engine / audio_tools.py
VeuReu's picture
Upload 2 files
bed3a49 verified
raw
history blame
18.4 kB
# audio_tools.py (ASR delegated to remote HF Space "veureu/asr")
# -----------------------------------------------------------------------------
# Veureu — AUDIO utilities (orchestrator w/ remote ASR)
# - FFmpeg extraction (WAV)
# - Diarization (pyannote) [local]
# - Voice embeddings (SpeechBrain ECAPA) [local]
# - Speaker identification (KMeans + ChromaDB optional) [local]
# - ASR: delegated to HF Space `veureu/asr` (faster-whisper-large-v3-ca-3catparla)
# - SRT generation
# - Orchestrator: process_audio_for_video(...)
# -----------------------------------------------------------------------------
from __future__ import annotations
import json
import logging
import math
import os
import shlex
import subprocess
from pathlib import Path
from typing import List, Dict, Any, Tuple, Optional
import numpy as np
# Optional torchaudio for I/O and resampling (fallback to soundfile+librosa otherwise)
try:
import torch
import torchaudio as ta
import torchaudio.transforms as T
HAS_TORCHAUDIO = True
# Note: ta.set_audio_backend is deprecated in newer torchaudio versions
except Exception:
HAS_TORCHAUDIO = False
ta = None # type: ignore
import soundfile as sf
# Pyannote for diarization (local)
from pyannote.audio import Pipeline
# Speaker embeddings (local)
from speechbrain.inference.speaker import SpeakerRecognition # v1.0+
# Clustering
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
# Router to remote Spaces (asr)
from llm_router import load_yaml, LLMRouter
# -------------------------------- Logging ------------------------------------
log = logging.getLogger("audio_tools")
if not log.handlers:
_h = logging.StreamHandler()
_h.setFormatter(logging.Formatter("[%(levelname)s] %(message)s"))
log.addHandler(_h)
log.setLevel(logging.INFO)
# ------------------------------- Utilities -----------------------------------
def load_wav(path: str | Path, sr: int = 16000):
"""Load audio as mono float32 at the requested sample rate."""
if HAS_TORCHAUDIO:
wav, in_sr = ta.load(str(path))
if in_sr != sr:
wav = ta.functional.resample(wav, in_sr, sr)
if wav.dim() > 1:
wav = wav.mean(dim=0, keepdim=True)
return wav.squeeze(0).numpy(), sr
import librosa
y, in_sr = sf.read(str(path), dtype="float32", always_2d=False)
if y.ndim > 1:
y = y.mean(axis=1)
if in_sr != sr:
y = librosa.resample(y, orig_sr=in_sr, target_sr=sr)
return y.astype(np.float32), sr
def save_wav(path: str | Path, y, sr: int = 16000):
"""Save mono float32 wav."""
if HAS_TORCHAUDIO:
import torch
wav = torch.from_numpy(np.asarray(y, dtype=np.float32)).unsqueeze(0)
ta.save(str(path), wav, sr)
else:
sf.write(str(path), np.asarray(y, dtype=np.float32), sr)
def extract_audio_ffmpeg(
video_path: str,
audio_out: Path,
sr: int = 16000,
mono: bool = True,
) -> str:
"""Extract audio from video to WAV using ffmpeg."""
audio_out.parent.mkdir(parents=True, exist_ok=True)
cmd = f'ffmpeg -y -i "{video_path}" -vn {"-ac 1" if mono else ""} -ar {sr} -f wav "{audio_out}"'
subprocess.run(
shlex.split(cmd),
check=True,
stdout=subprocess.DEVNULL,
stderr=subprocess.DEVNULL,
)
return str(audio_out)
# ----------------------------------- ASR (REMOTE) -------------------------------------
def transcribe_audio_remote(audio_path: str | Path, cfg: Dict[str, Any]) -> Dict[str, Any]:
"""
Send the audio file to the remote ASR Space `veureu/asr` (Gradio or HTTP).
The remote model is 'faster-whisper-large-v3-ca-3catparla' (Aina).
