Spaces:
Running
Running
Upload 2 files
Browse files- GradioREADME.md +87 -0
- Gradioapp.py +735 -0
GradioREADME.md
ADDED
|
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: Multilingual Machine Translation
|
| 3 |
+
emoji: 👁
|
| 4 |
+
colorFrom: red
|
| 5 |
+
colorTo: blue
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 6.0.2
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: true
|
| 10 |
+
license: gpl-3.0
|
| 11 |
+
short_description: Gradio 6 Machine Translation with MCP
|
| 12 |
+
task: translation
|
| 13 |
+
pipeline_tag: translation
|
| 14 |
+
tags:
|
| 15 |
+
- translation
|
| 16 |
+
- machine translation
|
| 17 |
+
- translate
|
| 18 |
+
- multilingual
|
| 19 |
+
- MCP
|
| 20 |
+
- polyglot
|
| 21 |
+
models:
|
| 22 |
+
- Helsinki-NLP
|
| 23 |
+
- QUICKMT
|
| 24 |
+
- Argos
|
| 25 |
+
- Google
|
| 26 |
+
- HPLT
|
| 27 |
+
- HPLT-OPUS
|
| 28 |
+
- Helsinki-NLP/opus-mt-tc-bible-big-mul-mul
|
| 29 |
+
- Helsinki-NLP/opus-mt-tc-bible-big-mul-deu_eng_nld
|
| 30 |
+
- Helsinki-NLP/opus-mt-tc-bible-big-mul-deu_eng_fra_por_spa
|
| 31 |
+
- Helsinki-NLP/opus-mt-tc-bible-big-deu_eng_fra_por_spa-mul
|
| 32 |
+
- Helsinki-NLP/opus-mt-tc-bible-big-roa-deu_eng_fra_por_spa
|
| 33 |
+
- Helsinki-NLP/opus-mt-tc-bible-big-deu_eng_fra_por_spa-roa
|
| 34 |
+
- Helsinki-NLP/opus-mt-tc-bible-big-roa-en
|
| 35 |
+
- facebook/nllb-200-distilled-600M
|
| 36 |
+
- facebook/nllb-200-distilled-1.3B
|
| 37 |
+
- facebook/nllb-200-1.3B
|
| 38 |
+
- facebook/nllb-200-3.3B
|
| 39 |
+
- facebook/mbart-large-50-many-to-many-mmt
|
| 40 |
+
- facebook/mbart-large-50-one-to-many-mmt
|
| 41 |
+
- facebook/mbart-large-50-many-to-one-mmt
|
| 42 |
+
- facebook/m2m100_418M
|
| 43 |
+
- facebook/m2m100_1.2B
|
| 44 |
+
- facebook/hf-seamless-m4t-medium
|
| 45 |
+
- facebook/seamless-m4t-large
|
| 46 |
+
- facebook/seamless-m4t-v2-large
|
| 47 |
+
- alirezamsh/small100
|
| 48 |
+
- Lego-MT/Lego-MT
|
| 49 |
+
- bigscience/mt0-small
|
| 50 |
+
- bigscience/mt0-base
|
| 51 |
+
- bigscience/mt0-large
|
| 52 |
+
- bigscience/mt0-xl
|
| 53 |
+
- bigscience/bloomz-560m
|
| 54 |
+
- bigscience/bloomz-1b1
|
| 55 |
+
- bigscience/bloomz-1b7
|
| 56 |
+
- bigscience/bloomz-3b
|
| 57 |
+
- google-t5/t5-small
|
| 58 |
+
- google-t5/t5-base
|
| 59 |
+
- google-t5/t5-large
|
| 60 |
+
- google/flan-t5-small
|
| 61 |
+
- google/flan-t5-base
|
| 62 |
+
- google/flan-t5-large
|
| 63 |
+
- google/flan-t5-xl
|
| 64 |
+
- google/madlad400-3b-mt
|
| 65 |
+
- jbochi/madlad400-3b-mt
|
| 66 |
+
- NiuTrans/LMT-60-0.6B
|
| 67 |
+
- NiuTrans/LMT-60-1.7B
|
| 68 |
+
- NiuTrans/LMT-60-4B",
|
| 69 |
+
- HuggingFaceTB/SmolLM3-3B
|
| 70 |
+
- winninghealth/WiNGPT-Babel-2
|
| 71 |
+
- utter-project/EuroLLM-1.7B
|
| 72 |
+
- utter-project/EuroLLM-1.7B-Instruct
|
| 73 |
+
- Unbabel/Tower-Plus-2B
|
| 74 |
+
- Unbabel/TowerInstruct-7B-v0.2
|
| 75 |
+
- Unbabel/TowerInstruct-Mistral-7B-v0.2
|
| 76 |
+
datasets:
|
| 77 |
+
- Argos
|
| 78 |
+
- Quickmt
|
| 79 |
+
- Bergamot
|
| 80 |
+
- OPUS
|
| 81 |
+
- HPLT
|
| 82 |
+
- Tatoeba
|
| 83 |
+
---
|
| 84 |
+
|
| 85 |
+
```text
|
| 86 |
+
Machine Translation App using various models with Gradio API and MCP
|
| 87 |
+
```
|
Gradioapp.py
ADDED
|
@@ -0,0 +1,735 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import spaces
|
| 3 |
+
import torch
|
| 4 |
+
from transformers import T5Tokenizer, T5ForConditionalGeneration, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM, AutoModel, pipeline
|
| 5 |
+
from transformers import logging as hflogging
|
| 6 |
+
import languagecodes
|
| 7 |
+
import httpx, os
|
| 8 |
+
import polars as pl
|
| 9 |
+
|
| 10 |
+
hflogging.set_verbosity_error()
|
| 11 |
+
favourite_langs = {"German": "de", "Romanian": "ro", "English": "en", "-----": "-----"}
|
| 12 |
+
df = pl.read_parquet("isolanguages.parquet")
|
| 13 |
+
non_empty_isos = df.slice(1).filter(pl.col("ISO639-1") != "").rows()
|
| 14 |
+
# all_langs = languagecodes.iso_languages_byname
|
| 15 |
+
all_langs = {iso[0]: (iso[1], iso[2], iso[3]) for iso in non_empty_isos} # {'Romanian': ('ro', 'rum', 'ron')}
|
| 16 |
+
iso1toall = {iso[1]: (iso[0], iso[2], iso[3]) for iso in non_empty_isos} # {'ro': ('Romanian', 'rum', 'ron')}
|
| 17 |
+
langs = list(favourite_langs.keys())
|
| 18 |
+
langs.extend(list(all_langs.keys())) # Language options as list, add favourite languages first
|
| 19 |
+
|
| 20 |
+
models = ["Helsinki-NLP", "QUICKMT", "Argos", "Google", "HPLT", "HPLT-OPUS",
|
| 21 |
+
"Helsinki-NLP/opus-mt-tc-bible-big-mul-mul", "Helsinki-NLP/opus-mt-tc-bible-big-mul-deu_eng_nld",
|
| 22 |
+
"Helsinki-NLP/opus-mt-tc-bible-big-mul-deu_eng_fra_por_spa", "Helsinki-NLP/opus-mt-tc-bible-big-deu_eng_fra_por_spa-mul",
|
| 23 |
+
"Helsinki-NLP/opus-mt-tc-bible-big-roa-deu_eng_fra_por_spa", "Helsinki-NLP/opus-mt-tc-bible-big-deu_eng_fra_por_spa-roa", "Helsinki-NLP/opus-mt-tc-bible-big-roa-en",
|
| 24 |
+
"facebook/nllb-200-distilled-600M", "facebook/nllb-200-distilled-1.3B", "facebook/nllb-200-1.3B", "facebook/nllb-200-3.3B",
|
| 25 |
+
"facebook/mbart-large-50-many-to-many-mmt", "facebook/mbart-large-50-one-to-many-mmt", "facebook/mbart-large-50-many-to-one-mmt",
|
| 26 |
+
"facebook/m2m100_418M", "facebook/m2m100_1.2B", "alirezamsh/small100",
|
| 27 |
+
"facebook/hf-seamless-m4t-medium", "facebook/seamless-m4t-large", "facebook/seamless-m4t-v2-large",
|
| 28 |
+
"bigscience/mt0-small", "bigscience/mt0-base", "bigscience/mt0-large", "bigscience/mt0-xl",
|
| 29 |
+
"bigscience/bloomz-560m", "bigscience/bloomz-1b1", "bigscience/bloomz-1b7", "bigscience/bloomz-3b",
|
| 30 |
+
"google/madlad400-3b-mt", "jbochi/madlad400-3b-mt",
|
| 31 |
+
"NiuTrans/LMT-60-0.6B", "NiuTrans/LMT-60-1.7B", "NiuTrans/LMT-60-4B",
|
| 32 |
+
"Lego-MT/Lego-MT", "BSC-LT/salamandraTA-2b-instruct",
|
| 33 |
+
"winninghealth/WiNGPT-Babel", "winninghealth/WiNGPT-Babel-2", "winninghealth/WiNGPT-Babel-2.1",
|
| 34 |
+
"Unbabel/Tower-Plus-2B", "HuggingFaceTB/SmolLM3-3B", "Unbabel/TowerInstruct-7B-v0.2",
|
| 35 |
+
"utter-project/EuroLLM-1.7B", "utter-project/EuroLLM-1.7B-Instruct",
