Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +34 -148
src/streamlit_app.py
CHANGED
|
@@ -1,13 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import pandas as pd
|
| 3 |
-
import numpy as np
|
| 4 |
import streamlit as st
|
| 5 |
from dotenv import load_dotenv
|
| 6 |
from huggingface_hub import InferenceClient, login
|
| 7 |
import google.generativeai as genai
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
import
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
# ======================================================
|
| 13 |
# โ๏ธ APP CONFIGURATION
|
|
@@ -34,7 +41,7 @@ else:
|
|
| 34 |
st.warning("โ ๏ธ Gemini API key missing. Gemini 2.5 Flash will not work.")
|
| 35 |
|
| 36 |
# ======================================================
|
| 37 |
-
# ๐ง MODEL
|
| 38 |
# ======================================================
|
| 39 |
with st.sidebar:
|
| 40 |
st.header("โ๏ธ Model Settings")
|
|
@@ -62,171 +69,40 @@ with st.sidebar:
|
|
| 62 |
temperature = st.slider("Temperature", 0.0, 1.0, 0.3)
|
| 63 |
max_tokens = st.slider("Max Tokens", 128, 4096, 1024)
|
| 64 |
|
|
|
|
|
|
|
|
|
|
| 65 |
hf_cleaner_client = InferenceClient(model=CLEANER_MODEL, token=HF_TOKEN)
|
| 66 |
hf_analyst_client = None
|
| 67 |
if ANALYST_MODEL != "Gemini 2.5 Flash (Google)":
|
| 68 |
hf_analyst_client = InferenceClient(model=ANALYST_MODEL, token=HF_TOKEN)
|
| 69 |
|
| 70 |
-
# ======================================================
|
| 71 |
-
# ๐งฉ SAFE GENERATION FUNCTION
|
| 72 |
-
# ======================================================
|
| 73 |
-
def safe_hf_generate(client, prompt, temperature=0.3, max_tokens=512, retries=2):
|
| 74 |
-
"""Try text generation, with retry + fallback on service errors."""
|
| 75 |
-
for attempt in range(retries + 1):
|
| 76 |
-
try:
|
| 77 |
-
resp = client.text_generation(
|
| 78 |
-
prompt,
|
| 79 |
-
temperature=temperature,
|
| 80 |
-
max_new_tokens=max_tokens,
|
| 81 |
-
return_full_text=False,
|
| 82 |
-
)
|
| 83 |
-
return resp.strip()
|
| 84 |
-
except Exception as e:
|
| 85 |
-
err = str(e)
|
| 86 |
-
# ๐ฉน FIX: Handle common server overloads gracefully
|
| 87 |
-
if "503" in err or "Service Temporarily Unavailable" in err:
|
| 88 |
-
time.sleep(2)
|
| 89 |
-
if attempt < retries:
|
| 90 |
-
continue # retry
|
| 91 |
-
else:
|
| 92 |
-
return "โ ๏ธ The Hugging Face model is temporarily unavailable. Please try again or switch to Gemini."
|
| 93 |
-
elif "Supported task: conversational" in err:
|
| 94 |
-
chat_resp = client.chat_completion(
|
| 95 |
-
messages=[{"role": "user", "content": prompt}],
|
| 96 |
-
max_tokens=max_tokens,
|
| 97 |
-
temperature=temperature,
|
| 98 |
-
)
|
| 99 |
-
return chat_resp["choices"][0]["message"]["content"].strip()
|
| 100 |
-
else:
|
| 101 |
-
raise e
|
| 102 |
-
return "โ ๏ธ Failed after retries."
|
| 103 |
-
|
| 104 |
-
# ======================================================
|
| 105 |
-
# ๐งฉ DATA CLEANING
|
| 106 |
-
# ======================================================
|
| 107 |
-
def fallback_clean(df: pd.DataFrame) -> pd.DataFrame:
|
| 108 |
-
df = df.copy()
|
| 109 |
-
df.dropna(axis=1, how="all", inplace=True)
|
| 110 |
-
df.columns = [c.strip().replace(" ", "_").lower() for c in df.columns]
|
| 111 |
-
for col in df.columns:
|
| 112 |
-
if df[col].dtype == "O":
|
| 113 |
-
if not df[col].mode().empty:
|
| 114 |
-
df[col].fillna(df[col].mode()[0], inplace=True)
|
| 115 |
-
else:
|
| 116 |
-
df[col].fillna("Unknown", inplace=True)
|
| 117 |
-
else:
|
| 118 |
-
df[col].fillna(df[col].median(), inplace=True)
|
| 119 |
-
df.drop_duplicates(inplace=True)
|
| 120 |
-
return df
|
| 121 |
-
|
| 122 |
-
def ai_clean_dataset(df: pd.DataFrame) -> (pd.DataFrame, str):
|
| 123 |
-
if len(df) > 50:
|
| 124 |
-
return df, "โ ๏ธ AI cleaning skipped: dataset has more than 50 rows."