Returns standardized dict: {'text': str, 'segments': list?}
"""
if not cfg:
cfg = load_yaml("config.yaml")
router = LLMRouter(cfg)
model_name = (cfg.get("models", {}).get("asr") or "whisper-catalan")
params = {
"language": "ca",
"model": "faster-whisper-large-v3-ca-3catparla",
"timestamps": True,
"diarization": False, # diarization stays local
}
result = router.asr_transcribe(str(audio_path), model=model_name, **params)
if isinstance(result, str):
return {"text": result, "segments": []}
if isinstance(result, dict):
if "text" not in result and "transcription" in result:
result["text"] = result["transcription"]
result.setdefault("segments", [])
return result
return {"text": str(result), "segments": []}
# -------------------------------- Diarization --------------------------------
def diarize_audio(
wav_path: str,
base_dir: Path,
clips_folder: str = "clips",
min_segment_duration: float = 20.0,
max_segment_duration: float = 50.0,
hf_token_env: str | None = None,
) -> Tuple[List[str], List[Dict[str, Any]]]:
"""Diarization with pyannote and clip export with pydub."""
from pydub import AudioSegment
audio = AudioSegment.from_wav(wav_path)
duration = len(audio) / 1000.0
pipeline = Pipeline.from_pretrained(
"pyannote/speaker-diarization-3.1",
use_auth_token=(hf_token_env or os.getenv("HF_TOKEN"))
)
diarization = pipeline(wav_path)
clips_dir = (base_dir / clips_folder)
clips_dir.mkdir(parents=True, exist_ok=True)
clip_paths: List[str] = []
segments: List[Dict[str, Any]] = []
spk_map: Dict[str, int] = {}
prev_end = 0.0
for i, (turn, _, speaker) in enumerate(diarization.itertracks(yield_label=True)):
start, end = max(0.0, float(turn.start)), min(duration, float(turn.end))
if start < prev_end:
start = prev_end
if end <= start:
continue
seg_dur = end - start
if seg_dur < min_segment_duration:
continue
if seg_dur > max_segment_duration:
n = int(math.ceil(seg_dur / max_segment_duration))
sub_d = seg_dur / n
for j in range(n):
s = start + j * sub_d
e = min(end, start + (j + 1) * sub_d)
if e <= s:
continue
clip = audio[int(s * 1000):int(e * 1000)]
cp = clips_dir / f"segment_{i:03d}_{j:02d}.wav"
clip.export(cp, format="wav")
if speaker not in spk_map:
spk_map[speaker] = len(spk_map)
segments.append({"start": s, "end": e, "speaker": f"SPEAKER_{spk_map[speaker]:02d}"})
clip_paths.append(str(cp))
prev_end = e
else:
clip = audio[int(start * 1000):int(end * 1000)]
cp = clips_dir / f"segment_{i:03d}.wav"
clip.export(cp, format="wav")
if speaker not in spk_map:
spk_map[speaker] = len(spk_map)
segments.append({"start": start, "end": end, "speaker": f"SPEAKER_{spk_map[speaker]:02d}"})
clip_paths.append(str(cp))
prev_end = end
if not segments:
cp = clips_dir / "segment_000.wav"
audio.export(cp, format="wav")
return [str(cp)], [{"start": 0.0, "end": duration, "speaker": "SPEAKER_00"}]
pairs = sorted(zip(clip_paths, segments), key=lambda x: x[1]["start"])
clip_paths, segments = [p[0] for p in pairs], [p[1] for p in pairs]
return clip_paths, segments
# ------------------------------ Voice embeddings -----------------------------
class VoiceEmbedder:
def __init__(self):
self.model = SpeakerRecognition.from_hparams(
source="speechbrain/spkrec-ecapa-voxceleb",
savedir="pretrained_models/spkrec-ecapa-voxceleb",
)
self.model.eval()
def embed(self, wav_path: str) -> List[float]:
if HAS_TORCHAUDIO:
waveform, sr = ta.load(wav_path)
target_sr = 16000
if sr != target_sr:
waveform = T.Resample(orig_freq=sr, new_freq=target_sr)(waveform)
if waveform.shape[0] > 1:
waveform = waveform.mean(dim=0, keepdim=True)
min_samples = int(0.2 * target_sr)
if waveform.shape[1] < min_samples:
pad = min_samples - waveform.shape[1]
import torch
waveform = torch.cat([waveform, torch.zeros((1, pad))], dim=1)
with torch.no_grad(): # type: ignore