|
| 36 |
+
"google-t5/t5-small", "google-t5/t5-base", "google-t5/t5-large",
|
| 37 |
+
"google/flan-t5-small", "google/flan-t5-base", "google/flan-t5-large", "google/flan-t5-xl"
|
| 38 |
+
]
|
| 39 |
+
DEFAULTS = [langs[0], langs[1], models[0]]
|
| 40 |
+
|
| 41 |
+
def timer(func):
|
| 42 |
+
from time import time
|
| 43 |
+
def translate_text(input_text, s_language, t_language, model_name) -> tuple[str, str]:
|
| 44 |
+
start_time = time()
|
| 45 |
+
translated_text, message_text = func(input_text, s_language, t_language, model_name)
|
| 46 |
+
end_time = time()
|
| 47 |
+
execution_time = end_time - start_time
|
| 48 |
+
message_text = f'Executed in {execution_time:.2f} seconds! {message_text}'
|
| 49 |
+
return translated_text, message_text
|
| 50 |
+
return translate_text
|
| 51 |
+
|
| 52 |
+
def model_to_cuda(model):
|
| 53 |
+
# Move the model to GPU if available
|
| 54 |
+
if torch.cuda.is_available():
|
| 55 |
+
model = model.to('cuda')
|
| 56 |
+
print("CUDA is available! Using GPU.")
|
| 57 |
+
else:
|
| 58 |
+
print("CUDA not available! Using CPU.")
|
| 59 |
+
return model
|
| 60 |
+
|
| 61 |
+
def HelsinkiNLPAutoTokenizer(sl, tl, input_text): # deprecated
|
| 62 |
+
if model_name == "Helsinki-NLP":
|
| 63 |
+
message_text = f'Translated from {sl} to {tl} with {model_name}.'
|
| 64 |
+
try:
|
| 65 |
+
model_name = f"Helsinki-NLP/opus-mt-{sl}-{tl}"
|
| 66 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 67 |
+
model = model_to_cuda(AutoModelForSeq2SeqLM.from_pretrained(model_name))
|
| 68 |
+
except EnvironmentError:
|
| 69 |
+
try:
|
| 70 |
+
model_name = f"Helsinki-NLP/opus-tatoeba-{sl}-{tl}"
|
| 71 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 72 |
+
model = model_to_cuda(AutoModelForSeq2SeqLM.from_pretrained(model_name))
|
| 73 |
+
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
| 74 |
+
output_ids = model.generate(input_ids, max_length=512)
|
| 75 |
+
translated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 76 |
+
return translated_text, message_text
|
| 77 |
+
except EnvironmentError as error:
|
| 78 |
+
return f"Error finding model: {model_name}! Try other available language combination.", error
|
| 79 |
+
|
| 80 |
+
class Translators:
|
| 81 |
+
def __init__(self, model_name: str, sl: str, tl: str, input_text: str):
|
| 82 |
+
self.model_name = model_name
|
| 83 |
+
self.sl, self.tl = sl, tl
|
| 84 |
+
self.input_text = input_text
|
| 85 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 86 |
+
self.max_new_tokens = 512
|
| 87 |
+
|
| 88 |
+
def google(self):
|
| 89 |
+
self.input_text = " ".join(self.input_text.split())
|
| 90 |
+
url = os.environ['GCLIENT'] + f'sl={self.sl}&tl={self.tl}&q={self.input_text}'
|
| 91 |
+
response = httpx.get(url)
|
| 92 |
+
return response.json()[0][0][0]
|
| 93 |
+
|
| 94 |
+
def simplepipe(self):
|
| 95 |
+
try:
|
| 96 |
+
pipe = pipeline("translation", model=self.model_name, device=self.device)
|
| 97 |
+
translation = pipe(self.input_text)
|
| 98 |
+
message = f'Translated from {iso1toall[self.sl][0]} to {iso1toall[self.tl][0]} with {self.model_name}.'
|
| 99 |
+
return translation[0]['translation_text'], message
|
| 100 |
+
except Exception as error:
|
| 101 |
+
return f"Error translating with model: {self.model_name}! Try other available language combination or model.", error
|
| 102 |
+
|
| 103 |
+
def niutrans(self):
|
| 104 |
+
tokenizer = AutoTokenizer.from_pretrained(self.model_name, padding_side='left')
|
| 105 |
+
model = AutoModelForCausalLM.from_pretrained(self.model_name)
|
| 106 |
+
prompt = f"Translate the following text from {self.sl} into {self.tl}.\n{self.sl}: {self.input_text}.\n{self.tl}: "
|
| 107 |
+
messages = [{"role": "user", "content": prompt}]
|
| 108 |
+
text = tokenizer.apply_chat_template(
|
| 109 |
+
messages,
|
| 110 |
+
tokenize=False,
|
| 111 |
+
add_generation_prompt=True,
|
| 112 |
+
)
|
| 113 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
| 114 |
+
generated_ids = model.generate(**model_inputs, max_new_tokens=512, num_beams=5, do_sample=False)
|
| 115 |
+
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
|
| 116 |
+
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
| 117 |
+
outputs = ''.join(outputs) if isinstance(outputs, list) else outputs
|
| 118 |
+
return outputs
|
| 119 |
+
|
| 120 |
+
def salamandratapipe(self):
|
| 121 |
+
pipe = pipeline("text-generation", model=self.model_name)
|
| 122 |
+
messages = [{"role": "user", "content": f"Translate the following text from {self.sl} into {self.tl}.\n{self.sl}: {self.input_text} \n{self.tl}:"}]
|
| 123 |
+
return pipe(messages, max_new_tokens=self.max_new_tokens, early_stopping=True, num_beams=5)[0]["generated_text"][1]["content"]
|
| 124 |
+
|
| 125 |
+
def hplt(self, opus = False):
|
| 126 |
+
# langs = ['ar', 'bs', 'ca', 'en', 'et', 'eu', 'fi', 'ga', 'gl', 'hi', 'hr', 'is', 'mt', 'nn', 'sq', 'sw', 'zh_hant']
|
| 127 |
+
hplt_models = ['ar-en', 'bs-en', 'ca-en', 'en-ar', 'en-bs', 'en-ca', 'en-et', 'en-eu', 'en-fi',
|
| 128 |
+
'en-ga', 'en-gl', 'en-hi', 'en-hr', 'en-is', 'en-mt', 'en-nn', 'en-sq', 'en-sw',
|
| 129 |
+
'en-zh_hant', 'et-en', 'eu-en', 'fi-en', 'ga-en', 'gl-en', 'hi-en', 'hr-en',
|
| 130 |
+
'is-en', 'mt-en', 'nn-en', 'sq-en', 'sw-en', 'zh_hant-en']
|
| 131 |
+
lang_map = {"zh": "zh_hant"}
|
| 132 |
+
self.sl = lang_map.get(self.sl, self.sl)
|
| 133 |
+
self.tl = lang_map.get(self.tl, self.tl)
|
| 134 |
+
if opus:
|
| 135 |
+
hplt_model = f'HPLT/translate-{self.sl}-{self.tl}-v1.0-hplt_opus' # HPLT/translate-en-hr-v1.0-hplt_opus
|
| 136 |
+
else:
|
| 137 |
+
hplt_model = f'HPLT/translate-{self.sl}-{self.tl}-v1.0-hplt' # HPLT/translate-en-hr-v1.0-hplt
|
| 138 |
+
if f'{self.sl}-{self.tl}' in hplt_models:
|
| 139 |
+
pipe = pipeline("translation", model=hplt_model, device=self.device)
|
| 140 |
+
translation = pipe(self.input_text)
|
| 141 |
+
translated_text = translation[0]['translation_text']
|
| 142 |
+
message_text = f'Translated from {iso1toall[self.sl][0]} to {iso1toall[self.tl][0]} with {hplt_model}.'
