Update svision_client.py
Browse files- svision_client.py +249 -249
svision_client.py
CHANGED
|
@@ -1,249 +1,249 @@
|
|
| 1 |
-
import os
|
| 2 |
-
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
|
| 3 |
-
|
| 4 |
-
from gradio_client import Client, handle_file
|
| 5 |
-
from typing import Any, Dict, List, Optional, Tuple, Union
|
| 6 |
-
import requests
|
| 7 |
-
import json
|
| 8 |
-
|
| 9 |
-
# Lazy initialization to avoid crash if Space is down at import time
|
| 10 |
-
_svision_client = None
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
def _get_svision_client():
|
| 14 |
-
"""Get or create the svision client (lazy initialization)."""
|
| 15 |
-
global _svision_client
|
| 16 |
-
if _svision_client is None:
|
| 17 |
-
_svision_client = Client("VeuReu/svision")
|
| 18 |
-
return _svision_client
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
def extract_scenes(video_path: str, threshold: float =
|
| 22 |
-
"""
|
| 23 |
-
Call the /scenes_extraction endpoint of the remote Space VeuReu/svision.
|
| 24 |
-
|
| 25 |
-
Parameters
|
| 26 |
-
----------
|
| 27 |
-
video_path : str
|
| 28 |
-
Path to the input video file.
|
| 29 |
-
threshold : float, optional
|
| 30 |
-
Scene change detection threshold; higher values make detection less sensitive.
|
| 31 |
-
offset_frames : int, optional
|
| 32 |
-
Number of frames to include before and after a detected scene boundary.
|
| 33 |
-
crop_ratio : float, optional
|
| 34 |
-
Ratio for cropping borders before performing scene detection.
|
| 35 |
-
|
| 36 |
-
Returns
|
| 37 |
-
-------
|
| 38 |
-
Any
|
| 39 |
-
Response returned by the remote /scenes_extraction endpoint.
|
| 40 |
-
"""
|
| 41 |
-
result = _get_svision_client().predict(
|
| 42 |
-
video_file={"video": handle_file(video_path)},
|
| 43 |
-
threshold=threshold,
|
| 44 |
-
offset_frames=offset_frames,
|
| 45 |
-
crop_ratio=crop_ratio,
|
| 46 |
-
api_name="/scenes_extraction"
|
| 47 |
-
)
|
| 48 |
-
return result
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
def keyframes_every_second_extraction(video_path: str):
|
| 52 |
-
"""
|
| 53 |
-
Call the /keyframes_every_second_extraction endpoint of the remote Space VeuReu/svision.
|
| 54 |
-
|
| 55 |
-
Parameters
|
| 56 |
-
----------
|
| 57 |
-
video_path : str
|
| 58 |
-
Path to the input video file.
|
| 59 |
-
|
| 60 |
-
Returns
|
| 61 |
-
-------
|
| 62 |
-
Any
|
| 63 |
-
Response returned by the remote /keyframes_every_second_extraction endpoint.
|
| 64 |
-
"""
|
| 65 |
-
result = _get_svision_client().predict(
|
| 66 |
-
video_path={"video": handle_file(video_path)},
|
| 67 |
-
api_name="/keyframes_every_second_extraction"
|
| 68 |
-
)
|
| 69 |
-
return result
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
def add_ocr_and_faces(imagen_path: str, informacion_image: Dict[str, Any], face_col: List[Dict[str, Any]]) -> Dict[str, Any]:
|
| 73 |
-
"""
|
| 74 |
-
Call the /add_ocr_and_faces endpoint of the remote Space VeuReu/svision.
|
| 75 |
-
|
| 76 |
-
This function sends an image together with metadata and face collection data
|
| 77 |
-
to perform OCR, face detection, and annotation enhancement.
|
| 78 |
-
|
| 79 |
-
Parameters
|
| 80 |
-
----------
|
| 81 |
-
imagen_path : str
|
| 82 |
-
Path to the input image file.
|
| 83 |
-
informacion_image : Dict[str, Any]
|
| 84 |
-
Dictionary containing image-related metadata.
|
| 85 |
-
face_col : List[Dict[str, Any]]
|
| 86 |
-
List of dictionaries representing detected faces or face metadata.