emb = self.model.encode_batch(waveform).squeeze().cpu().numpy().astype(float)
return emb.tolist()
else:
y, sr = load_wav(wav_path, sr=16000)
min_len = int(0.2 * 16000)
if len(y) < min_len:
y = np.pad(y, (0, min_len - len(y)))
import torch
w = torch.from_numpy(y).unsqueeze(0).unsqueeze(0)
with torch.no_grad(): # type: ignore
emb = self.model.encode_batch(w).squeeze().cpu().numpy().astype(float)
return emb.tolist()
def embed_voice_segments(clip_paths: List[str]) -> List[List[float]]:
ve = VoiceEmbedder()
out: List[List[float]] = []
for cp in clip_paths:
try:
out.append(ve.embed(cp))
except Exception as e:
log.warning(f"Embedding error in {cp}: {e}")
out.append([])
return out
# --------------------------- Speaker identification --------------------------
def identify_speakers(
embeddings: List[List[float]],
voice_collection,
cfg: Dict[str, Any],
) -> List[str]:
voice_cfg = cfg.get("voice_processing", {}).get("speaker_identification", {})
if not embeddings or sum(1 for e in embeddings if e) < 2:
return ["SPEAKER_00" for _ in embeddings]
valid = [e for e in embeddings if e and len(e) > 0]
if len(valid) < 2:
return ["SPEAKER_00" for _ in embeddings]
min_clusters = max(1, int(voice_cfg.get("min_speakers", 1)))
max_clusters = min(int(voice_cfg.get("max_speakers", 5)), len(valid) - 1)
if voice_cfg.get("find_optimal_clusters", True) and len(valid) > 2:
best_score, best_k = -1.0, min_clusters
for k in range(min_clusters, max_clusters + 1):
if k >= len(valid):
break
km = KMeans(n_clusters=k, random_state=42, n_init="auto")
labels = km.fit_predict(valid)
if len(set(labels)) > 1:
score = silhouette_score(valid, labels)
if score > best_score:
best_score, best_k = score, k
else:
best_k = min(max_clusters, max(min_clusters, int(voice_cfg.get("num_speakers", 2))))
best_k = max(1, min(best_k, len(valid) - 1))
km = KMeans(n_clusters=best_k, random_state=42, n_init="auto", init="k-means++")
labels = km.fit_predict(np.array(valid))
centers = km.cluster_centers_
cluster_to_name: Dict[int, str] = {}
unknown_counter = 0
for cid in range(best_k):
center = centers[cid].tolist()
name = f"SPEAKER_{cid:02d}"
if voice_collection is not None:
try:
q = voice_collection.query(query_embeddings=[center], n_results=1)
metas = q.get("metadatas", [[]])[0]
dists = q.get("distances", [[]])[0]
thr = voice_cfg.get("distance_threshold")
if dists and thr is not None and dists[0] > thr:
name = f"UNKNOWN_{unknown_counter}"
unknown_counter += 1
voice_collection.add(
embeddings=[center],
metadatas=[{"name": name}],
ids=[f"unk_{cid}_{unknown_counter}"],
)
else:
if metas and isinstance(metas[0], dict):
name = metas[0].get("nombre") or metas[0].get("name") \
or metas[0].get("speaker") or metas[0].get("identity") or name
except Exception as e:
log.warning(f"Voice KNN query failed: {e}")
cluster_to_name[cid] = name
personas: List[str] = []
vi = 0
for emb in embeddings:
if not emb:
personas.append("UNKNOWN")
else:
label = int(labels[vi])
personas.append(cluster_to_name.get(label, f"SPEAKER_{label:02d}"))
vi += 1
return personas
# ----------------------------------- SRT -------------------------------------
def _fmt_srt_time(seconds: float) -> str:
h = int(seconds // 3600)
m = int((seconds % 3600) // 60)
s = int(seconds % 60)
ms = int(round((seconds - int(seconds)) * 1000))
return f"{h:02}:{m:02}:{s:02},{ms:03}"
def generate_srt_from_diarization(
diarization_segments: List[Dict[str, Any]],
transcriptions: List[str],
speakers_per_segment: List[str],
output_srt_path: str,
cfg: Dict[str, Any],
) -> None:
subs = cfg.get("subtitles", {})
max_cpl = int(subs.get("max_chars_per_line", 42))
max_lines = int(subs.get("max_lines_per_cue", 10))
speaker_display = subs.get("speaker_display", "brackets")
items: List[Dict[str, Any]] = []
n = min(len(diarization_segments), len(transcriptions), len(speakers_per_segment))
