TiberiuCristianLeon commited on
Commit
8de4060
·
verified ·
1 Parent(s): 18293ea

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -8
app.py CHANGED
@@ -69,16 +69,16 @@ class Translators:
69
  # model = AutoModel.from_pretrained(self.model_name, trust_remote_code=True)
70
  # model.half() # recommended for GPU
71
  model.eval()
72
- model.float()
73
  # Translating from one or several sentences to a sole language
74
  src_tokens = tokenizer.encode_source_tokens_to_input_ids(self.input_text, target_language=self.tl)
75
  # src_tokens may be a torch.Tensor or dict depending on tokenizer; ensure it's a tensor
76
- if isinstance(src_tokens, torch.Tensor):
77
- src_tokens = src_tokens.to(self.device)
78
- else:
79
- # if tokenizer returns dict-like inputs (input_ids, attention_mask)
80
- for k, v in src_tokens.items():
81
- src_tokens[k] = v.to(self.device)
82
  # src_tokens = src_tokens.to(self.device)
83
  # generated_tokens = model.generate(src_tokens)
84
  # return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
@@ -86,7 +86,7 @@ class Translators:
86
  # src_tokens = tokenizer.encode_source_tokens_to_input_ids_with_different_tags([english_text, english_text, ], target_languages_list=["de", "zh", ])
87
  # generated_tokens = model.generate(src_tokens.to(self.device))
88
  # results = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
89
- with torch.inference_mode(): # no_grad inference_mode
90
  generated_tokens = model.generate(src_tokens)
91
  result = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
92
  return result
 
69
  # model = AutoModel.from_pretrained(self.model_name, trust_remote_code=True)
70
  # model.half() # recommended for GPU
71
  model.eval()
72
+ # model.float()
73
  # Translating from one or several sentences to a sole language
74
  src_tokens = tokenizer.encode_source_tokens_to_input_ids(self.input_text, target_language=self.tl)
75
  # src_tokens may be a torch.Tensor or dict depending on tokenizer; ensure it's a tensor
76
+ # if isinstance(src_tokens, torch.Tensor):
77
+ # src_tokens = src_tokens.to(self.device)
78
+ # else:
79
+ # # if tokenizer returns dict-like inputs (input_ids, attention_mask)
80
+ # for k, v in src_tokens.items():
81
+ # src_tokens[k] = v.to(self.device)
82
  # src_tokens = src_tokens.to(self.device)
83
  # generated_tokens = model.generate(src_tokens)
84
  # return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
 
86
  # src_tokens = tokenizer.encode_source_tokens_to_input_ids_with_different_tags([english_text, english_text, ], target_languages_list=["de", "zh", ])
87
  # generated_tokens = model.generate(src_tokens.to(self.device))
88
  # results = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
89
+ with torch.no_grad(): # no_grad inference_mode
90
  generated_tokens = model.generate(src_tokens)
91
  result = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
92
  return result