Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -18,10 +18,10 @@ iso1_to_name = {iso[1]: iso[0] for iso in non_empty_isos} # {'ro': 'Romanian', '
|
|
| 18 |
langs = list(favourite_langs.keys())
|
| 19 |
langs.extend(list(all_langs.keys())) # Language options as list, add favourite languages first
|
| 20 |
|
| 21 |
-
models = ["Helsinki-NLP",
|
| 22 |
"Helsinki-NLP/opus-mt-tc-bible-big-mul-mul", "Helsinki-NLP/opus-mt-tc-bible-big-mul-deu_eng_nld",
|
| 23 |
"Helsinki-NLP/opus-mt-tc-bible-big-mul-deu_eng_fra_por_spa", "Helsinki-NLP/opus-mt-tc-bible-big-deu_eng_fra_por_spa-mul",
|
| 24 |
-
"Helsinki-NLP/opus-mt-tc-bible-big-roa-deu_eng_fra_por_spa", "Helsinki-NLP/opus-mt-tc-bible-big-deu_eng_fra_por_spa-roa",
|
| 25 |
"facebook/nllb-200-distilled-600M", "facebook/nllb-200-distilled-1.3B", "facebook/nllb-200-1.3B", "facebook/nllb-200-3.3B",
|
| 26 |
"facebook/mbart-large-50-many-to-many-mmt", "facebook/mbart-large-50-one-to-many-mmt", "facebook/mbart-large-50-many-to-one-mmt",
|
| 27 |
"facebook/m2m100_418M", "facebook/m2m100_1.2B", "Lego-MT/Lego-MT",
|
|
@@ -30,11 +30,9 @@ models = ["Helsinki-NLP",
|
|
| 30 |
"t5-small", "t5-base", "t5-large",
|
| 31 |
"google/flan-t5-small", "google/flan-t5-base", "google/flan-t5-large", "google/flan-t5-xl",
|
| 32 |
"google/madlad400-3b-mt", "jbochi/madlad400-3b-mt",
|
| 33 |
-
"Argos", "Google",
|
| 34 |
"HuggingFaceTB/SmolLM3-3B", "winninghealth/WiNGPT-Babel-2",
|
| 35 |
"utter-project/EuroLLM-1.7B", "utter-project/EuroLLM-1.7B-Instruct",
|
| 36 |
-
"Unbabel/Tower-Plus-2B", "Unbabel/TowerInstruct-7B-v0.2", "Unbabel/TowerInstruct-Mistral-7B-v0.2"
|
| 37 |
-
"openGPT-X/Teuken-7B-instruct-commercial-v0.4", "openGPT-X/Teuken-7B-instruct-v0.6"
|
| 38 |
]
|
| 39 |
DEFAULTS = [langs[0], langs[1], models[0]]
|
| 40 |
|
|
@@ -78,8 +76,37 @@ class Translators:
|
|
| 78 |
response = httpx.get(url)
|
| 79 |
return response.json()[0][0][0]
|
| 80 |
|
| 81 |
-
|
| 82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
import argostranslate.package
|
| 84 |
print('Downloading model', from_code, to_code)
|
| 85 |
# Download and install Argos Translate package
|
|
@@ -103,6 +130,63 @@ class Translators:
|
|
| 103 |
translated_text = error
|
| 104 |
return translated_text
|
| 105 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
def HelsinkiNLP_mulroa(self):
|
| 107 |
try:
|
| 108 |
pipe = pipeline("translation", model=self.model_name, device=self.device)
|
|
@@ -319,34 +403,6 @@ class Translators:
|
|
| 319 |
output = output.rsplit(f'{self.tl}:')[-1].strip().replace('assistant\n', '').strip()
|
| 320 |
return output
|
| 321 |
|
| 322 |
-
def teuken(self):
|
| 323 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 324 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 325 |
-
self.model_name,
|
| 326 |
-
trust_remote_code=True,
|
| 327 |
-
torch_dtype=torch.bfloat16,
|
| 328 |
-
)
|
| 329 |
-
model = model.to(device).eval()
|
| 330 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
| 331 |
-
self.model_name,
|
| 332 |
-
use_fast=False,
|
| 333 |
-