|
| 87 |
-
|
| 88 |
-
Returns
|
| 89 |
-
-------
|
| 90 |
-
Dict[str, Any]
|
| 91 |
-
Processed output containing OCR results, face detection data, and annotations.
|
| 92 |
-
"""
|
| 93 |
-
informacion_image_str = json.dumps(informacion_image)
|
| 94 |
-
face_col_str = json.dumps(face_col)
|
| 95 |
-
result = _get_svision_client().predict(
|
| 96 |
-
image=handle_file(imagen_path),
|
| 97 |
-
informacion_image=informacion_image_str,
|
| 98 |
-
face_col=face_col_str,
|
| 99 |
-
api_name="/add_ocr_and_faces"
|
| 100 |
-
)
|
| 101 |
-
return result
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
def extract_descripcion_escena(imagen_path: str) -> str:
|
| 105 |
-
"""
|
| 106 |
-
Call the /describe_images endpoint of the remote Space VeuReu/svision.
|
| 107 |
-
|
| 108 |
-
This function sends an image to receive a textual description of its visual content.
|
| 109 |
-
|
| 110 |
-
Parameters
|
| 111 |
-
----------
|
| 112 |
-
imagen_path : str
|
| 113 |
-
Path to the input image file.
|
| 114 |
-
|
| 115 |
-
Returns
|
| 116 |
-
-------
|
| 117 |
-
str
|
| 118 |
-
Description generated for the given image.
|
| 119 |
-
"""
|
| 120 |
-
result = _get_svision_client().predict(
|
| 121 |
-
images=[{"image": handle_file(imagen_path)}],
|
| 122 |
-
api_name="/describe_images"
|
| 123 |
-
)
|
| 124 |
-
return result
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
def _extract_path_from_gradio_file(file_obj) -> Optional[str]:
|
| 128 |
-
"""Extract file path from Gradio file object (can be dict, str, tuple, or other).
|
| 129 |
-
|
| 130 |
-
Gradio Gallery returns different formats depending on version:
|
| 131 |
-
- List of tuples: [(path, caption), ...]
|
| 132 |
-
- List of dicts: [{"name": path, "data": None, "is_file": True}, ...]
|
| 133 |
-
- List of FileData: [FileData(path=..., url=...), ...]
|
| 134 |
-
- List of paths: [path, ...]
|
| 135 |
-
"""
|
| 136 |
-
if file_obj is None:
|
| 137 |
-
return None
|
| 138 |
-
|
| 139 |
-
# Handle tuple format: (path, caption)
|
| 140 |
-
if isinstance(file_obj, tuple) and len(file_obj) >= 1:
|
| 141 |
-
return _extract_path_from_gradio_file(file_obj[0])
|
| 142 |
-
|
| 143 |
-
# Handle string path/URL
|
| 144 |
-
if isinstance(file_obj, str):
|
| 145 |
-
return file_obj
|
| 146 |
-
|
| 147 |
-
# Handle dict format: {"path": "...", "url": "...", "name": "..."}
|
| 148 |
-
if isinstance(file_obj, dict):
|
| 149 |
-
return file_obj.get("path") or file_obj.get("url") or file_obj.get("name") or file_obj.get("image")
|
| 150 |
-
|
| 151 |
-
# Handle FileData or similar object with attributes
|
| 152 |
-
if hasattr(file_obj, "path") and file_obj.path:
|
| 153 |
-
return file_obj.path
|
| 154 |
-
if hasattr(file_obj, "url") and file_obj.url:
|
| 155 |
-
return file_obj.url
|
| 156 |
-
if hasattr(file_obj, "name") and file_obj.name:
|
| 157 |
-
return file_obj.name
|
| 158 |
-
|
| 159 |
-
# Last resort: convert to string
|
| 160 |
-
return str(file_obj) if file_obj else None
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
def get_face_embeddings_from_image(image_path: str) -> List[Dict[str, Any]]:
|
| 164 |
-
"""
|
| 165 |
-
Call the /face_image_embedding_casting endpoint to detect faces and get embeddings.
|
| 166 |
-
|
| 167 |
-
This replaces local DeepFace/face_recognition processing by delegating to svision Space.
|
| 168 |
-
|
| 169 |
-
Parameters
|
| 170 |
-
----------
|
| 171 |
-
image_path : str
|
| 172 |
-
Path to the input image file (a video frame).
