# audio_tools.py (ASR delegated to remote HF Space "veureu/asr") # ----------------------------------------------------------------------------- # Veureu — AUDIO utilities (orchestrator w/ remote ASR) # - FFmpeg extraction (WAV) # - Diarization (pyannote) [local] # - Voice embeddings (SpeechBrain ECAPA) [local] # - Speaker identification (KMeans + ChromaDB optional) [local] # - ASR: delegated to HF Space `veureu/asr` (faster-whisper-large-v3-ca-3catparla) # - SRT generation # - Orchestrator: process_audio_for_video(...) # ----------------------------------------------------------------------------- from __future__ import annotations import json import logging import math import os import shlex import subprocess from pathlib import Path from typing import List, Dict, Any, Tuple, Optional import numpy as np # Optional torchaudio for I/O and resampling (fallback to soundfile+librosa otherwise) try: import torch import torchaudio as ta import torchaudio.transforms as T HAS_TORCHAUDIO = True # Note: ta.set_audio_backend is deprecated in newer torchaudio versions except Exception: HAS_TORCHAUDIO = False ta = None # type: ignore import soundfile as sf # Pyannote for diarization (local) from pyannote.audio import Pipeline # Speaker embeddings (local) from speechbrain.inference.speaker import SpeakerRecognition # v1.0+ # Clustering from sklearn.cluster import KMeans from sklearn.metrics import silhouette_score # Router to remote Spaces (asr) from llm_router import load_yaml, LLMRouter # -------------------------------- Logging ------------------------------------ log = logging.getLogger("audio_tools") if not log.handlers: _h = logging.StreamHandler() _h.setFormatter(logging.Formatter("[%(levelname)s] %(message)s")) log.addHandler(_h) log.setLevel(logging.INFO) # ------------------------------- Utilities ----------------------------------- def load_wav(path: str | Path, sr: int = 16000): """Load audio as mono float32 at the requested sample rate.""" if HAS_TORCHAUDIO: wav, in_sr = ta.load(str(path)) if in_sr != sr: wav = ta.functional.resample(wav, in_sr, sr) if wav.dim() > 1: wav = wav.mean(dim=0, keepdim=True) return wav.squeeze(0).numpy(), sr import librosa y, in_sr = sf.read(str(path), dtype="float32", always_2d=False) if y.ndim > 1: y = y.mean(axis=1) if in_sr != sr: y = librosa.resample(y, orig_sr=in_sr, target_sr=sr) return y.astype(np.float32), sr def save_wav(path: str | Path, y, sr: int = 16000): """Save mono float32 wav.""" if HAS_TORCHAUDIO: import torch wav = torch.from_numpy(np.asarray(y, dtype=np.float32)).unsqueeze(0) ta.save(str(path), wav, sr) else: sf.write(str(path), np.asarray(y, dtype=np.float32), sr) def extract_audio_ffmpeg( video_path: str, audio_out: Path, sr: int = 16000, mono: bool = True, ) -> str: """Extract audio from video to WAV using ffmpeg.""" audio_out.parent.mkdir(parents=True, exist_ok=True) cmd = f'ffmpeg -y -i "{video_path}" -vn {"-ac 1" if mono else ""} -ar {sr} -f wav "{audio_out}"' subprocess.run( shlex.split(cmd), check=True, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL, ) return str(audio_out) # ----------------------------------- ASR (REMOTE) ------------------------------------- def transcribe_audio_remote(audio_path: str | Path, cfg: Dict[str, Any]) -> Dict[str, Any]: """ Send the audio file to the remote ASR Space `veureu/asr` (Gradio or HTTP). The remote model is 'faster-whisper-large-v3-ca-3catparla' (Aina). Returns standardized dict: {'text': str, 'segments': list?