trust_remote_code=True,
|
| 334 |
-
)
|
| 335 |
-
translation_prompt = f"Translate the following text from {self.sl} into {self.tl}: {self.input_text}"
|
| 336 |
-
messages = [{"role": "User", "content": translation_prompt}]
|
| 337 |
-
prompt_ids = tokenizer.apply_chat_template(messages, chat_template="EN", tokenize=True, add_generation_prompt=False, return_tensors="pt")
|
| 338 |
-
prediction = model.generate(
|
| 339 |
-
prompt_ids.to(model.device),
|
| 340 |
-
max_length=512,
|
| 341 |
-
do_sample=True,
|
| 342 |
-
top_k=50,
|
| 343 |
-
top_p=0.95,
|
| 344 |
-
temperature=0.7,
|
| 345 |
-
num_return_sequences=1,
|
| 346 |
-
)
|
| 347 |
-
translation = tokenizer.decode(prediction[0].tolist())
|
| 348 |
-
return translation
|
| 349 |
-
|
| 350 |
def unbabel(self):
|
| 351 |
pipe = pipeline("text-generation", model=self.model_name, torch_dtype=torch.bfloat16, device_map="auto")
|
| 352 |
messages = [{"role": "user",
|
|
@@ -422,10 +478,16 @@ def translate_text(input_text: str, s_language: str, t_language: str, model_name
|
|
| 422 |
|
| 423 |
elif model_name == 'Argos':
|
| 424 |
translated_text = Translators(model_name, sl, tl, input_text).argos()
|
|
|
|
|
|
|
|
|
|
| 425 |
|
| 426 |
elif model_name == 'Google':
|
| 427 |
translated_text = Translators(model_name, sl, tl, input_text).google()
|
| 428 |
|
|
|
|
|
|
|
|
|
|
| 429 |
elif "m2m" in model_name.lower():
|
| 430 |
translated_text = Translators(model_name, sl, tl, input_text).mtom()
|
| 431 |
|
|
@@ -459,10 +521,7 @@ def translate_text(input_text: str, s_language: str, t_language: str, model_name
|
|
| 459 |
|
| 460 |
elif model_name == "facebook/mbart-large-50-many-to-one-mmt":
|
| 461 |
translated_text = Translators(model_name, s_language, t_language, input_text).mbart_many_to_one()
|
| 462 |
-
|
| 463 |
-
elif 'teuken' in model_name.lower():
|
| 464 |
-
translated_text = Translators(model_name, s_language, t_language, input_text).teuken()
|
| 465 |
-
|
| 466 |
elif model_name == "utter-project/EuroLLM-1.7B-Instruct":
|
| 467 |
translated_text = Translators(model_name, s_language, t_language, input_text).eurollm_instruct()
|
| 468 |
|
|
@@ -478,6 +537,12 @@ def translate_text(input_text: str, s_language: str, t_language: str, model_name
|
|
| 478 |
elif model_name == "winninghealth/WiNGPT-Babel-2":
|
| 479 |
translated_text = Translators(model_name, s_language, t_language, input_text).wingpt()
|
| 480 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 481 |
elif model_name == "Bergamot":
|
| 482 |
translated_text, message_text = Translators(model_name, s_language, t_language, input_text).bergamot()
|
| 483 |
|
|
|
|
| 18 |
langs = list(favourite_langs.keys())
|
| 19 |
langs.extend(list(all_langs.keys())) # Language options as list, add favourite languages first
|
| 20 |
|
| 21 |
+
models = ["Helsinki-NLP", "QUICK-MT", "Argos", "Google", "HPLT", "HPLT-OPUS",
|
| 22 |
"Helsinki-NLP/opus-mt-tc-bible-big-mul-mul", "Helsinki-NLP/opus-mt-tc-bible-big-mul-deu_eng_nld",
|
| 23 |