|
| 143 |
+
else:
|
| 144 |
+
translated_text = f'HPLT model from {iso1toall[self.sl][0]} to {iso1toall[self.tl][0]} not available!'
|
| 145 |
+
message_text = f"Available models: {', '.join(hplt_models)}"
|
| 146 |
+
return translated_text, message_text
|
| 147 |
+
|
| 148 |
+
@staticmethod
|
| 149 |
+
def download_argos_model(available_packages, from_code, to_code):
|
| 150 |
+
import argostranslate.package
|
| 151 |
+
print('Downloading model for', from_code, to_code)
|
| 152 |
+
# Download and install Argos Translate package from path
|
| 153 |
+
package_to_install = next(
|
| 154 |
+
filter(lambda x: x.from_code == from_code and x.to_code == to_code, available_packages)
|
| 155 |
+
)
|
| 156 |
+
argostranslate.package.install_from_path(package_to_install.download())
|
| 157 |
+
|
| 158 |
+
def argos(self):
|
| 159 |
+
import argostranslate.translate, argostranslate.package
|
| 160 |
+
argostranslate.package.update_package_index()
|
| 161 |
+
available_packages = argostranslate.package.get_available_packages()
|
| 162 |
+
available_slanguages = [lang.from_code for lang in available_packages]
|
| 163 |
+
available_tlanguages = [lang.to_code for lang in available_packages]
|
| 164 |
+
available_languages = sorted(list(set(available_slanguages + available_tlanguages)))
|
| 165 |
+
combos: tuple[str|str] = sorted(list(zip(available_slanguages, available_tlanguages)))
|
| 166 |
+
packages_info = ', '.join(f"{pkg.from_name} ({pkg.from_code}) -> {pkg.to_name} ({pkg.to_code})" for pkg in available_packages)
|
| 167 |
+
# print(available_languages, combos, packages_info)
|
| 168 |
+
if self.sl not in available_languages and self.tl not in available_languages:
|
| 169 |
+
translated_text = f'''No supported Argos model available from {iso1toall[self.sl][0]} to {iso1toall[self.tl][0]}!
|
| 170 |
+
Try other model or languages combination from the available Argos models: {', '.join(available_languages)}.'''
|
| 171 |
+
else:
|
| 172 |
+
try:
|
| 173 |
+
if (self.sl, self.tl) in combos:
|
| 174 |
+
self.__class__.download_argos_model(available_packages, self.sl, self.tl) # Download model
|
| 175 |
+
translated_text = argostranslate.translate.translate(self.input_text, self.sl, self.tl) # Direct translation
|
| 176 |
+
elif (self.sl, 'en') in combos and ('en', self.tl) in combos:
|
| 177 |
+
self.__class__.download_argos_model(available_packages, self.sl, 'en') # Download model
|
| 178 |
+
translated_pivottext = argostranslate.translate.translate(self.input_text, self.sl, 'en') # Translate to pivot language English
|
| 179 |
+
self.__class__.download_argos_model(available_packages, 'en', self.tl) # Download model
|
| 180 |
+
translated_text = argostranslate.translate.translate(translated_pivottext, 'en', self.tl) # Translate from pivot language English
|
| 181 |
+
message = f'Translated from {iso1toall[self.sl][0]} to {iso1toall[self.tl][0]} with Argos using pivot language English.'
|
| 182 |
+
else:
|
| 183 |
+
translated_text = f"No Argos model for {iso1toall[self.sl][0]} to {iso1toall[self.tl][0]}. Try other model or languages combination from the available Argos models: {packages_info}."
|
| 184 |
+
except StopIteration as IterationError:
|
| 185 |
+
# packages_info = ', '.join(f"{pkg.get_description()}->{str(pkg.links)} {str(pkg.source_languages)}" for pkg in available_packages)
|
| 186 |
+
translated_text = f"No Argos model for {iso1toall[self.sl][0]} to {iso1toall[self.tl][0]}. Error: {IterationError}. Try other model or languages combination from the available Argos models: {packages_info}."
|
| 187 |
+
except Exception as generalerror:
|
| 188 |
+
translated_text = f"General error: {generalerror}"
|
| 189 |
+
return translated_text
|
| 190 |
+
|
| 191 |
+
@staticmethod
|
| 192 |
+
def quickmttranslate(model_path, input_text):
|
| 193 |
+
from quickmt import Translator
|
| 194 |
+
# 'auto' auto-detects GPU, set to "cpu" to force CPU inference
|
| 195 |
+
device = 'gpu' if torch.cuda.is_available() else 'cpu'
|
| 196 |
+
translator = Translator(str(model_path), device = device)
|
| 197 |
+
# translation = Translator(f"./quickmt-{self.sl}-{self.tl}/", device="auto", inter_threads=2)
|
| 198 |
+
# set beam size to 1 for faster speed (but lower quality)
|
| 199 |
+
translation = translator(input_text, beam_size=5, max_input_length = 512, max_decoding_length = 512)
|
| 200 |
+
# print(model_path, input_text, translation)
|
| 201 |
+
return translation
|
| 202 |
+
|
| 203 |
+
@staticmethod
|
| 204 |
+
def quickmtdownload(model_name):
|
| 205 |
+
from quickmt.hub import hf_download
|
| 206 |
+
from pathlib import Path
|
| 207 |
+
model_path = Path("/quickmt/models") / model_name
|
| 208 |
+
if not model_path.exists():
|
| 209 |
+
hf_download(
|
| 210 |
+
model_name = f"quickmt/{model_name}",
|
| 211 |
+
output_dir=Path("/quickmt/models") / model_name,
|
| 212 |
+
)
|
| 213 |
+
return model_path
|
| 214 |
+
|
| 215 |
+
def quickmt(self):
|
| 216 |
+
model_name = f"quickmt-{self.sl}-{self.tl}"
|
| 217 |
+
# from quickmt.hub import hf_list
|
| 218 |
+
# quickmt_models = [i.split("/quickmt-")[1] for i in hf_list()]
|
| 219 |
+
# quickmt_models.sort()
|
| 220 |
+
quickmt_models = ['ar-en', 'bn-en', 'cs-en', 'da-en', 'de-en', 'el-en', 'en-ar', 'en-bn',
|
| 221 |
+
'en-cs', 'en-da', 'en-de', 'en-el', 'en-es', 'en-fa', 'en-fr', 'en-he',
|
| 222 |
+
'en-hi', 'en-hu', 'en-id', 'en-it', 'en-ja', 'en-ko', 'en-lv', 'en-pl',
|
| 223 |
+
'en-pt', 'en-ro', 'en-ru', 'en-sv', 'en-th', 'en-tr', 'en-ur', 'en-vi',
|
| 224 |
+
'en-zh', 'es-en', 'fa-en', 'fr-en', 'he-en', 'hi-en', 'hu-en', 'id-en',
|
| 225 |
+
'it-en', 'ja-en', 'ko-en', 'lv-en', 'pl-en', 'pt-en', 'ro-en', 'ru-en',
|
| 226 |
+
'th-en', 'tr-en', 'ur-en', 'vi-en', 'zh-en']
|
| 227 |
+
# available_languages = list(set([lang for model in quickmt_models for lang in model.split('-')]))
|
| 228 |
+
# available_languages.sort()
|
| 229 |
+
available_languages = ['ar', 'bn', 'cs', 'da', 'de', 'el', 'en', 'es', 'fa', 'fr', 'he',
|
| 230 |
+
'hi', 'hu', 'id', 'it', 'ja', 'ko', 'lv', 'pl', 'pt', 'ro', 'ru',
|
| 231 |
+
'sv', 'th', 'tr', 'ur', 'vi', 'zh']
|
| 232 |
+
# print(quickmt_models, available_languages)
|
| 233 |
+
# Direct translation model
|
| 234 |
+
if f"{self.sl}-{self.tl}" in quickmt_models:
|
| 235 |
+
model_path = Translators.quickmtdownload(model_name)
|
| 236 |
+
translated_text = Translators.quickmttranslate(model_path, self.input_text)
|
| 237 |
+
message = f'Translated from {iso1toall[self.sl][0]} to {iso1toall[self.tl][0]} with {model_name}.'