|
| 125 |
-
csv_text = df.to_csv(index=False)
|
| 126 |
-
prompt = f"""
|
| 127 |
-
You are a professional data cleaning assistant.
|
| 128 |
-
Clean and standardize the dataset below dynamically:
|
| 129 |
-
1. Handle missing values
|
| 130 |
-
2. Fix column name inconsistencies
|
| 131 |
-
3. Convert data types (dates, numbers, categories)
|
| 132 |
-
4. Remove irrelevant or duplicate rows
|
| 133 |
-
Return ONLY a valid CSV text (no markdown, no explanations).
|
| 134 |
-
|
| 135 |
-
Dataset:
|
| 136 |
-
{csv_text}
|
| 137 |
-
"""
|
| 138 |
-
try:
|
| 139 |
-
cleaned_str = safe_hf_generate(hf_cleaner_client, prompt, temperature=0.1, max_tokens=4096)
|
| 140 |
-
cleaned_str = cleaned_str.replace("```csv", "").replace("```", "").replace("###", "").strip()
|
| 141 |
-
cleaned_df = pd.read_csv(StringIO(cleaned_str), on_bad_lines="skip")
|
| 142 |
-
cleaned_df.columns = [c.strip().replace(" ", "_").lower() for c in cleaned_df.columns]
|
| 143 |
-
return cleaned_df, "โ
AI cleaning completed successfully."
|
| 144 |
-
except Exception as e:
|
| 145 |
-
return df, f"โ ๏ธ AI cleaning failed: {str(e)}"
|
| 146 |
-
|
| 147 |
-
# ======================================================
|
| 148 |
-
# ๐งฉ DATA SUMMARY (Token-efficient)
|
| 149 |
-
# ======================================================
|
| 150 |
-
def summarize_for_analysis(df: pd.DataFrame, sample_rows=10) -> str:
|
| 151 |
-
summary = [f"Rows: {len(df)}, Columns: {len(df.columns)}"]
|
| 152 |
-
for col in df.columns:
|
| 153 |
-
non_null = int(df[col].notnull().sum())
|
| 154 |
-
if pd.api.types.is_numeric_dtype(df[col]):
|
| 155 |
-
desc = df[col].describe().to_dict()
|
| 156 |
-
summary.append(f"- {col}: mean={desc.get('mean', np.nan):.2f}, median={df[col].median():.2f}, non_null={non_null}")
|
| 157 |
-
else:
|
| 158 |
-
top = df[col].value_counts().head(3).to_dict()
|
| 159 |
-
summary.append(f"- {col}: top_values={top}, non_null={non_null}")
|
| 160 |
-
sample = df.head(sample_rows).to_csv(index=False)
|
| 161 |
-
summary.append("--- Sample Data ---")
|
| 162 |
-
summary.append(sample)
|
| 163 |
-
return "\n".join(summary)
|
| 164 |
-
|
| 165 |
-
# ======================================================
|
| 166 |
-
# ๐ง ANALYSIS FUNCTION
|
| 167 |
-
# ======================================================
|
| 168 |
-
def query_analysis_model(df: pd.DataFrame, user_query: str, dataset_name: str) -> str:
|
| 169 |
-
prompt_summary = summarize_for_analysis(df)
|
| 170 |
-
prompt = f"""
|
| 171 |
-
You are a professional data analyst.
|
| 172 |
-
Analyze the dataset '{dataset_name}' and answer the user's question.