"Helsinki-NLP/opus-mt-tc-bible-big-mul-deu_eng_fra_por_spa", "Helsinki-NLP/opus-mt-tc-bible-big-deu_eng_fra_por_spa-mul",
|
| 24 |
+
"Helsinki-NLP/opus-mt-tc-bible-big-roa-deu_eng_fra_por_spa", "Helsinki-NLP/opus-mt-tc-bible-big-deu_eng_fra_por_spa-roa", "Helsinki-NLP/opus-mt-tc-bible-big-roa-en"
|
| 25 |
"facebook/nllb-200-distilled-600M", "facebook/nllb-200-distilled-1.3B", "facebook/nllb-200-1.3B", "facebook/nllb-200-3.3B",
|
| 26 |
"facebook/mbart-large-50-many-to-many-mmt", "facebook/mbart-large-50-one-to-many-mmt", "facebook/mbart-large-50-many-to-one-mmt",
|
| 27 |
"facebook/m2m100_418M", "facebook/m2m100_1.2B", "Lego-MT/Lego-MT",
|
|
|
|
| 30 |
"t5-small", "t5-base", "t5-large",
|
| 31 |
"google/flan-t5-small", "google/flan-t5-base", "google/flan-t5-large", "google/flan-t5-xl",
|
| 32 |
"google/madlad400-3b-mt", "jbochi/madlad400-3b-mt",
|
|
|
|
| 33 |
"HuggingFaceTB/SmolLM3-3B", "winninghealth/WiNGPT-Babel-2",
|
| 34 |
"utter-project/EuroLLM-1.7B", "utter-project/EuroLLM-1.7B-Instruct",
|
| 35 |
+
"Unbabel/Tower-Plus-2B", "Unbabel/TowerInstruct-7B-v0.2", "Unbabel/TowerInstruct-Mistral-7B-v0.2"
|
|
|
|
| 36 |
]
|
| 37 |
DEFAULTS = [langs[0], langs[1], models[0]]
|
| 38 |
|
|
|
|
| 76 |
response = httpx.get(url)
|
| 77 |
return response.json()[0][0][0]
|
| 78 |
|
| 79 |
+
def simplepipe(self):
|
| 80 |
+
try:
|
| 81 |
+
pipe = pipeline("translation", model=self.model_name, device=self.device)
|
| 82 |
+
translation = pipe(self.input_text)
|
| 83 |
+
message = f'Translated from {iso1_to_name[self.sl]} to {iso1_to_name[self.tl]} with {self.model_name}.'
|
| 84 |
+
return translation[0]['translation_text'], message
|
| 85 |
+
except Exception as error:
|
| 86 |
+
return f"Error translating with model: {self.model_name}! Try other available language combination or model.", error
|
| 87 |
+
|
| 88 |
+
def hplt(self, opus = False):
|
| 89 |
+
# langs = ['ar', 'bs', 'ca', 'en', 'et', 'eu', 'fi', 'ga', 'gl', 'hi', 'hr', 'is', 'mt', 'nn', 'sq', 'sw', 'zh_hant']
|
| 90 |
+
hplt_models = ['ar-en', 'bs-en', 'ca-en', 'en-ar', 'en-bs', 'en-ca', 'en-et', 'en-eu', 'en-fi',
|
| 91 |
+
'en-ga', 'en-gl', 'en-hi', 'en-hr', 'en-is', 'en-mt', 'en-nn', 'en-sq', 'en-sw',
|
| 92 |
+
'en-zh_hant', 'et-en', 'eu-en', 'fi-en', 'ga-en', 'gl-en', 'hi-en', 'hr-en',
|
| 93 |
+
'is-en', 'mt-en', 'nn-en', 'sq-en', 'sw-en', 'zh_hant-en']
|
| 94 |
+
if opus:
|
| 95 |
+
hplt_model = f'HPLT/translate-{self.sl}-{self.tl}-v1.0-hplt_opus' # HPLT/translate-en-hr-v1.0-hplt_opus
|
| 96 |
+
else:
|
| 97 |
+
hplt_model = f'HPLT/translate-{self.sl}-{self.tl}-v1.0-hplt' # HPLT/translate-en-hr-v1.0-hplt
|
| 98 |
+
if f'{self.sl}-{self.tl}' in hplt_models:
|
| 99 |
+
pipe = pipeline("translation", model=hplt_model, device=self.device)
|
| 100 |
+
translation = pipe(self.input_text)
|
| 101 |
+
translated_text = translation[0]['translation_text']
|
| 102 |
+
message = f'Translated from {iso1_to_name[self.sl]} to {iso1_to_name[self.tl]} with {hplt_model}.'
|
| 103 |
+
else:
|
| 104 |
+
translated_text = f'HPLT model from {iso1_to_name[self.sl]} to {iso1_to_name[self.tl]} not available!'
