# llm_router.py — enruta llamadas a Spaces remotos según config.yaml from __future__ import annotations from typing import Any, Dict, List, Optional from pathlib import Path import os import yaml from remote_clients import InstructClient, VisionClient, ToolsClient, ASRClient import time def load_yaml(path: str) -> Dict[str, Any]: p = Path(path) if not p.exists(): return {} return yaml.safe_load(p.read_text(encoding="utf-8")) or {} class LLMRouter: def __init__(self, cfg: Dict[str, Any]): self.cfg = cfg self.rem = cfg.get("models", {}).get("routing", {}).get("use_remote_for", []) base_user = cfg.get("remote_spaces", {}).get("user", "veureu") eps = cfg.get("remote_spaces", {}).get("endpoints", {}) token_enabled = cfg.get("security", {}).get("use_hf_token", False) hf_token = os.getenv(cfg.get("security", {}).get("hf_token_env", "HF_TOKEN")) if token_enabled else None def mk_factory(endpoint_key: str, cls): info = eps.get(endpoint_key, {}) base_url = info.get("base_url") or f"https://{base_user}-{info.get('space')}.hf.space" use_gradio = (info.get("client", "gradio") == "gradio") timeout = int(cfg.get("remote_spaces", {}).get("http", {}).get("timeout_seconds", 180)) def _factory(): return cls(base_url=base_url, use_gradio=use_gradio, hf_token=hf_token, timeout=timeout) return _factory self.client_factories = { "salamandra-instruct": mk_factory("salamandra-instruct", InstructClient), "salamandra-vision": mk_factory("salamandra-vision", VisionClient), "salamandra-tools": mk_factory("salamandra-tools", ToolsClient), "whisper-catalan": mk_factory("whisper-catalan", ASRClient), } self.service_names = { "salamandra-instruct": "schat", "salamandra-vision": "svision", "salamandra-tools": "stools", "whisper-catalan": "asr", } def _log_connect(self, model_key: str, phase: str, elapsed: float | None = None): svc = self.service_names.get(model_key, model_key) if phase == "connect": print(f"[LLMRouter] Connecting to {svc} space...") elif phase == "done": print(f"[LLMRouter] Response from {svc} space received in {elapsed:.2f} s") # ---- INSTRUCT ---- def instruct(self, prompt: str, system: Optional[str] = None, model: str = "salamandra-instruct", **kwargs) -> str: if model in self.rem: self._log_connect(model, "connect") t0 = time.time() client = self.client_factories[model]() out = client.generate(prompt, system=system, **kwargs) # type: ignore self._log_connect(model, "done", time.time() - t0) return out raise RuntimeError(f"Modelo local no implementado para: {model}") # ---- VISION ---- def vision_describe(self, image_paths: List[str], context: Optional[Dict[str, Any]] = None, model: str = "salamandra-vision", **kwargs) -> List[str]: if model in self.rem: self._log_connect(model, "connect") t0 = time.time() client = self.client_factories[model]() out = client.describe(image_paths, context=context, **kwargs) # type: ignore self._log_connect(model, "done", time.time() - t0) return out raise RuntimeError(f"Modelo local no implementado para: {model}") # ---- TOOLS ---- def chat_with_tools(self, messages: List[Dict[str, str]], tools: Optional[List[Dict[str, Any]]] = None, model: str = "salamandra-tools", **kwargs) -> Dict[str, Any]: if model in self.rem: self._log_connect(model, "connect") t0 = time.time() client = self.client_factories[model]() out = client.chat(messages, tools=tools, **kwargs) # type: ignore self._log_connect(model, "done", time.time() - t0) return out raise RuntimeError(f"Modelo local no implementado para: {model}") # ---- ASR ---- def asr_transcribe(self, audio_path: str, model: str = "whisper-catalan", **kwargs) -> Dict[str, Any]: if model in self.rem: self._log_connect(model, "connect") t0 = time.time() client = self.client_factories[model]() out = client.transcribe(audio_path, **kwargs) # type: ignore self._log_connect(model, "done", time.time() - t0) return out raise RuntimeError(f"Modelo local no implementado para: {model}")