|
| 238 |
+
# Pivot language English
|
| 239 |
+
elif self.sl in available_languages and self.tl in available_languages:
|
| 240 |
+
model_name = f"quickmt-{self.sl}-en"
|
| 241 |
+
model_path = Translators.quickmtdownload(model_name)
|
| 242 |
+
entranslation = Translators.quickmttranslate(model_path, self.input_text)
|
| 243 |
+
model_name = f"quickmt-en-{self.tl}"
|
| 244 |
+
model_path = Translators.quickmtdownload(model_name)
|
| 245 |
+
translated_text = Translators.quickmttranslate(model_path, entranslation)
|
| 246 |
+
message = f'Translated from {iso1toall[self.sl][0]} to {iso1toall[self.tl][0]} with Quickmt using pivot language English.'
|
| 247 |
+
else:
|
| 248 |
+
translated_text = f'No Quickmt model available for translation from {iso1toall[self.sl][0]} to {iso1toall[self.tl][0]}!'
|
| 249 |
+
message = f"Available models: {', '.join(quickmt_models)}"
|
| 250 |
+
return translated_text, message
|
| 251 |
+
|
| 252 |
+
def HelsinkiNLP_mulroa(self):
|
| 253 |
+
try:
|
| 254 |
+
pipe = pipeline("translation", model=self.model_name, device=self.device)
|
| 255 |
+
tgt_lang = iso1toall.get(self.tl)[2] # 'deu', 'ron', 'eng', 'fra'
|
| 256 |
+
translation = pipe(f'>>{tgt_lang}<< {self.input_text}')
|
| 257 |
+
return translation[0]['translation_text'], f'Translated from {iso1toall[self.sl][0]} to {iso1toall[self.tl][0]} with {self.model_name}.'
|
| 258 |
+
except Exception as error:
|
| 259 |
+
return f"Error translating with model: {self.model_name}! Try other available language combination.", error
|
| 260 |
+
|
| 261 |
+
def HelsinkiNLP(self):
|
| 262 |
+
try: # Standard bilingual model
|
| 263 |
+
model_name = f"Helsinki-NLP/opus-mt-{self.sl}-{self.tl}"
|
| 264 |
+
pipe = pipeline("translation", model=model_name, device=self.device)
|
| 265 |
+
translation = pipe(self.input_text)
|
| 266 |
+
return translation[0]['translation_text'], f'Translated from {iso1toall[self.sl][0]} to {iso1toall[self.tl][0]} with {model_name}.'
|
| 267 |
+
except EnvironmentError:
|
| 268 |
+
try: # Tatoeba models
|
| 269 |
+
model_name = f"Helsinki-NLP/opus-tatoeba-{self.sl}-{self.tl}"
|
| 270 |
+
pipe = pipeline("translation", model=model_name, device=self.device)
|
| 271 |
+
translation = pipe(self.input_text)
|
| 272 |
+
return translation[0]['translation_text'], f'Translated from {iso1toall[self.sl][0]} to {iso1toall[self.tl][0]} with {model_name}.'
|
| 273 |
+
except EnvironmentError as error:
|
| 274 |
+
self.model_name = "Helsinki-NLP/opus-mt-tc-bible-big-mul-mul" # Last resort: try multi to multi
|
| 275 |
+
return self.HelsinkiNLP_mulroa()
|
| 276 |
+
except KeyError as error:
|
| 277 |
+
return f"Error: Translation direction {self.sl} to {self.tl} is not supported by Helsinki Translation Models", error
|
| 278 |
+
|
| 279 |
+
def madlad(self):
|
| 280 |
+
model = T5ForConditionalGeneration.from_pretrained(self.model_name, device_map="auto")
|
| 281 |
+
tokenizer = T5Tokenizer.from_pretrained(self.model_name)
|
| 282 |
+
text = f"<2{self.tl}> {self.input_text}"
|
| 283 |
+
# input_ids = tokenizer(text, return_tensors="pt").input_ids.to(model.device)
|
| 284 |
+
# outputs = model.generate(input_ids=input_ids, max_new_tokens=512)
|
| 285 |
+
# return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 286 |
+
# return tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
| 287 |
+
# Use a pipeline as a high-level helper
|
| 288 |
+
translator = pipeline('translation', model=model, tokenizer=tokenizer, src_lang=self.sl, tgt_lang=self.tl)
|
| 289 |
+
translated_text = translator(text, max_length=512)
|
| 290 |
+
return translated_text[0]['translation_text']
|
| 291 |
+
|
| 292 |
+
def smollm(self):
|
| 293 |
+
tokenizer = AutoTokenizer.from_pretrained(self.model_name)
|
| 294 |
+
model = AutoModelForCausalLM.from_pretrained(self.model_name)
|
| 295 |
+
prompt = f"""Translate the following {self.sl} text to {self.tl}, generating only the translated text and maintaining the original meaning and tone:
|
| 296 |
+
{self.input_text}
|
| 297 |
+
Translation:"""
|
| 298 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
| 299 |
+
outputs = model.generate(
|
| 300 |
+
inputs.input_ids,
|
| 301 |
+
max_length=len(inputs.input_ids[0]) + 150,
|
| 302 |
+
temperature=0.3,
|
| 303 |
+
do_sample=True
|
| 304 |
+
)
|
| 305 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 306 |
+
print(response)
|
| 307 |
+
return response.split("Translation:")[-1].strip()
|
| 308 |
+
|
| 309 |
+
def flan(self):
|
| 310 |
+
tokenizer = T5Tokenizer.from_pretrained(self.model_name, legacy=False)
|
| 311 |
+
model = T5ForConditionalGeneration.from_pretrained(self.model_name)
|
| 312 |
+
prompt = f"translate {self.sl} to {self.tl}: {self.input_text}"
|
| 313 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
| 314 |
+
outputs = model.generate(input_ids)
|
| 315 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True).strip()
|
| 316 |
+
|
| 317 |
+
def tfive(self):
|
| 318 |
+
tokenizer = T5Tokenizer.from_pretrained(self.model_name)
|
| 319 |
+
model = T5ForConditionalGeneration.from_pretrained(self.model_name, device_map="auto")