|
| 173 |
-
|
| 174 |
-
Returns
|
| 175 |
-
-------
|
| 176 |
-
List[Dict[str, Any]]
|
| 177 |
-
List of dicts with 'embedding' (list of floats) and 'face_crop_path' (image path string).
|
| 178 |
-
Returns empty list if no faces detected or on error.
|
| 179 |
-
"""
|
| 180 |
-
try:
|
| 181 |
-
# Returns: (face_crops: list of images/dicts, face_embeddings: list of dicts)
|
| 182 |
-
result = _get_svision_client().predict(
|
| 183 |
-
image=handle_file(image_path),
|
| 184 |
-
api_name="/face_image_embedding_casting"
|
| 185 |
-
)
|
| 186 |
-
|
| 187 |
-
print(f"[svision_client] Raw result type: {type(result)}, len: {len(result) if result else 0}")
|
| 188 |
-
|
| 189 |
-
# result is a tuple: (list of image paths/dicts, list of embedding dicts)
|
| 190 |
-
if result and len(result) >= 2:
|
| 191 |
-
face_crops_raw = result[0] if result[0] else []
|
| 192 |
-
face_embeddings = result[1] if result[1] else []
|
| 193 |
-
|
| 194 |
-
print(f"[svision_client] face_crops_raw type: {type(face_crops_raw)}, len: {len(face_crops_raw) if isinstance(face_crops_raw, list) else 'N/A'}")
|
| 195 |
-
if face_crops_raw and len(face_crops_raw) > 0:
|
| 196 |
-
print(f"[svision_client] First crop type: {type(face_crops_raw[0])}, value: {str(face_crops_raw[0])[:200]}")
|
| 197 |
-
|
| 198 |
-
# Combine into unified structure, extracting paths correctly
|
| 199 |
-
faces = []
|
| 200 |
-
for i, emb_dict in enumerate(face_embeddings):
|
| 201 |
-
# Extract path from Gradio file object (might be dict or string)
|
| 202 |
-
crop_path = None
|
| 203 |
-
if i < len(face_crops_raw):
|
| 204 |
-
raw_crop = face_crops_raw[i]
|
| 205 |
-
crop_path = _extract_path_from_gradio_file(raw_crop)
|
| 206 |
-
if not crop_path:
|
| 207 |
-
print(f"[svision_client] Could not extract path from crop {i}: {type(raw_crop)} = {str(raw_crop)[:100]}")
|
| 208 |
-
|
| 209 |
-
embedding = emb_dict.get("embedding", []) if isinstance(emb_dict, dict) else []
|
| 210 |
-
|
| 211 |
-
faces.append({
|
| 212 |
-
"embedding": embedding,
|
| 213 |
-
"face_crop_path": crop_path,
|
| 214 |
-
"index": emb_dict.get("index", i) if isinstance(emb_dict, dict) else i,
|
| 215 |
-
})
|
| 216 |
-
|
| 217 |
-
print(f"[svision_client] Detected {len(faces)} faces from image")
|
| 218 |
-
return faces
|
| 219 |
-
return []
|
| 220 |
-
except Exception as e:
|
| 221 |
-
print(f"[svision_client] get_face_embeddings_from_image error: {e}")
|
| 222 |
-
import traceback
|
| 223 |
-
traceback.print_exc()
|
| 224 |
-
return []
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
def get_face_embeddings_simple(image_path: str) -> List[List[float]]:
|
| 228 |
-
"""
|
| 229 |
-
Call the /face_image_embedding endpoint to get face embeddings only.
|
| 230 |
-
|
| 231 |
-
Parameters
|
| 232 |
-
----------
|
| 233 |
-
image_path : str
|
| 234 |
-
Path to the input image file.
|
| 235 |
-
|
| 236 |
-
Returns
|
| 237 |
-
-------
|
| 238 |
-
List[List[float]]
|
| 239 |
-
List of embedding vectors (one per detected face).
