File size: 7,129 Bytes
46b7fa3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import numpy as np
import pandas as pd
from collections import defaultdict
from datetime import datetime
from typing import Optional, Tuple, Dict, List
from unidecode import unidecode

# --- Team name cleaner (shared) ---
def clean_team(s: str) -> str:
    if pd.isna(s):
        return s
    s = unidecode(str(s)).strip()
    s = " ".join(s.split())
    return s

# --- Odds -> implied probabilities (normalized) ---
def implied_from_odds(odds_tuple: Tuple[float, float, float]) -> Optional[Tuple[float, float, float]]:
    h, d, a = odds_tuple
    if min(h, d, a) <= 1.0:
        return None
    inv = np.array([1.0/h, 1.0/d, 1.0/a], dtype=float)
    s = inv.sum()
    if s <= 0:
        return None
    p = inv / s
    return float(p[0]), float(p[1]), float(p[2])

# --- Elo snapshot from historical df (up to date-1) ---
def compute_elo_snapshot(df_hist: pd.DataFrame, base_elo: float = 1500.0, K: float = 20.0, home_adv: float = 60.0) -> Dict[str, float]:
    elo = defaultdict(lambda: base_elo)
    dfh = df_hist.sort_values("date").reset_index(drop=True)
    for _, r in dfh.iterrows():
        h, a = r["home"], r["away"]
        eh, ea = elo[h], elo[a]
        ph = 1.0/(1.0 + 10**(-((eh+home_adv)-ea)/400))
        if r["ftr"] == "H":
            oh, oa = 1.0, 0.0
        elif r["ftr"] == "D":
            oh, oa = 0.5, 0.5
        else:
            oh, oa = 0.0, 1.0
        elo[h] = eh + K*(oh - ph)
        elo[a] = ea + K*((1.0-oh) - (1.0-ph))
    return dict(elo)

# --- Build rolling features for a single team from history ---
def team_rolling_features(df_hist: pd.DataFrame, team_name: str, window: int = 6):
    rows: List[dict] = []
    for _, r in df_hist.iterrows():
        rows.append({
            "date": r["date"], "team": r["home"], "is_home": 1,
            "gf": r["fthg"], "ga": r["ftag"],
            "shots_f": r.get("hs", np.nan), "shots_a": r.get("as", np.nan),
            "sot_f": r.get("hst", np.nan), "sot_a": r.get("ast", np.nan),
            "corn_f": r.get("hc", np.nan), "corn_a": r.get("ac", np.nan),
            "y_f": r.get("hy", np.nan), "y_a": r.get("ay", np.nan),
            "r_f": r.get("hr", np.nan), "r_a": r.get("ar", np.nan),
            "points": 3 if r["ftr"] == "H" else (1 if r["ftr"] == "D" else 0),
        })
        rows.append({
            "date": r["date"], "team": r["away"], "is_home": 0,
            "gf": r["ftag"], "ga": r["fthg"],
            "shots_f": r.get("as", np.nan), "shots_a": r.get("hs", np.nan),
            "sot_f": r.get("ast", np.nan), "sot_a": r.get("hst", np.nan),
            "corn_f": r.get("ac", np.nan), "corn_a": r.get("hc", np.nan),
            "y_f": r.get("ay", np.nan), "y_a": r.get("hy", np.nan),
            "r_f": r.get("ar", np.nan), "r_a": r.get("hr", np.nan),
            "points": 3 if r["ftr"] == "A" else (1 if r["ftr"] == "D" else 0),
        })
    tm = pd.DataFrame(rows)
    if tm.empty:
        return None, None

    tm = tm.sort_values(["team", "date"]).reset_index(drop=True)
    agg_cols = ["gf", "ga", "shots_f", "shots_a", "sot_f", "sot_a", "corn_f", "corn_a", "y_f", "r_f", "points"]

    feats_home = {}
    feats_away = {}

    if (tm["team"] == team_name).any():
        tdf = tm[tm["team"] == team_name]
        if (tdf["is_home"] == 1).any():
            t_home = tdf[tdf["is_home"] == 1]
            for col in agg_cols:
                feats_home[f"roll_{col}"] = t_home[col].tail(window).mean()
        else:
            for col in agg_cols:
                feats_home[f"roll_{col}"] = np.nan