} """ if not cfg: cfg = load_yaml("config.yaml") router = LLMRouter(cfg) model_name = (cfg.get("models", {}).get("asr") or "whisper-catalan") params = { "language": "ca", "model": "faster-whisper-large-v3-ca-3catparla", "timestamps": True, "diarization": False, # diarization stays local } result = router.asr_transcribe(str(audio_path), model=model_name, **params) if isinstance(result, str): return {"text": result, "segments": []} if isinstance(result, dict): if "text" not in result and "transcription" in result: result["text"] = result["transcription"] result.setdefault("segments", []) return result return {"text": str(result), "segments": []} # -------------------------------- Diarization -------------------------------- def diarize_audio( wav_path: str, base_dir: Path, clips_folder: str = "clips", min_segment_duration: float = 20.0, max_segment_duration: float = 50.0, hf_token_env: str | None = None, ) -> Tuple[List[str], List[Dict[str, Any]]]: """Diarization with pyannote and clip export with pydub.""" from pydub import AudioSegment audio = AudioSegment.from_wav(wav_path) duration = len(audio) / 1000.0 pipeline = Pipeline.from_pretrained( "pyannote/speaker-diarization-3.1", use_auth_token=(hf_token_env or os.getenv("HF_TOKEN")) ) diarization = pipeline(wav_path) clips_dir = (base_dir / clips_folder) clips_dir.mkdir(parents=True, exist_ok=True) clip_paths: List[str] = [] segments: List[Dict[str, Any]] = [] spk_map: Dict[str, int] = {} prev_end = 0.0 for i, (turn, _, speaker) in enumerate(diarization.itertracks(yield_label=True)): start, end = max(0.0, float(turn.start)), min(duration, float(turn.end)) if start < prev_end: start = prev_end if end <= start: continue seg_dur = end - start if seg_dur < min_segment_duration: continue if seg_dur > max_segment_duration: n = int(math.ceil(seg_dur / max_segment_duration)) sub_d = seg_dur / n for j in range(n): s = start + j * sub_d e = min(end, start + (j + 1) * sub_d) if e <= s: continue clip = audio[int(s * 1000):int(e * 1000)] cp = clips_dir / f"segment_{i:03d}_{j:02d}.wav" clip.export(cp, format="wav") if speaker not in spk_map: spk_map[speaker] = len(spk_map) segments.append({"start": s, "end": e, "speaker": f"SPEAKER_{spk_map[speaker]:02d}"}) clip_paths.append(str(cp)) prev_end = e else: clip = audio[int(start * 1000):int(end * 1000)] cp = clips_dir / f"segment_{i:03d}.wav" clip.export(cp, format="wav") if speaker not in spk_map: spk_map[speaker] = len(spk_map) segments.append({"start": start, "end": end, "speaker": f"SPEAKER_{spk_map[speaker]:02d}"}) clip_paths.append(str(cp)) prev_end = end if not segments: cp = clips_dir / "segment_000.wav" audio.export(cp, format="wav") return [str(cp)], [{"start": 0.0, "end": duration, "speaker": "SPEAKER_00"}] pairs = sorted(zip(clip_paths, segments), key=lambda x: x[1]["start"]) clip_paths, segments = [p[0] for p in pairs], [p[1] for p in pairs] return clip_paths, segments # ------------------------------ Voice embeddings ----------------------------- class VoiceEmbedder: def __init__(self): self.model = SpeakerRecognition.from_hparams( source="speechbrain/spkrec-ecapa-voxceleb", savedir="pretrained_models/spkrec-ecapa-voxceleb", ) self.model.eval() def embed(self, wav_path: str) -> List[float]: if HAS_TORCHAUDIO: waveform, sr = ta.load(wav_path) target_sr = 16000 if sr != target_sr: waveform = T.Resample(orig_freq=sr, new_freq=target_sr)(waveform) if waveform.shape[0] > 1: waveform = waveform.mean(dim=0, keepdim=True) min_samples = int(0.2 * target_sr) if waveform.shape[1] < min_samples: pad = min_samples - waveform.shape[1] import torch waveform = torch.cat([waveform, torch.zeros((1, pad))], dim=1) with torch.no_grad(): # type: ignore emb = self.model.encode_batch(waveform).squeeze().cpu().numpy().astype(float) return emb.tolist() else: y, sr = load_wav(wav_path, sr=16000) min_len = int(0.2 * 16000) if len(y) < min_len: y = np.pad(y, (0, min_len - len(y))) import torch w = torch.from_numpy(y).unsqueeze(0).unsqueeze(0) with torch.no_grad(): # type: ignore emb = self.model.encode_batch(w).squeeze().cpu().numpy().astype(float) return emb.tolist() def embed_voice_segments(clip_paths: List[str]) -> List[List[float]]: ve = VoiceEmbedder() out: List[List[float]] = [] for cp in clip_paths: try: out.append(ve.embed(cp)) except Exception as e: log.warning(f"Embedding error in {cp}: {e}") out.append([]) return out # --------------------------- Speaker identification -------------------------- def identify_speakers( embeddings: List[List[float]], voice_collection, cfg: Dict[str, Any], ) -> List[str]: voice_cfg = cfg.get("voice_processing", {}).get("speaker_identification", {}) if not embeddings or sum(1 for e in embeddings if e) < 2: return ["SPEAKER_00" for _ in embeddings] valid = [e for e in embeddings if e and len(e) > 0] if len(valid) < 2: return ["SPEAKER_00" for _ in embeddings] min_clusters = max(1, int(voice_cfg.get("min_speakers", 1))) max_clusters = min(int(voice_cfg.get("max_speakers", 5)), len(valid) - 1) if voice_cfg.get("find_optimal_clusters", True) and len(valid) > 2: best_score, best_k = -1.0, min_clusters for k in range(min_clusters, max_clusters + 1): if k >= len(valid): break km = KMeans(n_clusters=k, random_state=42, n_init="auto") labels = km.fit_predict(valid) if len(set(labels)) > 1: score = silhouette_score(valid, labels) if score > best_score: best_score, best_k = score, k else: best_k = min(max_clusters, max(min_clusters, int(voice_cfg.get("num_speakers", 2)))) best_k = max(1, min(best_k, len(valid) - 1)) km = KMeans(n_clusters=best_k, random_state=42, n_init="auto", init="k-means++") labels = km.fit_predict(np.array(valid)) centers = km.cluster_centers_ cluster_to_name: Dict[int, str] = {} unknown_counter = 0 for cid in range(best_k): center = centers[cid].tolist() name = f"SPEAKER_{cid:02d}" if voice_collection is not None: try: q = voice_collection.query(query_embeddings=[center], n_results=1) metas = q.get("metadatas", [[]])[0] dists = q.get("distances", [[]])[0] thr = voice_cfg.get("distance_threshold") if dists and thr is not None and dists[0] > thr: name = f"UNKNOWN_{unknown_counter}" unknown_counter += 1 voice_collection.add( embeddings=[center], metadatas=[{"name": name}], ids=[f"unk_{cid}_{unknown_counter}"], ) else: if metas and isinstance(metas[0], dict): name = metas[0].get("nombre") or metas[0].get("name") \ or metas[0].get("speaker") or metas[0].get("identity") or name except Exception as e: log.warning(f"Voice KNN query failed: {e}") cluster_to_name[cid] = name personas: List[str] = [] vi = 0 for emb in embeddings: if not emb: personas.append("UNKNOWN") else: label = int(labels[vi]) personas.append(cluster_to_name.get(label, f"SPEAKER_{label:02d}")) vi += 1 return personas # ----------------------------------- SRT ------------------------------------- def _fmt_srt_time(seconds: float) -> str: h = int(seconds // 3600) m = int((seconds % 3600) // 60) s = int(seconds % 60) ms = int(round((seconds - int(seconds)) * 1000)) return f"{h:02}:{m:02}:{s:02},{ms:03}" def generate_srt_from_diarization( diarization_segments: List[Dict[str, Any]], transcriptions: List[str], speakers_per_segment: List[str], output_srt_path: str, cfg: Dict[str, Any], ) -> None: subs = cfg.get("subtitles", {}) max_cpl = int(subs.get("max_chars_per_line", 42)) max_lines = int(subs.get("max_lines_per_cue", 10)) speaker_display = subs.get("speaker_display", "brackets") items: List[Dict[str, Any]] = [] n = min(len(diarization_segments), len(transcriptions), len(speakers_per_segment)) for i in range(n): seg = diarization_segments[i] text = (transcriptions[i] or "").strip() spk = speakers_per_segment[i] items.append({"start": float(seg.get("start", 0.0)), "end": float(seg.get("end", 0.0)), "text": text, "speaker": spk}) out = Path(output_srt_path) out.parent.mkdir(parents=True, exist_ok=True) with out.open("w", encoding="utf-8-sig") as f: for i, it in enumerate(items, 1): text = it["text"] spk = it["speaker"] if speaker_display == "brackets" and spk: text = f"[{spk}]: {text}" elif speaker_display == "prefix" and spk: text = f"{spk}: {text}" words = text.split() lines: List[str] = [] cur = "" for w in words: if len(cur) + len(w) + (1 if cur else 0) <= max_cpl: cur = (cur + " " + w) if cur else w else: lines.append(cur) cur = w if len(lines) >= max_lines - 1: break if cur and len(lines) < max_lines: lines.append(cur) f.write(f"{i}\n{_fmt_srt_time(it['start'])} --> {_fmt_srt_time(it['end'])}\n") f.write("\n".join(lines) + "\n\n") # ------------------------------ Orchestrator --------------------------------- def process_audio_for_video( video_path: str, out_dir: Path, cfg: Dict[str, Any], voice_collection=None, ) -> Tuple[List[Dict[str, Any]], Optional[str], str]: """ Audio pipeline: FFmpeg -> diarization -> remote ASR (full + clips) -> embeddings -> speaker-ID -> SRT. Returns (audio_segments, srt_path or None, full_transcription_text). """ audio_cfg = cfg.get("audio_processing", {}) sr = int(audio_cfg.get("sample_rate", 16000)) fmt = audio_cfg.get("format", "wav") wav_path = extract_audio_ffmpeg(video_path, out_dir / f"{Path(video_path).stem}.{fmt}", sr=sr) log.info("Audio extraído") diar_cfg = audio_cfg.get("diarization", {}) min_dur = float(diar_cfg.get("min_segment_duration", 20.0)) max_dur = float(diar_cfg.get("max_segment_duration", 50.0)) clip_paths, diar_segs = diarize_audio(wav_path, out_dir, "clips", min_dur, max_dur) log.info("Clips de audio generados.") full_transcription = "" asr_section = cfg.get("asr", {}) if asr_section.get("enable_full_transcription", True): log.info("Transcripción completa (remota, Space 'asr')...") full_res = transcribe_audio_remote(wav_path, cfg) full_transcription = full_res.get("text", "") or "" log.info("Transcripción completa finalizada.") log.info("Transcripción por clip (remota, Space 'asr')...") trans: List[str] = [] for cp in clip_paths: res = transcribe_audio_remote(cp, cfg) trans.append(res.get("text", "")) log.info("Se han transcrito todos los clips.") embeddings = embed_voice_segments(clip_paths) if audio_cfg.get("enable_voice_embeddings", True) else [[] for _ in clip_paths] if cfg.get("voice_processing", {}).get("speaker_identification", {}).get("enabled", True): speakers = identify_speakers(embeddings, voice_collection, cfg) log.info("Speakers identificados correctamente.") else: speakers = [seg.get("speaker", f"SPEAKER_{i:02d}") for i, seg in enumerate(diar_segs)] audio_segments: List[Dict[str, Any]] = [] for i, seg in enumerate(diar_segs): audio_segments.append( { "segment": i, "start": float(seg.get("start", 0.0)), "end": float(seg.get("end", 0.0)), "speaker": speakers[i] if i < len(speakers) else seg.get("speaker", f"SPEAKER_{i:02d}"), "text": trans[i] if i < len(trans) else "", "voice_embedding": embeddings[i], "clip_path": str(out_dir / "clips" / f"segment_{i:03d}.wav"), "lang": "ca", "lang_prob": 1.0, } ) srt_base_path = out_dir / f"transcripcion_diarizada_{Path(video_path).stem}" srt_unmodified_path = str(srt_base_path) + "_unmodified.srt" try: generate_srt_from_diarization( diar_segs, [a["text"] for a in audio_segments], [a["speaker"] for a in audio_segments], srt_unmodified_path, cfg, ) except Exception as e: log.warning(f"SRT generation failed: {e}") srt_unmodified_path = None return audio_segments, srt_unmodified_path, full_transcription