|
| 240 |
-
"""
|
| 241 |
-
try:
|
| 242 |
-
result = _get_svision_client().predict(
|
| 243 |
-
image=handle_file(image_path),
|
| 244 |
-
api_name="/face_image_embedding"
|
| 245 |
-
)
|
| 246 |
-
return result if result else []
|
| 247 |
-
except Exception as e:
|
| 248 |
-
print(f"[svision_client] get_face_embeddings_simple error: {e}")
|
| 249 |
-
return []
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
|
| 3 |
+
|
| 4 |
+
from gradio_client import Client, handle_file
|
| 5 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
| 6 |
+
import requests
|
| 7 |
+
import json
|
| 8 |
+
|
| 9 |
+
# Lazy initialization to avoid crash if Space is down at import time
|
| 10 |
+
_svision_client = None
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def _get_svision_client():
|
| 14 |
+
"""Get or create the svision client (lazy initialization)."""
|
| 15 |
+
global _svision_client
|
| 16 |
+
if _svision_client is None:
|
| 17 |
+
_svision_client = Client("VeuReu/svision")
|
| 18 |
+
return _svision_client
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def extract_scenes(video_path: str, threshold: float = 240, offset_frames: int = 5, crop_ratio: float = 0.1):
|
| 22 |
+
"""
|
| 23 |
+
Call the /scenes_extraction endpoint of the remote Space VeuReu/svision.
|
| 24 |
+
|
| 25 |
+
Parameters
|
| 26 |
+
----------
|
| 27 |
+
video_path : str
|
| 28 |
+
Path to the input video file.
|
| 29 |
+
threshold : float, optional
|
| 30 |
+
Scene change detection threshold; higher values make detection less sensitive.
|
| 31 |
+
offset_frames : int, optional
|
| 32 |
+
Number of frames to include before and after a detected scene boundary.
|
| 33 |
+
crop_ratio : float, optional
|
| 34 |
+
Ratio for cropping borders before performing scene detection.
|
| 35 |
+
|
| 36 |
+
Returns
|
| 37 |
+
-------
|
| 38 |
+
Any
|
| 39 |
+
Response returned by the remote /scenes_extraction endpoint.
|
| 40 |
+
"""
|
| 41 |
+
result = _get_svision_client().predict(
|
| 42 |
+
video_file={"video": handle_file(video_path)},
|
| 43 |
+
threshold=threshold,
|
| 44 |
+
offset_frames=offset_frames,
|
| 45 |
+
crop_ratio=crop_ratio,
|
| 46 |
+
api_name="/scenes_extraction"
|
| 47 |
+
)
|
| 48 |
+
return result
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
def keyframes_every_second_extraction(video_path: str):
|
| 52 |
+
"""
|
| 53 |
+
Call the /keyframes_every_second_extraction endpoint of the remote Space VeuReu/svision.
|
| 54 |
+
|
| 55 |
+
Parameters
|
| 56 |
+
----------
|
| 57 |
+
video_path : str
|
| 58 |
+
Path to the input video file.
|
| 59 |
+
|
| 60 |
+
Returns
|
| 61 |
+
-------
|
| 62 |
+
Any
|
| 63 |
+
Response returned by the remote /keyframes_every_second_extraction endpoint.
|
| 64 |
+
"""
|
| 65 |
+
result = _get_svision_client().predict(
|
| 66 |
+
video_path={"video": handle_file(video_path)},
|
| 67 |
+
api_name="/keyframes_every_second_extraction"
|
| 68 |
+
)
|
| 69 |
+
return result
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
def add_ocr_and_faces(imagen_path: str, informacion_image: Dict[str, Any], face_col: List[Dict[str, Any]]) -> Dict[str, Any]:
|
| 73 |
+
"""
|
| 74 |
+
Call the /add_ocr_and_faces endpoint of the remote Space VeuReu/svision.
|
| 75 |
+
|
| 76 |
+
This function sends an image together with metadata and face collection data
|
| 77 |
+
to perform OCR, face detection, and annotation enhancement.
|
| 78 |
+
|
| 79 |
+
Parameters
|
| 80 |
+
----------
|
| 81 |
+
imagen_path : str
|
| 82 |
+
Path to the input image file.
|
| 83 |
+
informacion_image : Dict[str, Any]
|
| 84 |
+
Dictionary containing image-related metadata.
|
| 85 |
+
face_col : List[Dict[str, Any]]
|
| 86 |
+
List of dictionaries representing detected faces or face metadata.
|
| 87 |
+
|
| 88 |
+
Returns
|
| 89 |
+
-------
|
| 90 |
+
Dict[str, Any]
|
| 91 |
+
Processed output containing OCR results, face detection data, and annotations.