|
| 105 |
+
message = f"Available models: {', '.join(hplt_models)}"
|
| 106 |
+
return translated_text, message
|
| 107 |
+
|
| 108 |
+
@staticmethod
|
| 109 |
+
def download_argos_model(from_code, to_code):
|
| 110 |
import argostranslate.package
|
| 111 |
print('Downloading model', from_code, to_code)
|
| 112 |
# Download and install Argos Translate package
|
|
|
|
| 130 |
translated_text = error
|
| 131 |
return translated_text
|
| 132 |
|
| 133 |
+
@staticmethod
|
| 134 |
+
def quickmttranslate(model_path, input_text):
|
| 135 |
+
from quickmt import Translator
|
| 136 |
+
# 'auto' auto-detects GPU, set to "cpu" to force CPU inference
|
| 137 |
+
device = 'gpu' if torch.cuda.is_available() else 'cpu'
|
| 138 |
+
translator = Translator(str(model_path), device = device)
|
| 139 |
+
# translation = Translator(f"./quickmt-{self.sl}-{self.tl}/", device="auto", inter_threads=2)
|
| 140 |
+
# set beam size to 1 for faster speed (but lower quality)
|
| 141 |
+
translation = translator(input_text, beam_size=5, max_input_length = 512, max_decoding_length = 512)
|
| 142 |
+
# print(model_path, input_text, translation)
|
| 143 |
+
return translation
|
| 144 |
+
|
| 145 |
+
@staticmethod
|
| 146 |
+
def quickmtdownload(model_name):
|
| 147 |
+
from quickmt.hub import hf_download
|
| 148 |
+
from pathlib import Path
|
| 149 |
+
model_path = Path("/quickmt/models") / model_name
|
| 150 |
+
if not model_path.exists():
|
| 151 |
+
hf_download(
|
| 152 |
+
model_name = f"quickmt/{model_name}",
|
| 153 |
+
output_dir=Path("/quickmt/models") / model_name,
|
| 154 |
+
)
|
| 155 |
+
return model_path
|
| 156 |
+
|
| 157 |
+
def quickmt(self):
|
| 158 |
+
model_name = f"quickmt-{self.sl}-{self.tl}"
|
| 159 |
+
# from quickmt.hub import hf_list
|
| 160 |
+
# quickmt_models = [i.split("/quickmt-")[1] for i in hf_list()]
|
| 161 |
+
# quickmt_models.sort()
|
| 162 |
+
# print(quickmt_models)
|
| 163 |
+
quickmt_models = ['ar-en', 'bn-en', 'cs-en', 'da-en', 'de-en', 'el-en', 'en-ar', 'en-bn', 'en-cs', 'en-de', 'en-el', 'en-es',
|
| 164 |
+
'en-fa', 'en-fr', 'en-he', 'en-hi', 'en-hu', 'en-id', 'en-it', 'en-ja', 'en-ko', 'en-lv', 'en-pl', 'en-pt',
|
| 165 |
+
'en-ro', 'en-ru', 'en-th', 'en-tr', 'en-ur', 'en-vi', 'en-zh', 'es-en', 'fa-en', 'fr-en', 'he-en', 'hi-en',
|
| 166 |
+
'hu-en', 'id-en', 'it-en', 'ja-en', 'ko-en', 'lv-en', 'pl-en', 'pt-en', 'ro-en', 'ru-en', 'th-en', 'tr-en', 'ur-en', 'vi-en', 'zh-en']
|
| 167 |
+
# available_languages = list(set([lang for model in quickmt_models for lang in model.split('-')]))
|
| 168 |
+
# available_languages.sort()
|
| 169 |
+
available_languages = ['ar', 'bn', 'cs', 'da', 'de', 'el', 'en', 'es', 'fa', 'fr', 'he', 'hi', 'hu',
|
| 170 |
+
'id', 'it', 'ja', 'ko', 'lv', 'pl', 'pt', 'ro', 'ru', 'th', 'tr', 'ur', 'vi', 'zh']
|
| 171 |
+
# Direct translation model
|
| 172 |
+
if f"{self.sl}-{self.tl}" in quickmt_models:
|
| 173 |
+
model_path = Translators.quickmtdownload(model_name)
|
| 174 |
+
translated_text = Translators.quickmttranslate(model_path, self.input_text)
|
| 175 |
+
message = f'Translated from {iso1_to_name[self.sl]} to {iso1_to_name[self.tl]} with {model_name}.'