|
| 173 |
-
|
| 174 |
-
--- DATA SUMMARY ---
|
| 175 |
-
{prompt_summary}
|
| 176 |
-
|
| 177 |
-
--- USER QUESTION ---
|
| 178 |
-
{user_query}
|
| 179 |
-
|
| 180 |
-
Respond with:
|
| 181 |
-
1. Key insights and patterns
|
| 182 |
-
2. Quantitative findings
|
| 183 |
-
3. Notable relationships or anomalies
|
| 184 |
-
4. Data-driven recommendations
|
| 185 |
-
"""
|
| 186 |
-
try:
|
| 187 |
-
if ANALYST_MODEL == "Gemini 2.5 Flash (Google)":
|
| 188 |
-
response = genai.GenerativeModel("gemini-2.5-flash").generate_content(
|
| 189 |
-
prompt,
|
| 190 |
-
generation_config={
|
| 191 |
-
"temperature": temperature,
|
| 192 |
-
"max_output_tokens": max_tokens
|
| 193 |
-
}
|
| 194 |
-
)
|
| 195 |
-
return response.text if hasattr(response, "text") else "No valid text response."
|
| 196 |
-
else:
|
| 197 |
-
# ๐ฉน FIX: wrap in retry-aware generator
|
| 198 |
-
result = safe_hf_generate(hf_analyst_client, prompt, temperature=temperature, max_tokens=max_tokens)
|
| 199 |
-
# fallback to Gemini if Hugging Face failed entirely
|
| 200 |
-
if "temporarily unavailable" in result.lower() and GEMINI_API_KEY:
|
| 201 |
-
alt = genai.GenerativeModel("gemini-2.5-flash").generate_content(prompt)
|
| 202 |
-
return f"๐ Fallback to Gemini:\n\n{alt.text}"
|
| 203 |
-
return result
|
| 204 |
-
except Exception as e:
|
| 205 |
-
# ๐ฉน FIX: fallback if server rejects or 5xx
|
| 206 |
-
if "503" in str(e) and GEMINI_API_KEY:
|
| 207 |
-
response = genai.GenerativeModel("gemini-2.5-flash").generate_content(prompt)
|
| 208 |
-
return f"๐ Fallback to Gemini due to 503 error:\n\n{response.text}"
|
| 209 |
-
return f"โ ๏ธ Analysis failed: {str(e)}"
|
| 210 |
-
|
| 211 |
# ======================================================
|
| 212 |
# ๐ MAIN CHATBOT LOGIC
|
| 213 |
# ======================================================
|
| 214 |
uploaded = st.file_uploader("๐ Upload CSV or Excel file", type=["csv", "xlsx"])
|
|
|
|
| 215 |
if "messages" not in st.session_state:
|
| 216 |
st.session_state.messages = []
|
| 217 |
|
| 218 |
if uploaded:
|
|
|
|
| 219 |
df = pd.read_csv(uploaded) if uploaded.name.endswith(".csv") else pd.read_excel(uploaded)
|
| 220 |
|
|
|
|
| 221 |
with st.spinner("๐งผ Cleaning your dataset..."):
|
| 222 |
-
cleaned_df, cleaning_status = ai_clean_dataset(df)
|
| 223 |
|
|
|
|
| 224 |
st.subheader("โ
Cleaning Status")
|
| 225 |
st.info(cleaning_status)
|
|
|
|
| 226 |
st.subheader("๐ Dataset Preview")
|
| 227 |
st.dataframe(cleaned_df.head(), use_container_width=True)
|
| 228 |
|
|
|
|
| 229 |
st.subheader("๐ฌ Chat with Your Dataset")
|
|
|
|
| 230 |
for msg in st.session_state.messages:
|
| 231 |
with st.chat_message(msg["role"]):
|
| 232 |
st.markdown(msg["content"])
|
|
@@ -238,8 +114,18 @@ if uploaded:
|
|
| 238 |
|
| 239 |
with st.chat_message("assistant"):
|
| 240 |
with st.spinner("๐ค Analyzing..."):
|
| 241 |
-
result = query_analysis_model(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 242 |
st.markdown(result)
|
| 243 |
st.session_state.messages.append({"role": "assistant", "content": result})
|
|
|
|
| 244 |
else:
|
| 245 |
st.info("๐ฅ Upload a dataset to begin chatting with your AI analyst.")