|
| 320 |
+
prompt = f"translate {self.sl} to {self.tl}: {self.input_text}"
|
| 321 |
+
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
| 322 |
+
output_ids = model.generate(input_ids, max_length=512)
|
| 323 |
+
translated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True).strip()
|
| 324 |
+
return translated_text
|
| 325 |
+
|
| 326 |
+
def mbart_many_to_many(self):
|
| 327 |
+
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
|
| 328 |
+
model = MBartForConditionalGeneration.from_pretrained(self.model_name)
|
| 329 |
+
tokenizer = MBart50TokenizerFast.from_pretrained(self.model_name)
|
| 330 |
+
# translate source to target
|
| 331 |
+
tokenizer.src_lang = languagecodes.mbart_large_languages[self.sl]
|
| 332 |
+
encoded = tokenizer(self.input_text, return_tensors="pt")
|
| 333 |
+
generated_tokens = model.generate(
|
| 334 |
+
**encoded,
|
| 335 |
+
forced_bos_token_id=tokenizer.lang_code_to_id[languagecodes.mbart_large_languages[self.tl]]
|
| 336 |
+
)
|
| 337 |
+
return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
|
| 338 |
+
|
| 339 |
+
def mbart_one_to_many(self):
|
| 340 |
+
# translate from English
|
| 341 |
+
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
|
| 342 |
+
model = MBartForConditionalGeneration.from_pretrained(self.model_name)
|
| 343 |
+
tokenizer = MBart50TokenizerFast.from_pretrained(self.model_name, src_lang="en_XX")
|
| 344 |
+
model_inputs = tokenizer(self.input_text, return_tensors="pt")
|
| 345 |
+
langid = languagecodes.mbart_large_languages[self.tl]
|
| 346 |
+
generated_tokens = model.generate(
|
| 347 |
+
**model_inputs,
|
| 348 |
+
forced_bos_token_id=tokenizer.lang_code_to_id[langid]
|
| 349 |
+
)
|
| 350 |
+
return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
|
| 351 |
+
|
| 352 |
+
def mbart_many_to_one(self):
|
| 353 |
+
# translate to English
|
| 354 |
+
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
|
| 355 |
+
model = MBartForConditionalGeneration.from_pretrained(self.model_name)
|
| 356 |
+
tokenizer = MBart50TokenizerFast.from_pretrained(self.model_name)
|
| 357 |
+
tokenizer.src_lang = languagecodes.mbart_large_languages[self.sl]
|
| 358 |
+
encoded = tokenizer(self.input_text, return_tensors="pt")
|
| 359 |
+
generated_tokens = model.generate(**encoded)
|
| 360 |
+
return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
|
| 361 |
+
|
| 362 |
+
def mtom(self):
|
| 363 |
+
from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
|
| 364 |
+
model = M2M100ForConditionalGeneration.from_pretrained(self.model_name)
|
| 365 |
+
tokenizer = M2M100Tokenizer.from_pretrained(self.model_name)
|
| 366 |
+
tokenizer.src_lang = self.sl
|
| 367 |
+
encoded = tokenizer(self.input_text, return_tensors="pt")
|
| 368 |
+
generated_tokens = model.generate(**encoded, forced_bos_token_id=tokenizer.get_lang_id(self.tl))
|
| 369 |
+
return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
|
| 370 |
+
|
| 371 |
+
def smallonehundred(self):
|
| 372 |
+
from transformers import M2M100ForConditionalGeneration
|
| 373 |
+
from tokenization_small100 import SMALL100Tokenizer
|
| 374 |
+
model = M2M100ForConditionalGeneration.from_pretrained(self.model_name)
|
| 375 |
+
tokenizer = SMALL100Tokenizer.from_pretrained(self.model_name)
|
| 376 |
+
tokenizer.tgt_lang = self.tl
|
| 377 |
+
encoded_sl = tokenizer(self.input_text, return_tensors="pt")
|
| 378 |
+
generated_tokens = model.generate(**encoded_sl, max_length=256, num_beams=5)
|
| 379 |
+
return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
|
| 380 |
+
|
| 381 |
+
def LegoMT(self):
|
| 382 |
+
from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
|
| 383 |
+
model = M2M100ForConditionalGeneration.from_pretrained(self.model_name) # "Lego-MT/Lego-MT"
|
| 384 |
+
tokenizer = M2M100Tokenizer.from_pretrained(self.model_name)
|
| 385 |
+
tokenizer.src_lang = self.sl
|
| 386 |
+
encoded = tokenizer(self.input_text, return_tensors="pt")
|
| 387 |
+
generated_tokens = model.generate(**encoded, forced_bos_token_id=tokenizer.get_lang_id(self.tl))
|
| 388 |
+
return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
|
| 389 |
+
|
| 390 |
+
def bigscience(self):
|
| 391 |
+
tokenizer = AutoTokenizer.from_pretrained(self.model_name)
|
| 392 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(self.model_name)
|
| 393 |
+
self.input_text = self.input_text if self.input_text.endswith('.') else f'{self.input_text}.'
|
| 394 |
+
inputs = tokenizer.encode(f"Translate to {self.tl}: {self.input_text}", return_tensors="pt")
|
| 395 |
+
outputs = model.generate(inputs)
|
| 396 |
+
translation = tokenizer.decode(outputs[0])
|
| 397 |
+
translation = translation.replace('<pad> ', '').replace('</s>', '')
|
| 398 |
+
return translation
|
| 399 |
+
|
| 400 |
+
def bloomz(self):
|
| 401 |
+
tokenizer = AutoTokenizer.from_pretrained(self.model_name)
|
| 402 |
+
model = AutoModelForCausalLM.from_pretrained(self.model_name)
|
| 403 |
+
self.input_text = self.input_text if self.input_text.endswith('.') else f'{self.input_text}.'
