159 |
+
value=list(original_df["LLM Provider"].unique()),
|
| 160 |
+
label="LLM Provider",
|
| 161 |
+
info="",
|
| 162 |
+
interactive=True,
|
| 163 |
+
)
|
| 164 |
+
with gr.Row():
|
| 165 |
+
filter_metric_area = gr.CheckboxGroup(
|
| 166 |
+
choices=["Accuracy", "Speed (Latency)", "Trust & Safety", "Cost"],
|
| 167 |
+
value=["Accuracy", "Speed (Latency)", "Trust & Safety", "Cost"],
|
| 168 |
+
label="Metric Area",
|
| 169 |
+
info="",
|
| 170 |
+
interactive=True,
|
| 171 |
+
)
|
| 172 |
with gr.Row():
|
| 173 |
filter_use_case = gr.CheckboxGroup(
|
| 174 |
choices=list(original_df["Use Case Name"].unique()),
|
|
|
|
| 204 |
# multiselect=True,
|
| 205 |
# interactive=True,
|
| 206 |
# )
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 207 |
with gr.Column():
|
| 208 |
filter_accuracy_method = gr.Radio(
|
| 209 |
choices=["Manual", "Auto"],
|
|
|
|
| 219 |
info="Range: 0.0 to 4.0",
|
| 220 |
interactive=True,
|
| 221 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 222 |
|
| 223 |
leaderboard_table = gr.components.Dataframe(
|
| 224 |
# value=leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
|
|
|
| 247 |
datatype=TYPES,
|
| 248 |
visible=False,
|
| 249 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 250 |
for selector in [
|
| 251 |
shown_columns,
|
| 252 |
filter_llm,
|
|
|
|
| 256 |
filter_use_case_area,
|
| 257 |
filter_use_case,
|
| 258 |
filter_use_case_type,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 259 |
]:
|
| 260 |
selector.change(
|
| 261 |
update_table,
|
|
|
|
| 269 |
filter_use_case_area,
|
| 270 |
filter_use_case,
|
| 271 |
filter_use_case_type,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 272 |
],
|
| 273 |
leaderboard_table,
|
| 274 |
queue=True,
|
src/display/utils.py
CHANGED
|
@@ -26,26 +26,26 @@ auto_eval_column_dict.append(
|
|
| 26 |
["model", ColumnContent, ColumnContent("Model Name", "markdown", True, never_hidden=True)]
|
| 27 |
)
|
| 28 |
auto_eval_column_dict.append(["model_provider", ColumnContent, ColumnContent("LLM Provider", "markdown", True)])
|
| 29 |
-
auto_eval_column_dict.append(["use_case_name", ColumnContent, ColumnContent("Use Case Name", "markdown",
|
| 30 |
auto_eval_column_dict.append(["use_case_type", ColumnContent, ColumnContent("Use Case Type", "markdown", False)])
|
| 31 |
auto_eval_column_dict.append(["accuracy_method", ColumnContent, ColumnContent("Accuracy Method", "markdown", False)])
|
| 32 |
# Accuracy metrics
|
| 33 |
-
auto_eval_column_dict.append(["accuracy_metric_average", ColumnContent, ColumnContent("Accuracy", "markdown",
|
| 34 |
auto_eval_column_dict.append(
|
| 35 |
[
|
| 36 |
"accuracy_metric_instruction_following",
|
| 37 |
ColumnContent,
|
| 38 |
-
ColumnContent("Instruction Following", "markdown",
|
| 39 |
]
|
| 40 |
)
|
| 41 |
auto_eval_column_dict.append(
|
| 42 |
-
["accuracy_metric_completeness", ColumnContent, ColumnContent("Completeness", "markdown",
|
| 43 |
)
|
| 44 |
auto_eval_column_dict.append(
|
| 45 |
-
["accuracy_metric_conciseness", ColumnContent, ColumnContent("Conciseness", "markdown",
|
| 46 |
)
|
| 47 |
auto_eval_column_dict.append(
|
| 48 |
-
["accuracy_metric_factuality", ColumnContent, ColumnContent("Factuality", "markdown",
|
| 49 |
)
|
| 50 |
# Speed (Latency) & Cost metrics
|
| 51 |
auto_eval_column_dict.append(["latency", ColumnContent, ColumnContent("Response Time (Sec)", "markdown", True)])
|
|
|
|
| 26 |
["model", ColumnContent, ColumnContent("Model Name", "markdown", True, never_hidden=True)]
|
| 27 |
)
|
| 28 |
auto_eval_column_dict.append(["model_provider", ColumnContent, ColumnContent("LLM Provider", "markdown", True)])
|
| 29 |
+
auto_eval_column_dict.append(["use_case_name", ColumnContent, ColumnContent("Use Case Name", "markdown", True)])
|
| 30 |
auto_eval_column_dict.append(["use_case_type", ColumnContent, ColumnContent("Use Case Type", "markdown", False)])
|
| 31 |
auto_eval_column_dict.append(["accuracy_method", ColumnContent, ColumnContent("Accuracy Method", "markdown", False)])
|
| 32 |
# Accuracy metrics
|
| 33 |
+
auto_eval_column_dict.append(["accuracy_metric_average", ColumnContent, ColumnContent("Accuracy", "markdown", True)])
|
| 34 |
auto_eval_column_dict.append(
|
| 35 |
[
|
| 36 |
"accuracy_metric_instruction_following",
|
| 37 |
ColumnContent,
|
| 38 |
+
ColumnContent("Instruction Following", "markdown", True),
|
| 39 |
]
|
| 40 |
)
|
| 41 |
auto_eval_column_dict.append(
|
| 42 |
+
["accuracy_metric_completeness", ColumnContent, ColumnContent("Completeness", "markdown", True)]
|
| 43 |
)
|
| 44 |
auto_eval_column_dict.append(
|
| 45 |
+
["accuracy_metric_conciseness", ColumnContent, ColumnContent("Conciseness", "markdown", True)]
|
| 46 |
)
|
| 47 |
auto_eval_column_dict.append(
|
| 48 |
+
["accuracy_metric_factuality", ColumnContent, ColumnContent("Factuality", "markdown", True)]
|
| 49 |
)
|
| 50 |
# Speed (Latency) & Cost metrics
|
| 51 |
auto_eval_column_dict.append(["latency", ColumnContent, ColumnContent("Response Time (Sec)", "markdown", True)])
|
src/populate.py
CHANGED
|
@@ -67,4 +67,4 @@ def get_leaderboard_df_crm(
|
|
| 67 |
by=[AutoEvalColumn.accuracy_metric_average.name], ascending=False
|
| 68 |
)
|
| 69 |
leaderboard_accuracy_df = leaderboard_accuracy_df[accuracy_cols].round(decimals=2)
|
| 70 |
-
return leaderboard_accuracy_df
|
|
|
|
| 67 |
by=[AutoEvalColumn.accuracy_metric_average.name], ascending=False
|
| 68 |
)
|
| 69 |
leaderboard_accuracy_df = leaderboard_accuracy_df[accuracy_cols].round(decimals=2)
|
| 70 |
+
return leaderboard_accuracy_df
|