|
|
|
|
| 1 |
+
# ======================================================
|
| 2 |
+
# ๐ Smart Data Analyst Pro (Chat Mode)
|
| 3 |
+
# Frontend & Orchestration โ Uses utils.py for backend logic
|
| 4 |
+
# ======================================================
|
| 5 |
+
|
| 6 |
import os
|
| 7 |
import pandas as pd
|
|
|
|
| 8 |
import streamlit as st
|
| 9 |
from dotenv import load_dotenv
|
| 10 |
from huggingface_hub import InferenceClient, login
|
| 11 |
import google.generativeai as genai
|
| 12 |
+
|
| 13 |
+
# ๐ง Import backend logic
|
| 14 |
+
from utils import (
|
| 15 |
+
ai_clean_dataset,
|
| 16 |
+
query_analysis_model,
|
| 17 |
+
)
|
| 18 |
|
| 19 |
# ======================================================
|
| 20 |
# โ๏ธ APP CONFIGURATION
|
|
|
|
| 41 |
st.warning("โ ๏ธ Gemini API key missing. Gemini 2.5 Flash will not work.")
|
| 42 |
|
| 43 |
# ======================================================
|
| 44 |
+
# ๐ง MODEL SETTINGS (SIDEBAR)
|
| 45 |
# ======================================================
|
| 46 |
with st.sidebar:
|
| 47 |
st.header("โ๏ธ Model Settings")
|
|
|
|
| 69 |
temperature = st.slider("Temperature", 0.0, 1.0, 0.3)
|
| 70 |
max_tokens = st.slider("Max Tokens", 128, 4096, 1024)
|
| 71 |
|
| 72 |
+
# ======================================================
|
| 73 |
+
# ๐งฉ MODEL CLIENTS
|
| 74 |
+
# ======================================================
|
| 75 |
hf_cleaner_client = InferenceClient(model=CLEANER_MODEL, token=HF_TOKEN)
|
| 76 |
hf_analyst_client = None
|
| 77 |
if ANALYST_MODEL != "Gemini 2.5 Flash (Google)":
|
| 78 |
hf_analyst_client = InferenceClient(model=ANALYST_MODEL, token=HF_TOKEN)
|
| 79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
# ======================================================
|
| 81 |
# ๐ MAIN CHATBOT LOGIC
|
| 82 |
# ======================================================
|
| 83 |
uploaded = st.file_uploader("๐ Upload CSV or Excel file", type=["csv", "xlsx"])
|
| 84 |
+
|
| 85 |
if "messages" not in st.session_state:
|
| 86 |
st.session_state.messages = []
|
| 87 |
|
| 88 |
if uploaded:
|
| 89 |
+
# Load dataset
|
| 90 |
df = pd.read_csv(uploaded) if uploaded.name.endswith(".csv") else pd.read_excel(uploaded)
|
| 91 |
|
| 92 |
+
# ๐งผ AI-BASED CLEANING
|
| 93 |
with st.spinner("๐งผ Cleaning your dataset..."):
|
| 94 |
+
cleaned_df, cleaning_status = ai_clean_dataset(df, hf_cleaner_client)
|
| 95 |
|
| 96 |
+
# Display cleaning info
|
| 97 |
st.subheader("โ
Cleaning Status")
|
| 98 |
st.info(cleaning_status)
|
| 99 |
+
|
| 100 |
st.subheader("๐ Dataset Preview")
|
| 101 |
st.dataframe(cleaned_df.head(), use_container_width=True)
|
| 102 |
|
| 103 |
+
# ๐ฌ Chat interface
|
| 104 |
st.subheader("๐ฌ Chat with Your Dataset")
|
| 105 |
+
|
| 106 |
for msg in st.session_state.messages:
|
| 107 |
with st.chat_message(msg["role"]):
|
| 108 |
st.markdown(msg["content"])
|
|
|
|
| 114 |
|
| 115 |
with st.chat_message("assistant"):
|
| 116 |
with st.spinner("๐ค Analyzing..."):
|
| 117 |
+
result = query_analysis_model(
|
| 118 |
+
cleaned_df,
|
| 119 |
+
user_query,
|
| 120 |
+
uploaded.name,
|
| 121 |
+
ANALYST_MODEL,
|
| 122 |
+
hf_client=hf_analyst_client,
|
| 123 |
+
temperature=temperature,
|
| 124 |
+
max_tokens=max_tokens,
|
| 125 |
+
gemini_api_key=GEMINI_API_KEY
|
| 126 |
+
)
|
| 127 |
st.markdown(result)
|
| 128 |
st.session_state.messages.append({"role": "assistant", "content": result})
|
| 129 |
+
|
| 130 |
else:
|
| 131 |
st.info("๐ฅ Upload a dataset to begin chatting with your AI analyst.")
|