|
| 404 |
+
# inputs = tokenizer.encode(f"Translate from {self.sl} to {self.tl}: {self.input_text} Translation:", return_tensors="pt")
|
| 405 |
+
inputs = tokenizer.encode(f"Translate to {self.tl}: {self.input_text}", return_tensors="pt")
|
| 406 |
+
outputs = model.generate(inputs)
|
| 407 |
+
translation = tokenizer.decode(outputs[0])
|
| 408 |
+
translation = translation.replace('<pad> ', '').replace('</s>', '')
|
| 409 |
+
translation = translation.split('Translation:')[-1].strip() if 'Translation:' in translation else translation.strip()
|
| 410 |
+
return translation
|
| 411 |
+
|
| 412 |
+
def nllb(self):
|
| 413 |
+
tokenizer = AutoTokenizer.from_pretrained(self.model_name, src_lang=self.sl)
|
| 414 |
+
# model = AutoModelForSeq2SeqLM.from_pretrained(self.model_name, device_map="auto", torch_dtype=torch.bfloat16)
|
| 415 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(self.model_name)
|
| 416 |
+
translator = pipeline('translation', model=model, tokenizer=tokenizer, src_lang=self.sl, tgt_lang=self.tl)
|
| 417 |
+
translated_text = translator(self.input_text, max_length=512)
|
| 418 |
+
return translated_text[0]['translation_text']
|
| 419 |
+
|
| 420 |
+
def seamlessm4t1(self):
|
| 421 |
+
from transformers import AutoProcessor, SeamlessM4TModel
|
| 422 |
+
processor = AutoProcessor.from_pretrained(self.model_name)
|
| 423 |
+
model = SeamlessM4TModel.from_pretrained(self.model_name)
|
| 424 |
+
src_lang = iso1toall.get(self.sl)[2] # 'deu', 'ron', 'eng', 'fra'
|
| 425 |
+
tgt_lang = iso1toall.get(self.tl)[2]
|
| 426 |
+
text_inputs = processor(text = self.input_text, src_lang=src_lang, return_tensors="pt")
|
| 427 |
+
output_tokens = model.generate(**text_inputs, tgt_lang=tgt_lang, generate_speech=False)
|
| 428 |
+
return processor.decode(output_tokens[0].tolist()[0], skip_special_tokens=True)
|
| 429 |
+
|
| 430 |
+
def seamlessm4t2(self):
|
| 431 |
+
from transformers import AutoProcessor, SeamlessM4Tv2ForTextToText
|
| 432 |
+
processor = AutoProcessor.from_pretrained(self.model_name)
|
| 433 |
+
model = SeamlessM4Tv2ForTextToText.from_pretrained(self.model_name)
|
| 434 |
+
src_lang = iso1toall.get(self.sl)[2] # 'deu', 'ron', 'eng', 'fra'
|
| 435 |
+
tgt_lang = iso1toall.get(self.tl)[2]
|
| 436 |
+
text_inputs = processor(text=self.input_text, src_lang=src_lang, return_tensors="pt")
|
| 437 |
+
decoder_input_ids = model.generate(**text_inputs, tgt_lang=tgt_lang)[0].tolist()
|
| 438 |
+
return processor.decode(decoder_input_ids, skip_special_tokens=True)
|
| 439 |
+
|
| 440 |
+
def wingpt(self):
|
| 441 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 442 |
+
self.model_name,
|
| 443 |
+
torch_dtype="auto",
|
| 444 |
+
device_map="auto"
|
| 445 |
+
)
|
| 446 |
+
tokenizer = AutoTokenizer.from_pretrained(self.model_name)
|
| 447 |
+
# input_json = '{"input_text": self.input_text}'
|
| 448 |
+
messages = [
|
| 449 |
+
{"role": "system", "content": f"Translate this to {self.tl} language"},
|
| 450 |
+
{"role": "user", "content": self.input_text}
|
| 451 |
+
]
|
| 452 |
+
|
| 453 |
+
text = tokenizer.apply_chat_template(
|
| 454 |
+
messages,
|
| 455 |
+
tokenize=False,
|
| 456 |
+
add_generation_prompt=True
|
| 457 |
+
)
|
| 458 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
| 459 |
+
|
| 460 |
+
generated_ids = model.generate(
|
| 461 |
+
**model_inputs,
|
| 462 |
+
max_new_tokens=512,
|
| 463 |
+
temperature=0.1
|
| 464 |
+
)
|
| 465 |
+
|
| 466 |
+
generated_ids = [
|
| 467 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
| 468 |
+
]
|
| 469 |
+
output = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 470 |
+
result = output.split('\n')[-1].strip() if '\n' in output else output.strip()
|
| 471 |
+
return result
|
| 472 |
+
|
| 473 |
+
def eurollm(self):
|
| 474 |
+
tokenizer = AutoTokenizer.from_pretrained(self.model_name)
|
| 475 |
+
model = AutoModelForCausalLM.from_pretrained(self.model_name)
|
| 476 |
+
prompt = f"{self.sl}: {self.input_text} {self.tl}:"
|
| 477 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
| 478 |
+
outputs = model.generate(**inputs, max_new_tokens=512)
|
| 479 |
+
output = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 480 |
+
print(output)
|
| 481 |
+
# result = output.rsplit(f'{self.tl}:')[-1].strip() if f'{self.tl}:' in output else output.strip()
|
| 482 |
+
result = output.rsplit(f'{self.tl}:')[-1].strip() if '\n' in output or f'{self.tl}:' in output else output.strip()
|
| 483 |
+
return result
|
| 484 |
+
|
| 485 |
+
def eurollm_instruct(self):
|
| 486 |
+
tokenizer = AutoTokenizer.from_pretrained(self.model_name)
|
| 487 |
+
model = AutoModelForCausalLM.from_pretrained(self.model_name)
|
| 488 |
+
text = f'<|im_start|>system\n<|im_end|>\n<|im_start|>user\nTranslate the following {self.sl} source text to {self.tl}:\n{self.sl}: {self.input_text} \n{self.tl}: <|im_end|>\n<|im_start|>assistant\n'
|
| 489 |
+
inputs = tokenizer(text, return_tensors="pt")
|
| 490 |
+
outputs = model.generate(**inputs, max_new_tokens=512)
|
| 491 |
+
output = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 492 |
+
if f'{self.tl}:' in output:
|
| 493 |
+
output = output.rsplit(f'{self.tl}:')[-1].strip().replace('assistant\n', '').strip()
|
| 494 |
+
return output
|
| 495 |
+
|
| 496 |
+
def unbabel(self):
|
| 497 |
+
pipe = pipeline("text-generation", model=self.model_name, torch_dtype=torch.bfloat16, device_map="auto")
|
| 498 |
+
messages = [{"role": "user",
|
| 499 |
+
"content": f"Translate the following text from {self.sl} into {self.tl}.\n{self.sl}: {self.input_text}.\n{self.tl}:"}]
|
| 500 |
+
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=False)
|
| 501 |
+
tokenized_input = pipe.tokenizer(self.input_text, return_tensors="pt")
|
| 502 |
+
num_input_tokens = len(tokenized_input["input_ids"][0])
|
| 503 |
+
max_new_tokens = round(num_input_tokens + 0.5 * num_input_tokens)
|
| 504 |
+
outputs = pipe(prompt, max_new_tokens=max_new_tokens, do_sample=False)
|
| 505 |
+
translated_text = outputs[0]["generated_text"]
|
| 506 |
+
print(f"Input chars: {len(self.input_text)}", f"Input tokens: {num_input_tokens}", f"max_new_tokens: {max_new_tokens}",
|
| 507 |
+
"Chars to tokens ratio:", round(len(self.input_text) / num_input_tokens, 2), f"Raw translation: {translated_text}")
|
| 508 |
+
markers = ["<end_of_turn>", "<|im_end|>", "<|im_start|>assistant"] # , "\n"
|
| 509 |
+
for marker in markers:
|
| 510 |
+
if marker in translated_text:
|
| 511 |
+
translated_text = translated_text.split(marker)[1].strip()
|
| 512 |
+
translated_text = translated_text.replace('Answer:', '', 1).strip() if translated_text.startswith('Answer:') else translated_text
|
| 513 |
+
translated_text = translated_text.split("Translated text:")[0].strip() if "Translated text:" in translated_text else translated_text
|
| 514 |
+
split_translated_text = translated_text.split('\n', translated_text.count('\n'))
|
| 515 |
+
translated_text = '\n'.join(split_translated_text[:self.input_text.count('\n')+1])
|
| 516 |
+
return translated_text
|
| 517 |
+
|
| 518 |
+
def bergamot(model_name: str = 'deen', sl: str = 'de', tl: str = 'en', input_text: str = 'Hallo, mein Freund'):
|
| 519 |
+
try:
|
| 520 |
+
import bergamot
|
| 521 |
+
# input_text = [input_text] if isinstance(input_text, str) else input_text
|
| 522 |
+
config = bergamot.ServiceConfig(numWorkers=4)
|
| 523 |
+
service = bergamot.Service(config)
|
| 524 |
+
model = service.modelFromConfigPath(f"./{model_name}/bergamot.config.yml")
|
| 525 |
+
options = bergamot.ResponseOptions(alignment=False, qualityScores=False, HTML=False)
|
| 526 |
+
rawresponse = service.translate(model, bergamot.VectorString(input_text), options)
|
| 527 |
+
translated_text: str = next(iter(rawresponse)).target.text
|
| 528 |
+
message_text = f"Translated from {sl} to {tl} with Bergamot {model_name}."