|
| 92 |
+
"""
|
| 93 |
+
informacion_image_str = json.dumps(informacion_image)
|
| 94 |
+
face_col_str = json.dumps(face_col)
|
| 95 |
+
result = _get_svision_client().predict(
|
| 96 |
+
image=handle_file(imagen_path),
|
| 97 |
+
informacion_image=informacion_image_str,
|
| 98 |
+
face_col=face_col_str,
|
| 99 |
+
api_name="/add_ocr_and_faces"
|
| 100 |
+
)
|
| 101 |
+
return result
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
def extract_descripcion_escena(imagen_path: str) -> str:
|
| 105 |
+
"""
|
| 106 |
+
Call the /describe_images endpoint of the remote Space VeuReu/svision.
|
| 107 |
+
|
| 108 |
+
This function sends an image to receive a textual description of its visual content.
|
| 109 |
+
|
| 110 |
+
Parameters
|
| 111 |
+
----------
|
| 112 |
+
imagen_path : str
|
| 113 |
+
Path to the input image file.
|
| 114 |
+
|
| 115 |
+
Returns
|
| 116 |
+
-------
|
| 117 |
+
str
|
| 118 |
+
Description generated for the given image.
|
| 119 |
+
"""
|
| 120 |
+
result = _get_svision_client().predict(
|
| 121 |
+
images=[{"image": handle_file(imagen_path)}],
|
| 122 |
+
api_name="/describe_images"
|
| 123 |
+
)
|
| 124 |
+
return result
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
def _extract_path_from_gradio_file(file_obj) -> Optional[str]:
|
| 128 |
+
"""Extract file path from Gradio file object (can be dict, str, tuple, or other).
|
| 129 |
+
|
| 130 |
+
Gradio Gallery returns different formats depending on version:
|
| 131 |
+
- List of tuples: [(path, caption), ...]
|
| 132 |
+
- List of dicts: [{"name": path, "data": None, "is_file": True}, ...]
|
| 133 |
+
- List of FileData: [FileData(path=..., url=...), ...]
|
| 134 |
+
- List of paths: [path, ...]
|
| 135 |
+
"""
|
| 136 |
+
if file_obj is None:
|
| 137 |
+
return None
|
| 138 |
+
|
| 139 |
+
# Handle tuple format: (path, caption)
|
| 140 |
+
if isinstance(file_obj, tuple) and len(file_obj) >= 1:
|
| 141 |
+
return _extract_path_from_gradio_file(file_obj[0])
|
| 142 |
+
|
| 143 |
+
# Handle string path/URL
|
| 144 |
+
if isinstance(file_obj, str):
|
| 145 |
+
return file_obj
|
| 146 |
+
|
| 147 |
+
# Handle dict format: {"path": "...", "url": "...", "name": "..."}
|
| 148 |
+
if isinstance(file_obj, dict):
|
| 149 |
+
return file_obj.get("path") or file_obj.get("url") or file_obj.get("name") or file_obj.get("image")
|
| 150 |
+
|
| 151 |
+
# Handle FileData or similar object with attributes
|
| 152 |
+
if hasattr(file_obj, "path") and file_obj.path:
|
| 153 |
+
return file_obj.path
|
| 154 |
+
if hasattr(file_obj, "url") and file_obj.url:
|
| 155 |
+
return file_obj.url
|
| 156 |
+
if hasattr(file_obj, "name") and file_obj.name:
|
| 157 |
+
return file_obj.name
|
| 158 |
+
|
| 159 |
+
# Last resort: convert to string
|
| 160 |
+
return str(file_obj) if file_obj else None
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
def get_face_embeddings_from_image(image_path: str) -> List[Dict[str, Any]]:
|
| 164 |
+
"""
|
| 165 |
+
Call the /face_image_embedding_casting endpoint to detect faces and get embeddings.
|
| 166 |
+
|
| 167 |
+
This replaces local DeepFace/face_recognition processing by delegating to svision Space.
|
| 168 |
+
|
| 169 |
+
Parameters
|
| 170 |
+
----------
|
| 171 |
+
image_path : str
|
| 172 |
+
Path to the input image file (a video frame).
|
| 173 |
+
|
| 174 |
+
Returns
|
| 175 |
+
-------
|
| 176 |
+
List[Dict[str, Any]]
|
| 177 |
+
List of dicts with 'embedding' (list of floats) and 'face_crop_path' (image path string).