        if (tdf["is_home"] == 0).any():
            t_away = tdf[tdf["is_home"] == 0]
            for col in agg_cols:
                feats_away[f"roll_{col}"] = t_away[col].tail(window).mean()
        else:
            for col in agg_cols:
                feats_away[f"roll_{col}"] = np.nan
    else:
        for col in agg_cols:
            feats_home[f"roll_{col}"] = np.nan
            feats_away[f"roll_{col}"] = np.nan

    return feats_home, feats_away

# --- Build full feature vector for a fixture ---
def build_features_for_fixture(
    home_team: str,
    away_team: str,
    date_str: str,
    df_all: pd.DataFrame,
    X_cols: List[str],
    window: int = 6,
    odds_tuple: Optional[Tuple[float, float, float]] = None,
    feat_df_for_medians: Optional[pd.DataFrame] = None,
):
    home = clean_team(home_team)
    away = clean_team(away_team)
    match_date = datetime.strptime(date_str, "%Y-%m-%d")

    df_hist = df_all[df_all["date"] < match_date].copy()
    if df_hist.empty:
        raise ValueError("No historical data found before match date. Try a later date or load more seasons.")

    # Elo snapshot
    elo_map = compute_elo_snapshot(df_hist)
    elo_home = float(elo_map.get(home, 1500.0))
    elo_away = float(elo_map.get(away, 1500.0))
    elo_diff = elo_home - elo_away

    # Rolling features by role
    feats_home_homeRole, _ = team_rolling_features(df_hist, home, window)
    _, feats_away_awayRole = team_rolling_features(df_hist, away, window)

    if feats_home_homeRole is None:
        feats_home_homeRole = {f"roll_{c}": np.nan for c in ["gf","ga","shots_f","shots_a","sot_f","sot_a","corn_f","corn_a","y_f","r_f","points"]}
    if feats_away_awayRole is None:
        feats_away_awayRole = {f"roll_{c}": np.nan for c in ["gf","ga","shots_f","shots_a","sot_f","sot_a","corn_f","corn_a","y_f","r_f","points"]}

    # Odds -> probs
    if odds_tuple is not None:
        probs = implied_from_odds(odds_tuple)
        if probs is None:
            raise ValueError("Invalid odds provided. Use decimal odds > 1.0")
        pH, pD, pA = probs
    else:
        # Proxy from Elo + average draw rate
        draws = (df_hist["ftr"] == "D").mean()
        draws = float(draws) if not np.isnan(draws) and draws > 0 else 0.25
        k = 400.0
        ph_nodraw = 1.0/(1.0 + 10**(-(elo_diff)/k))
        pa_nodraw = 1.0 - ph_nodraw
        pH = ph_nodraw * (1.0 - draws)
        pA = pa_nodraw * (1.0 - draws)
        pD = draws
        s = pH + pD + pA
        pH, pD, pA = pH/s, pD/s, pA/s

    # Assemble features in X_cols order
    feat_row: Dict[str, float] = {}

    for k, v in feats_home_homeRole.items():
        feat_row[f"home_{k}"] = v
    for k, v in feats_away_awayRole.items():
        feat_row[f"away_{k}"] = v

    feat_row["elo_home"] = elo_home
    feat_row["elo_away"] = elo_away
    feat_row["elo_diff"] = elo_diff

    feat_row["p_odds_H"] = float(pH)
    feat_row["p_odds_D"] = float(pD)
    feat_row["p_odds_A"] = float(pA)

    x_vals = [feat_row.get(c, np.nan) for c in X_cols]
    x = np.array(x_vals, dtype=float).reshape(1, -1)

    if feat_df_for_medians is not None:
        medians = {c: float(feat_df_for_medians[c].median()) if c in feat_df_for_medians.columns else 0.0 for c in X_cols}
    else:
        # fallback zeros
        medians = {c: 0.0 for c in X_cols}

    for j, c in enumerate(X_cols):
        if np.isnan(x[0, j]):
            x[0, j] = medians[c]

    context = {
        "p_odds_H": pH,
        "p_odds_D": pD,
        "p_odds_A": pA,
        "elo_home": elo_home,
        "elo_away": elo_away,
    }
    return x, context