|
| 529 |
+
except Exception as error:
|
| 530 |
+
response = error
|
| 531 |
+
return translated_text, message_text
|
| 532 |
+
|
| 533 |
+
@timer
|
| 534 |
+
@spaces.GPU
|
| 535 |
+
def translate_text(input_text: str, s_language: str, t_language: str, model_name: str) -> tuple[str, str]:
|
| 536 |
+
"""
|
| 537 |
+
Translates the input text from the source language to the target language using a specified model.
|
| 538 |
+
|
| 539 |
+
Parameters:
|
| 540 |
+
input_text (str): The source text to be translated
|
| 541 |
+
s_language (str): The source language of the input text
|
| 542 |
+
t_language (str): The target language in which the input text is translated
|
| 543 |
+
model_name (str): The selected translation model name
|
| 544 |
+
|
| 545 |
+
Returns:
|
| 546 |
+
tuple:
|
| 547 |
+
translated_text(str): The input text translated to the selected target language
|
| 548 |
+
message_text(str): A descriptive message summarizing the translation process. Example: "Translated from English to German with Helsinki-NLP."
|
| 549 |
+
|
| 550 |
+
Example:
|
| 551 |
+
>>> translate_text("Hello world", "English", "German", "Helsinki-NLP")
|
| 552 |
+
("Hallo Welt", "Translated from English to German with Helsinki-NLP.")
|
| 553 |
+
"""
|
| 554 |
+
|
| 555 |
+
sl = all_langs[s_language][0]
|
| 556 |
+
tl = all_langs[t_language][0]
|
| 557 |
+
message_text = f'Translated from {s_language} to {t_language} with {model_name}'
|
| 558 |
+
if not input_text or input_text.strip() == '':
|
| 559 |
+
translated_text = f'No input text entered!'
|
| 560 |
+
message_text = 'Please enter a text to translate!'
|
| 561 |
+
return translated_text, message_text
|
| 562 |
+
if sl == tl:
|
| 563 |
+
translated_text = f'Source language {s_language} identical to target language {t_language}!'
|
| 564 |
+
message_text = 'Please choose different target and source language!'
|
| 565 |
+
return translated_text, message_text
|
| 566 |
+
try:
|
| 567 |
+
if "-mul" in model_name.lower() or "mul-" in model_name.lower() or "-roa" in model_name.lower():
|
| 568 |
+
translated_text, message_text = Translators(model_name, sl, tl, input_text).HelsinkiNLP_mulroa()
|
| 569 |
+
|
| 570 |
+
elif model_name == "Helsinki-NLP":
|
| 571 |
+
translated_text, message_text = Translators(model_name, sl, tl, input_text).HelsinkiNLP()
|
| 572 |
+
|
| 573 |
+
elif model_name == 'Argos':
|
| 574 |
+
translated_text = Translators(model_name, sl, tl, input_text).argos()
|
| 575 |
+
|
| 576 |
+
elif model_name == "QUICKMT":
|
| 577 |
+
translated_text, message_text = Translators(model_name, sl, tl, input_text).quickmt()
|
| 578 |
+
|
| 579 |
+
elif model_name == 'Google':
|
| 580 |
+
translated_text = Translators(model_name, sl, tl, input_text).google()
|
| 581 |
+
|
| 582 |
+
elif model_name == "Helsinki-NLP/opus-mt-tc-bible-big-roa-en":
|
| 583 |
+
translated_text, message_text = Translators(model_name, sl, tl, input_text).simplepipe()
|
| 584 |
+
|
| 585 |
+
elif "m2m" in model_name.lower():
|
| 586 |
+
translated_text = Translators(model_name, sl, tl, input_text).mtom()
|
| 587 |
+
|
| 588 |
+
elif "small100" in model_name.lower():
|
| 589 |
+
translated_text = Translators(model_name, sl, tl, input_text).smallonehundred()
|
| 590 |
+
|
| 591 |
+
elif "lego" in model_name.lower():
|
| 592 |
+
translated_text = Translators(model_name, sl, tl, input_text).LegoMT()
|
| 593 |
+
|
| 594 |
+
elif "niutrans" in model_name.lower():
|
| 595 |
+
translated_text = Translators(model_name, sl, tl, input_text).niutrans()
|
| 596 |
+
|
| 597 |
+
elif "salamandra" in model_name.lower():
|
| 598 |
+
translated_text = Translators(model_name, s_language, t_language, input_text).salamandratapipe()
|
| 599 |
+
|
| 600 |
+
elif model_name.startswith('google-t5'):
|
| 601 |
+
translated_text = Translators(model_name, s_language, t_language, input_text).tfive()
|
| 602 |
+
|
| 603 |
+
elif 'flan' in model_name.lower():
|
| 604 |
+
translated_text = Translators(model_name, s_language, t_language, input_text).flan()
|
| 605 |
+
|
| 606 |
+
elif 'madlad' in model_name.lower():
|
| 607 |
+
translated_text = Translators(model_name, sl, tl, input_text).madlad()
|
| 608 |
+
|
| 609 |
+
elif 'mt0' in model_name.lower():
|
| 610 |
+
translated_text = Translators(model_name, s_language, t_language, input_text).bigscience()
|
| 611 |
+
|
| 612 |
+
elif 'bloomz' in model_name.lower():
|
| 613 |
+
translated_text = Translators(model_name, s_language, t_language, input_text).bloomz()
|
| 614 |
+
|
| 615 |
+
elif 'nllb' in model_name.lower():
|
| 616 |
+
nnlbsl, nnlbtl = languagecodes.nllb_language_codes[s_language], languagecodes.nllb_language_codes[t_language]
|
| 617 |
+
translated_text = Translators(model_name, nnlbsl, nnlbtl, input_text).nllb()
|
| 618 |
+
|
| 619 |
+
elif model_name == "facebook/mbart-large-50-many-to-many-mmt":
|
| 620 |
+
translated_text = Translators(model_name, s_language, t_language, input_text).mbart_many_to_many()
|
| 621 |
+
|
| 622 |
+
elif model_name == "facebook/mbart-large-50-one-to-many-mmt":
|
| 623 |
+
translated_text = Translators(model_name, s_language, t_language, input_text).mbart_one_to_many()
|
| 624 |
+
|
| 625 |
+
elif model_name == "facebook/mbart-large-50-many-to-one-mmt":
|
| 626 |
+
translated_text = Translators(model_name, s_language, t_language, input_text).mbart_many_to_one()
|
| 627 |
+
|
| 628 |
+
elif model_name == "facebook/seamless-m4t-v2-large":
|
| 629 |
+
translated_text = Translators(model_name, sl, tl, input_text).seamlessm4t2()
|
| 630 |
+
|
| 631 |
+
elif "m4t-medium" in model_name or "m4t-large" in model_name:
|
| 632 |
+
translated_text = Translators(model_name, sl, tl, input_text).seamlessm4t1()
|
| 633 |
+
|
| 634 |
+
elif model_name == "utter-project/EuroLLM-1.7B-Instruct":
|
| 635 |
+
translated_text = Translators(model_name, s_language, t_language, input_text).eurollm_instruct()
|
| 636 |
+
|
| 637 |
+
elif model_name == "utter-project/EuroLLM-1.7B":
|
| 638 |
+
translated_text = Translators(model_name, s_language, t_language, input_text).eurollm()
|
| 639 |
+
|
| 640 |
+
elif 'Unbabel' in model_name:
|
| 641 |
+
