File size: 5,410 Bytes
b17b915
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
# ==================================
# File: video_processing_refactor.py
# (drop-in replacement for process_video_pipeline in video_processing.py)
# ==================================
from __future__ import annotations
from typing import Any, Dict, List, Optional
from pathlib import Path
import json
import cv2
import yaml
import logging

from chromadb.config import Settings
import chromadb

from audio_tools import process_audio_for_video
from background_descriptor import build_keyframes_and_per_second, describe_keyframes_with_llm
from identity_manager import IdentityManager


log = logging.getLogger("video_processing")
if not log.handlers:
    h = logging.StreamHandler(); h.setFormatter(logging.Formatter("%(asctime)s - %(levelname)s - %(message)s"))
    log.addHandler(h)
log.setLevel(logging.INFO)


def _ensure_dir(p: Path) -> Path:
    p.mkdir(parents=True, exist_ok=True)
    return p


def _ensure_chroma(db_dir: str | Path):
    _ensure_dir(Path(db_dir))
    return chromadb.Client(Settings(
        persist_directory=str(db_dir),
        chroma_db_impl="duckdb+parquet",
        anonymized_telemetry=False,
    ))


def load_config(path: str) -> Dict[str, Any]:
    p = Path(path)
    if not p.exists():
        return {}
    return yaml.safe_load(p.read_text(encoding="utf-8")) or {}


def process_video_pipeline(
    video_path: str,
    *,
    config_path: str = "config_veureu.yaml",
    out_root: str = "results",
    db_dir: str = "chroma_db",
) -> Dict[str, Any]:
    cfg = load_config(config_path)
    out_dir = _ensure_dir(Path(out_root) / Path(video_path).stem)

    # Metadatos del vídeo
    cap = cv2.VideoCapture(str(video_path))
    if not cap.isOpened():
        raise RuntimeError(f"Cannot open video: {video_path}")
    fps = float(cap.get(cv2.CAP_PROP_FPS)) or 25.0
    total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) or 0
    duration = (total_frames / fps) if total_frames > 0 else 0.0
    cap.release()

    # DB Chroma opcional
    face_col = voice_col = None
    if cfg.get("database", {}).get("enabled", True):
        client = _ensure_chroma(cfg.get("database", {}).get("persist_directory", db_dir))
        if cfg.get("database", {}).get("enable_face_recognition", True):
            try:
                face_col = client.get_collection(cfg.get("database", {}).get("face_collection", "index_faces"))
            except Exception:
                face_col = None
        if cfg.get("database", {}).get("enable_voice_recognition", True):
            try:
                voice_col = client.get_collection(cfg.get("database", {}).get("voice_collection", "index_voices"))
            except Exception:
                voice_col = None

    # 1) Background descriptor (frames, OCR, descripciones)
    keyframes, per_second, _ = build_keyframes_and_per_second(video_path, out_dir, cfg, face_collection=face_col)

    # Ajustar `end` de cada keyframe con la duración total
    for i in range(len(keyframes)):
        if i < len(keyframes) - 1:
            keyframes[i]["end"] = keyframes[i + 1]["start"]
        else:
            keyframes[i]["end"] = round(duration, 2)

    # 2) Descripción con LLM
    face_identities = {f.get("identity") for fr in per_second for f in (fr.get("faces") or []) if f.get("identity")}
    keyframes, montage_path = describe_keyframes_with_llm(keyframes, out_dir, face_identities=face_identities, config_path=config_path)

    # 3) Audio pipeline
    audio_segments, srt_unmodified_path, full_transcription = process_audio_for_video(video_path=str(video_path), out_dir=out_dir, cfg=cfg, voice_collection=voice_col)

    # 4) Identity manager: enriquecer frames y clips
    im = IdentityManager(face_collection=face_col, voice_collection=voice_col)
    per_second = im.assign_faces_to_frames(per_second)
    keyframes = im.assign_faces_to_frames(keyframes)
    audio_segments = im.assign_voices_to_segments(audio_segments, distance_threshold=cfg.get("voice_processing", {}).get("speaker_identification", {}).get("distance_threshold"))

    # 5) Mapear identidades a rangos
    keyframes = im.map_identities_over_ranges(per_second, keyframes, key="faces", out_key="persona")
    audio_segments = im.map_identities_over_ranges(per_second, audio_segments, key="faces", out_key="persona")

    # 6) Export analysis.json
    frames_analysis = [{
        "frame_number": fr.get("id"),
        "start": fr.get("start"),
        "end": fr.get("end"),
        "ocr": fr.get("ocr", ""),
        "persona": fr.get("persona", []),
        "description": fr.get("description", ""),
    } for fr in keyframes]

    analysis = {
        "frames": frames_analysis,
        "audio_segments": [{k: v for k, v in seg.items() if k != "voice_embedding"} for seg in audio_segments],
        "full_transcription": full_transcription,
    }
    analysis_path = out_dir / f"{Path(video_path).stem}_analysis.json"
    analysis_path.write_text(json.dumps(analysis, indent=2, ensure_ascii=False), encoding="utf-8")

    return {
        "output_dir": str(out_dir),
        "files": {
            "montage_path": montage_path,
            "srt_path": srt_unmodified_path,
            "analysis_path": str(analysis_path),
        },
        "stats": {
            "duration_seconds": duration,
            "total_frames": total_frames,
            "frames_processed": len(keyframes),
            "audio_segments_processed": len(audio_segments),
        },
    }