TiberiuCristianLeon commited on
Commit
5e827a9
·
verified ·
1 Parent(s): 4e73ea6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -18
app.py CHANGED
@@ -8,11 +8,11 @@ import httpx
8
  device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
9
  # Language options and mappings
10
  favourite_langs = {"Romanian": "ro", "German": "de", "English": "en", "-----": "-----"}
11
- # langs = ["German", "Romanian", "English", "French", "Spanish", "Italian",]
12
  df = pl.read_parquet("isolanguages.parquet")
13
  non_empty_isos = df.slice(1).filter(pl.col("ISO639-1") != "").rows()
14
  all_langs = {iso[0]: (iso[1], iso[2], iso[3]) for iso in non_empty_isos} # {'Romanian': ('ro', 'rum', 'ron')}
15
  name_to_iso1 = {iso[0]: iso[1] for iso in non_empty_isos} # {'Romanian': 'ro', 'German': 'de'}
 
16
  langs = list(favourite_langs.keys())
17
  langs.extend(list(all_langs.keys())) # Language options as list, add favourite languages first
18
  # all_langs = languagecodes.iso_languages_byname
@@ -38,19 +38,6 @@ models = ["Helsinki-NLP", "QUICKMT", "Argos", "Lego-MT/Lego-MT", "HPLT", "HPLT-O
38
  "tencent/Hunyuan-MT-7B",
39
  "openGPT-X/Teuken-7B-instruct-commercial-v0.4", "openGPT-X/Teuken-7B-instruct-v0.6",
40
  ]
41
- allmodels = ["Helsinki-NLP",
42
- "Helsinki-NLP/opus-mt-tc-bible-big-mul-mul", "Helsinki-NLP/opus-mt-tc-bible-big-mul-deu_eng_nld",
43
- "Helsinki-NLP/opus-mt-tc-bible-big-mul-deu_eng_fra_por_spa", "Helsinki-NLP/opus-mt-tc-bible-big-deu_eng_fra_por_spa-mul",
44
- "Helsinki-NLP/opus-mt-tc-bible-big-roa-deu_eng_fra_por_spa", "Helsinki-NLP/opus-mt-tc-bible-big-deu_eng_fra_por_spa-roa",
45
- "facebook/nllb-200-distilled-600M", "facebook/nllb-200-distilled-1.3B", "facebook/nllb-200-1.3B", "facebook/nllb-200-3.3B",
46
- "facebook/mbart-large-50-many-to-many-mmt", "facebook/mbart-large-50-one-to-many-mmt", "facebook/mbart-large-50-many-to-one-mmt",
47
- "facebook/m2m100_418M", "facebook/m2m100_1.2B", "Lego-MT/Lego-MT",
48
- "bigscience/mt0-small", "bigscience/mt0-base", "bigscience/mt0-large", "bigscience/mt0-xl",
49
- "bigscience/bloomz-560m", "bigscience/bloomz-1b1", "bigscience/bloomz-1b7", "bigscience/bloomz-3b",
50
- "t5-small", "t5-base", "t5-large",
51
- "google/flan-t5-small", "google/flan-t5-base", "google/flan-t5-large", "google/flan-t5-xl",
52
- "google/madlad400-3b-mt", "jbochi/madlad400-3b-mt",
53
- ]
54
  class Translators:
55
  def __init__(self, model_name: str, sl: str, tl: str, input_text: str):
56
  self.model_name = model_name
@@ -539,7 +526,7 @@ def translate_text(model_name: str, s_language: str, t_language: str, input_text
539
  message_text = f'Translated from {s_language} to {t_language} with {model_name}'
540
  translated_text = None
541
  try:
542
- if in model_name == "Helsinki-NLP/opus-mt-tc-bible-big-roa-en":
543
  translated_text, message_text = Translators(model_name, sl, tl, input_text).simplepipe()
544
 
545
  elif "-mul" in model_name.lower() or "mul-" in model_name.lower() or "-roa" in model_name.lower():
@@ -548,6 +535,9 @@ def translate_text(model_name: str, s_language: str, t_language: str, input_text
548
  elif model_name == "Helsinki-NLP":
549
  translated_text, message_text = Translators(model_name, sl, tl, input_text).HelsinkiNLP()
550
 
 
 
 
551
  elif "HPLT" in model_name:
552
  if model_name == "HPLT-OPUS":
553
  translated_text, message = Translators(model_name, sl, tl, input_text).hplt(opus = True)
@@ -618,9 +608,6 @@ def translate_text(model_name: str, s_language: str, t_language: str, input_text
618
  elif model_name == "Bergamot":
619
  translated_text, message_text = Translators(model_name, s_language, t_language, input_text).bergamot()
620
 
621
- elif model_name == "QUICKMT":
622
- translated_text, message_text = Translators(model_name, sl, tl, input_text).quickmt()
623
-
624
  elif "Hunyuan" in model_name:
625
  translated_text = Translators(model_name, s_language, t_language, input_text).hunyuan()
626
 
 
8
  device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
9
  # Language options and mappings
10
  favourite_langs = {"Romanian": "ro", "German": "de", "English": "en", "-----": "-----"}
 
11
  df = pl.read_parquet("isolanguages.parquet")
12
  non_empty_isos = df.slice(1).filter(pl.col("ISO639-1") != "").rows()
13
  all_langs = {iso[0]: (iso[1], iso[2], iso[3]) for iso in non_empty_isos} # {'Romanian': ('ro', 'rum', 'ron')}
14
  name_to_iso1 = {iso[0]: iso[1] for iso in non_empty_isos} # {'Romanian': 'ro', 'German': 'de'}
15
+ # langs = ["German", "Romanian", "English", "French", "Spanish", "Italian"]
16
  langs = list(favourite_langs.keys())
17
  langs.extend(list(all_langs.keys())) # Language options as list, add favourite languages first
18
  # all_langs = languagecodes.iso_languages_byname
 
38
  "tencent/Hunyuan-MT-7B",
39
  "openGPT-X/Teuken-7B-instruct-commercial-v0.4", "openGPT-X/Teuken-7B-instruct-v0.6",
40
  ]
 
 
 
 
 
 
 
 
 
 
 
 
 
41
  class Translators:
42
  def __init__(self, model_name: str, sl: str, tl: str, input_text: str):
43
  self.model_name = model_name
 
526
  message_text = f'Translated from {s_language} to {t_language} with {model_name}'
527
  translated_text = None
528
  try:
529
+ if model_name == "Helsinki-NLP/opus-mt-tc-bible-big-roa-en":
530
  translated_text, message_text = Translators(model_name, sl, tl, input_text).simplepipe()
531
 
532
  elif "-mul" in model_name.lower() or "mul-" in model_name.lower() or "-roa" in model_name.lower():
 
535
  elif model_name == "Helsinki-NLP":
536
  translated_text, message_text = Translators(model_name, sl, tl, input_text).HelsinkiNLP()
537
 
538
+ elif model_name == "QUICKMT":
539
+ translated_text, message_text = Translators(model_name, sl, tl, input_text).quickmt()
540
+
541
  elif "HPLT" in model_name:
542
  if model_name == "HPLT-OPUS":
543
  translated_text, message = Translators(model_name, sl, tl, input_text).hplt(opus = True)
 
608
  elif model_name == "Bergamot":
609
  translated_text, message_text = Translators(model_name, s_language, t_language, input_text).bergamot()
610
 
 
 
 
611
  elif "Hunyuan" in model_name:
612
  translated_text = Translators(model_name, s_language, t_language, input_text).hunyuan()
613