translated_text = Translators(model_name, s_language, t_language, input_text).unbabel()
|
| 642 |
+
|
| 643 |
+
elif model_name == "HuggingFaceTB/SmolLM3-3B":
|
| 644 |
+
translated_text = Translators(model_name, s_language, t_language, input_text).smollm()
|
| 645 |
+
|
| 646 |
+
elif "winninghealth/WiNGPT" in model_name:
|
| 647 |
+
translated_text = Translators(model_name, s_language, t_language, input_text).wingpt()
|
| 648 |
+
|
| 649 |
+
elif "HPLT" in model_name:
|
| 650 |
+
if model_name == "HPLT-OPUS":
|
| 651 |
+
translated_text, message_text = Translators(model_name, sl, tl, input_text).hplt(opus = True)
|
| 652 |
+
else:
|
| 653 |
+
translated_text, message_text = Translators(model_name, sl, tl, input_text).hplt()
|
| 654 |
+
|
| 655 |
+
elif model_name == "Bergamot":
|
| 656 |
+
translated_text, message_text = Translators(model_name, s_language, t_language, input_text).bergamot()
|
| 657 |
+
|
| 658 |
+
except Exception as trerror:
|
| 659 |
+
translated_text = f'Error in main function "translate_text": {trerror}'
|
| 660 |
+
finally:
|
| 661 |
+
print(input_text, translated_text, message_text)
|
| 662 |
+
return translated_text, message_text
|
| 663 |
+
|
| 664 |
+
def swap_languages(src_lang, tgt_lang):
|
| 665 |
+
'''Swap dropdown values for source and target language'''
|
| 666 |
+
return tgt_lang, src_lang
|
| 667 |
+
|
| 668 |
+
def get_info(model_name: str, sl: str = None, tl: str = None):
|
| 669 |
+
helsinki = '### [Helsinki-NLP](https://huggingface.co/Helsinki-NLP "Helsinki-NLP")'
|
| 670 |
+
if model_name == "Helsinki-NLP" and sl and tl:
|
| 671 |
+
url = f'https://huggingface.co/{model_name}/opus-mt-{sl}-{tl}/raw/main/README.md'
|
| 672 |
+
response = httpx.get(url).text
|
| 673 |
+
if 'Repository not found' in response or 'Invalid username or password' in response:
|
| 674 |
+
return helsinki
|
| 675 |
+
return response
|
| 676 |
+
elif model_name == "Argos":
|
| 677 |
+
return httpx.get(f'https://huggingface.co/TiberiuCristianLeon/Argostranslate/raw/main/README.md').text
|
| 678 |
+
elif "HPLT" in model_name:
|
| 679 |
+
return """[HPLT Uni direction translation models](https://huggingface.co/collections/HPLT/hplt-12-uni-direction-translation-models)
|
| 680 |
+
['ar-en', 'bs-en', 'ca-en', 'en-ar', 'en-bs', 'en-ca', 'en-et', 'en-eu', 'en-fi',
|
| 681 |
+
'en-ga', 'en-gl', 'en-hi', 'en-hr', 'en-is', 'en-mt', 'en-nn', 'en-sq', 'en-sw',
|
| 682 |
+
'en-zh_hant', 'et-en', 'eu-en', 'fi-en', 'ga-en', 'gl-en', 'hi-en', 'hr-en',
|
| 683 |
+
'is-en', 'mt-en', 'nn-en', 'sq-en', 'sw-en', 'zh_hant-en']"""
|
| 684 |
+
elif "QUICKMT" in model_name:
|
| 685 |
+
return """[QUICKMT](https://huggingface.co/quickmt)
|
| 686 |
+
['ar-en', 'bn-en', 'cs-en', 'da-en', 'de-en', 'el-en', 'en-ar', 'en-bn',
|
| 687 |
+
'en-cs', 'en-da', 'en-de', 'en-el', 'en-es', 'en-fa', 'en-fr', 'en-he',
|
| 688 |
+
'en-hi', 'en-hu', 'en-id', 'en-it', 'en-ja', 'en-ko', 'en-lv', 'en-pl',
|
| 689 |
+
'en-pt', 'en-ro', 'en-ru', 'en-sv', 'en-th', 'en-tr', 'en-ur', 'en-vi',
|
| 690 |
+
'en-zh', 'es-en', 'fa-en', 'fr-en', 'he-en', 'hi-en', 'hu-en', 'id-en',
|
| 691 |
+
'it-en', 'ja-en', 'ko-en', 'lv-en', 'pl-en', 'pt-en', 'ro-en', 'ru-en',
|
| 692 |
+
'th-en', 'tr-en', 'ur-en', 'vi-en', 'zh-en']"""
|
| 693 |
+
elif model_name == "Google":
|
| 694 |
+
return "Google Translate Online"
|
| 695 |
+
else:
|
| 696 |
+
return httpx.get(f'https://huggingface.co/{model_name}/raw/main/README.md').text
|
| 697 |
+
|
| 698 |
+
def create_interface():
|
| 699 |
+
with gr.Blocks() as interface:
|
| 700 |
+
gr.Markdown("### Machine Text Translation with Gradio API and MCP Server")
|
| 701 |
+
input_text = gr.Textbox(label="Enter text to translate:", placeholder="Type your text here, maximum 512 tokens", autofocus=True, submit_btn='Translate', max_length=512)
|
| 702 |
+
|
| 703 |
+
with gr.Row(variant="compact"):
|
| 704 |
+
s_language = gr.Dropdown(choices=langs, value = DEFAULTS[0], label="Source language", interactive=True, scale=2)
|
| 705 |
+
t_language = gr.Dropdown(choices=langs, value = DEFAULTS[1], label="Target language", interactive=True, scale=2)
|
| 706 |
+
swap_btn = gr.Button("Swap Languages", size="md", scale=1)
|
| 707 |
+
swap_btn.click(fn=swap_languages, inputs=[s_language, t_language], outputs=[s_language, t_language], api_name=False, show_api=False)
|
| 708 |
+
# with gr.Row(equal_height=True):
|
| 709 |
+
model_name = gr.Dropdown(choices=models, label=f"Select a model. Default is {DEFAULTS[2]}.", value=DEFAULTS[2], interactive=True, scale=2)
|
| 710 |
+
# translate_btn = gr.Button(value="Translate", scale=1)
|
| 711 |
+
|
| 712 |
+
translated_text = gr.Textbox(label="Translated text:", placeholder="Display field for translation", interactive=False, show_copy_button=True, lines=2)
|
| 713 |
+
message_text = gr.Textbox(label="Messages:", placeholder="Display field for status and error messages", interactive=False,
|
| 714 |
+
value=f'Default translation settings: from {s_language.value} to {t_language.value} with {model_name.value}.')
|
| 715 |
+
allmodels = gr.HTML(label="Model links:", value=', '.join([f'<a href="https://huggingface.co/{model}">{model}</a>' for model in models]))
|
| 716 |
+
model_info = gr.Markdown(label="Model info:", value=get_info(DEFAULTS[2], DEFAULTS[0], DEFAULTS[1]), show_copy_button=True)
|
| 717 |
+
model_name.change(fn=get_info, inputs=[model_name, s_language, t_language], outputs=model_info, api_name=False, show_api=False)
|
| 718 |
+
|
| 719 |
+
# translate_btn.click(
|
| 720 |
+
# fn=translate_text,
|
| 721 |
+
# inputs=[input_text, s_language, t_language, model_name],
|
| 722 |
+
# outputs=[translated_text, message_text]
|
| 723 |
+
# )
|
| 724 |
+
input_text.submit(
|
| 725 |
+
fn=translate_text,
|
| 726 |
+
inputs=[input_text, s_language, t_language, model_name],
|
| 727 |
+
outputs=[translated_text, message_text]
|
| 728 |
+
)
|
| 729 |
+
|
| 730 |
+
return interface
|
| 731 |
+
|
| 732 |
+
interface = create_interface()
|
| 733 |
+
if __name__ == "__main__":
|
| 734 |
+
interface.launch(mcp_server=True)
|
| 735 |
+
# interface.queue().launch(server_name="0.0.0.0", show_error=True, server_port=7860, mcp_server=True)
|