|
| 176 |
+
# Pivot language English
|
| 177 |
+
elif self.sl in available_languages and self.tl in available_languages:
|
| 178 |
+
model_name = f"quickmt-{self.sl}-en"
|
| 179 |
+
model_path = Translators.quickmtdownload(model_name)
|
| 180 |
+
entranslation = Translators.quickmttranslate(model_path, self.input_text)
|
| 181 |
+
model_name = f"quickmt-en-{self.tl}"
|
| 182 |
+
model_path = Translators.quickmtdownload(model_name)
|
| 183 |
+
translated_text = Translators.quickmttranslate(model_path, entranslation)
|
| 184 |
+
message = f'Translated from {iso1_to_name[self.sl]} to {iso1_to_name[self.tl]} with pivot language English.'
|
| 185 |
+
else:
|
| 186 |
+
translated_text = f'Model {model_name} from {iso1_to_name[self.sl]} to {iso1_to_name[self.tl]} not available!'
|
| 187 |
+
message = f"Available models: {', '.join(quickmt_models)}"
|
| 188 |
+
return translated_text, message
|
| 189 |
+
|
| 190 |
def HelsinkiNLP_mulroa(self):
|
| 191 |
try:
|
| 192 |
pipe = pipeline("translation", model=self.model_name, device=self.device)
|
|
|
|
| 403 |
output = output.rsplit(f'{self.tl}:')[-1].strip().replace('assistant\n', '').strip()
|
| 404 |
return output
|
| 405 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 406 |
def unbabel(self):
|
| 407 |
pipe = pipeline("text-generation", model=self.model_name, torch_dtype=torch.bfloat16, device_map="auto")
|
| 408 |
messages = [{"role": "user",
|
|
|
|
| 478 |
|
| 479 |
elif model_name == 'Argos':
|
| 480 |
translated_text = Translators(model_name, sl, tl, input_text).argos()
|
| 481 |
+
|
| 482 |
+
elif model_name == "QUICK-MT":
|
| 483 |
+
translated_text, message_text = Translators(model_name, sl, tl, input_text).quickmt()
|
| 484 |
|
| 485 |
elif model_name == 'Google':
|
| 486 |
translated_text = Translators(model_name, sl, tl, input_text).google()
|
| 487 |
|
| 488 |
+
elif model_name == "Helsinki-NLP/opus-mt-tc-bible-big-roa-en":
|
| 489 |
+
translated_text, message_text = Translators(model_name, sl, tl, input_text).simplepipe()
|
| 490 |
+
|
| 491 |
elif "m2m" in model_name.lower():
|
| 492 |
translated_text = Translators(model_name, sl, tl, input_text).mtom()
|
| 493 |
|
|
|
|
| 521 |
|
| 522 |
elif model_name == "facebook/mbart-large-50-many-to-one-mmt":
|
| 523 |
translated_text = Translators(model_name, s_language, t_language, input_text).mbart_many_to_one()
|
| 524 |
+
|
|
|
|
|
|
|
|
|
|
| 525 |
elif model_name == "utter-project/EuroLLM-1.7B-Instruct":
|
| 526 |
translated_text = Translators(model_name, s_language, t_language, input_text).eurollm_instruct()
|
| 527 |
|
|
|
|
| 537 |
elif model_name == "winninghealth/WiNGPT-Babel-2":
|
| 538 |
translated_text = Translators(model_name, s_language, t_language, input_text).wingpt()
|
| 539 |
|
| 540 |
+
elif "HPLT" in model_name:
|
| 541 |
+
if model_name == "HPLT-OPUS":
|
| 542 |
+
translated_text, message = Translators(model_name, sl, tl, input_text).hplt(opus = True)
|
| 543 |
+
else:
|
| 544 |
+
translated_text, message = Translators(model_name, sl, tl, input_text).hplt()
|
| 545 |
+
|
| 546 |
elif model_name == "Bergamot":
|
| 547 |
translated_text, message_text = Translators(model_name, s_language, t_language, input_text).bergamot()
|
| 548 |
|