|
| 178 |
+
Returns empty list if no faces detected or on error.
|
| 179 |
+
"""
|
| 180 |
+
try:
|
| 181 |
+
# Returns: (face_crops: list of images/dicts, face_embeddings: list of dicts)
|
| 182 |
+
result = _get_svision_client().predict(
|
| 183 |
+
image=handle_file(image_path),
|
| 184 |
+
api_name="/face_image_embedding_casting"
|
| 185 |
+
)
|
| 186 |
+
|
| 187 |
+
print(f"[svision_client] Raw result type: {type(result)}, len: {len(result) if result else 0}")
|
| 188 |
+
|
| 189 |
+
# result is a tuple: (list of image paths/dicts, list of embedding dicts)
|
| 190 |
+
if result and len(result) >= 2:
|
| 191 |
+
face_crops_raw = result[0] if result[0] else []
|
| 192 |
+
face_embeddings = result[1] if result[1] else []
|
| 193 |
+
|
| 194 |
+
print(f"[svision_client] face_crops_raw type: {type(face_crops_raw)}, len: {len(face_crops_raw) if isinstance(face_crops_raw, list) else 'N/A'}")
|
| 195 |
+
if face_crops_raw and len(face_crops_raw) > 0:
|
| 196 |
+
print(f"[svision_client] First crop type: {type(face_crops_raw[0])}, value: {str(face_crops_raw[0])[:200]}")
|
| 197 |
+
|
| 198 |
+
# Combine into unified structure, extracting paths correctly
|
| 199 |
+
faces = []
|
| 200 |
+
for i, emb_dict in enumerate(face_embeddings):
|
| 201 |
+
# Extract path from Gradio file object (might be dict or string)
|
| 202 |
+
crop_path = None
|
| 203 |
+
if i < len(face_crops_raw):
|
| 204 |
+
raw_crop = face_crops_raw[i]
|
| 205 |
+
crop_path = _extract_path_from_gradio_file(raw_crop)
|
| 206 |
+
if not crop_path:
|
| 207 |
+
print(f"[svision_client] Could not extract path from crop {i}: {type(raw_crop)} = {str(raw_crop)[:100]}")
|
| 208 |
+
|
| 209 |
+
embedding = emb_dict.get("embedding", []) if isinstance(emb_dict, dict) else []
|
| 210 |
+
|
| 211 |
+
faces.append({
|
| 212 |
+
"embedding": embedding,
|
| 213 |
+
"face_crop_path": crop_path,
|
| 214 |
+
"index": emb_dict.get("index", i) if isinstance(emb_dict, dict) else i,
|
| 215 |
+
})
|
| 216 |
+
|
| 217 |
+
print(f"[svision_client] Detected {len(faces)} faces from image")
|
| 218 |
+
return faces
|
| 219 |
+
return []
|
| 220 |
+
except Exception as e:
|
| 221 |
+
print(f"[svision_client] get_face_embeddings_from_image error: {e}")
|
| 222 |
+
import traceback
|
| 223 |
+
traceback.print_exc()
|
| 224 |
+
return []
|
| 225 |
+
|
| 226 |
+
|
| 227 |
+
def get_face_embeddings_simple(image_path: str) -> List[List[float]]:
|
| 228 |
+
"""
|
| 229 |
+
Call the /face_image_embedding endpoint to get face embeddings only.
|
| 230 |
+
|
| 231 |
+
Parameters
|
| 232 |
+
----------
|
| 233 |
+
image_path : str
|
| 234 |
+
Path to the input image file.
|
| 235 |
+
|
| 236 |
+
Returns
|
| 237 |
+
-------
|
| 238 |
+
List[List[float]]
|
| 239 |
+
List of embedding vectors (one per detected face).
|
| 240 |
+
"""
|
| 241 |
+
try:
|
| 242 |
+
result = _get_svision_client().predict(
|
| 243 |
+
image=handle_file(image_path),
|
| 244 |
+
api_name="/face_image_embedding"
|
| 245 |
+
)
|
| 246 |
+
return result if result else []
|
| 247 |
+
except Exception as e:
|
| 248 |
+
print(f"[svision_client] get_face_embeddings_simple error: {e}")
|
| 249 |
+
return []
|