for i in range(n):
seg = diarization_segments[i]
text = (transcriptions[i] or "").strip()
spk = speakers_per_segment[i]
items.append({"start": float(seg.get("start", 0.0)), "end": float(seg.get("end", 0.0)), "text": text, "speaker": spk})
out = Path(output_srt_path)
out.parent.mkdir(parents=True, exist_ok=True)
with out.open("w", encoding="utf-8-sig") as f:
for i, it in enumerate(items, 1):
text = it["text"]
spk = it["speaker"]
if speaker_display == "brackets" and spk:
text = f"[{spk}]: {text}"
elif speaker_display == "prefix" and spk:
text = f"{spk}: {text}"
words = text.split()
lines: List[str] = []
cur = ""
for w in words:
if len(cur) + len(w) + (1 if cur else 0) <= max_cpl:
cur = (cur + " " + w) if cur else w
else:
lines.append(cur)
cur = w
if len(lines) >= max_lines - 1:
break
if cur and len(lines) < max_lines:
lines.append(cur)
f.write(f"{i}\n{_fmt_srt_time(it['start'])} --> {_fmt_srt_time(it['end'])}\n")
f.write("\n".join(lines) + "\n\n")
# ------------------------------ Orchestrator ---------------------------------
def process_audio_for_video(
video_path: str,
out_dir: Path,
cfg: Dict[str, Any],
voice_collection=None,
) -> Tuple[List[Dict[str, Any]], Optional[str], str]:
"""
Audio pipeline: FFmpeg -> diarization -> remote ASR (full + clips) -> embeddings -> speaker-ID -> SRT.
Returns (audio_segments, srt_path or None, full_transcription_text).
"""
audio_cfg = cfg.get("audio_processing", {})
sr = int(audio_cfg.get("sample_rate", 16000))
fmt = audio_cfg.get("format", "wav")
wav_path = extract_audio_ffmpeg(video_path, out_dir / f"{Path(video_path).stem}.{fmt}", sr=sr)
log.info("Audio extraído")
diar_cfg = audio_cfg.get("diarization", {})
min_dur = float(diar_cfg.get("min_segment_duration", 20.0))
max_dur = float(diar_cfg.get("max_segment_duration", 50.0))
clip_paths, diar_segs = diarize_audio(wav_path, out_dir, "clips", min_dur, max_dur)
log.info("Clips de audio generados.")
full_transcription = ""
asr_section = cfg.get("asr", {})
if asr_section.get("enable_full_transcription", True):
log.info("Transcripción completa (remota, Space 'asr')...")
full_res = transcribe_audio_remote(wav_path, cfg)
full_transcription = full_res.get("text", "") or ""
log.info("Transcripción completa finalizada.")
log.info("Transcripción por clip (remota, Space 'asr')...")
trans: List[str] = []
for cp in clip_paths:
res = transcribe_audio_remote(cp, cfg)
trans.append(res.get("text", ""))
log.info("Se han transcrito todos los clips.")
embeddings = embed_voice_segments(clip_paths) if audio_cfg.get("enable_voice_embeddings", True) else [[] for _ in clip_paths]
if cfg.get("voice_processing", {}).get("speaker_identification", {}).get("enabled", True):
speakers = identify_speakers(embeddings, voice_collection, cfg)
log.info("Speakers identificados correctamente.")
else:
speakers = [seg.get("speaker", f"SPEAKER_{i:02d}") for i, seg in enumerate(diar_segs)]
audio_segments: List[Dict[str, Any]] = []
for i, seg in enumerate(diar_segs):
audio_segments.append(
{
"segment": i,
"start": float(seg.get("start", 0.0)),
"end": float(seg.get("end", 0.0)),
"speaker": speakers[i] if i < len(speakers) else seg.get("speaker", f"SPEAKER_{i:02d}"),
"text": trans[i] if i < len(trans) else "",
"voice_embedding": embeddings[i],
"clip_path": str(out_dir / "clips" / f"segment_{i:03d}.wav"),
"lang": "ca",
"lang_prob": 1.0,
}
)
srt_base_path = out_dir / f"transcripcion_diarizada_{Path(video_path).stem}"
srt_unmodified_path = str(srt_base_path) + "_unmodified.srt"
try:
generate_srt_from_diarization(
diar_segs,
[a["text"] for a in audio_segments],
[a["speaker"] for a in audio_segments],
srt_unmodified_path,
cfg,
)
except Exception as e:
log.warning(f"SRT generation failed: {e}")
srt_unmodified_path = None
return audio_segments, srt_unmodified_path, full_transcription