| from pathlib import Path | |
| from sklearn.cluster import DBSCAN | |
| import numpy as np | |
| import json | |
| class DataHub: | |
| def __init__(self, video_analysis_json_path: str): | |
| print("DataHub inicializando con JSON:", video_analysis_json_path) | |
| self.video = json.loads(Path(video_analysis_json_path).read_text(encoding='utf-8')) | |
| class get_face_clusters: | |
| def __init__(self, data: DataHub): | |
| self.data = data | |
| def get_clusters(self, eps: float, min_samples: int): | |
| caras = self.data.video.get("caras", {}) | |
| embeddings_caras = [] | |
| for cara in caras: | |
| embeddings_caras.append(cara['embeddings']) | |
| X = np.array(embeddings_caras) | |
| clustering = DBSCAN(eps=eps, min_samples=min_samples, metric='euclidean').fit(X) | |
| labels_caras = clustering.labels_ | |
| print(labels_caras) | |
| return labels_caras | |
| class get_voices_clusters: | |
| def __init__(self, data: DataHub): | |
| self.data = data | |
| def get_clusters(self, eps: float, min_samples: int): | |
| voices = self.data.video.get("voices", {}) | |
| embeddings_voices = [] | |
| for voice in voices: | |
| embeddings_voices.append(voice['embeddings']) | |
| X = np.array(embeddings_voices) | |
| clustering = DBSCAN(eps=eps, min_samples=min_samples, metric='euclidean').fit(X) | |
| labels_voices = clustering.labels_ | |
| print(labels_voices) | |
| return labels_voices | |
| class get_scene_clusters: | |
| def __init__(self, data: DataHub): | |
| self.data = data | |
| def get_clusters(self, eps: float, min_samples: int): | |
| scenes = self.data.video.get("escenas", {}) | |
| embeddings_scenes = [] | |
| for scene in scenes: | |
| embeddings_scenes.append(scene['embeddings']) | |
| X = np.array(embeddings_scenes) | |
| clustering = DBSCAN(eps=eps, min_samples=min_samples, metric='euclidean').fit(X) | |
| labels_scenes = clustering.labels_ | |
| print(labels_scenes) | |
| return labels_scenes | |
| video = "dif_catala_1_2" | |
| analysis_path = f"/home/acasado/bsc/proyecto_bsc/{video}/analysis.json" | |
| datahub = DataHub(analysis_path) | |
| face_clusterer = get_face_clusters(datahub) | |
| voice_clusterer = get_voices_clusters(datahub) | |
| scene_clusterer = get_scene_clusters(datahub) | |
| labels_caras = face_clusterer.get_clusters(eps=0.4, min_samples=2) | |
| labels_voces = voice_clusterer.get_clusters(eps=1.3, min_samples=1) | |
| labels_escenas = scene_clusterer.get_clusters(eps=1.3, min_samples=2) |