Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from openai import OpenAI | |
| import os | |
| # OpenRouter Client 設定 | |
| client = OpenAI( | |
| base_url="https://openrouter.ai/api/v1", | |
| api_key=os.getenv("OPENROUTER_API_KEY"), | |
| ) | |
| # 自訂知識庫(key = 主題關鍵字, value = 資料內容) | |
| knowledge_base = { | |
| "午餐": "我們學校提供兩輪午餐時間。第一輪是12:15-12:45,第二輪是12:45-13:15。菜單每週更新,可在校網查閱。", | |
| "課外活動": "我們的課外活動包括足球、籃球、辯論、機械人編程等,活動時間是放學後 3:30 至 5:00。", | |
| "圖書館": "圖書館平日開放時間為早上8:30至下午4:30。借書需使用學生證,每次最多借3本,期限為兩週。", | |
| "校車": "校車每日早上7:30從主要地鐵站出發,下午放學後15分鐘內發車,請準時到指定上車地點。", | |
| } | |
| # 根據輸入問題比對知識庫,回傳對應資料串成 prompt | |
| def search_kb(question: str) -> str: | |
| matched_info = [] | |
| for keyword, content in knowledge_base.items(): | |
| if keyword in question: | |
| matched_info.append(f"{keyword}:{content}") | |
| if matched_info: | |
| return "以下是你可能需要的學校資料:\n" + "\n".join(matched_info) | |
| else: | |
| return "找不到相關資料,請直接由 Chatbot 回答。" | |
| # Chatbot 回覆邏輯:將知識庫資訊加入 system prompt | |
| def chatbot_reply(user_input, history=None): | |
| kb_prompt = search_kb(user_input) | |
| try: | |
| response = client.chat.completions.create( | |
| model="mistralai/mistral-small-3.1-24b-instruct:free", | |
| messages=[ | |
| { | |
| "role": "system", | |
| "content": f"你是一位校園小老師,根據以下學校資料回答問題:\n{kb_prompt}" | |
| }, | |
| { | |
| "role": "user", | |
| "content": user_input | |
| } | |
| ], | |
| extra_headers={ | |
| "HTTP-Referer": "https://your-education-workshop.com", | |
| "X-Title": "AI Chatbot with Knowledge Base", | |
| }, | |
| max_tokens=300 | |
| ) | |
| reply = response.choices[0].message.content | |
| return reply.strip() | |
| except Exception as e: | |
| return f"發生錯誤:{str(e)}" | |
| # Gradio Web Chat App | |
| gr.ChatInterface( | |
| fn=chatbot_reply, | |
| title="校園小老師 Chatbot (知識庫版)", | |
| description="請輸入關於學校生活的問題(如:課外活動、午餐、圖書館、校車),AI 小老師會回答你!", | |
| theme="soft" | |
| ).launch() |