Spaces:
Running
on
T4
Running
on
T4
Commit
·
e289681
0
Parent(s):
fresh start
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +25 -0
- .gitignore +177 -0
- Dockerfile +76 -0
- LICENSE +674 -0
- README.md +4 -0
- __init__.py +0 -0
- app.py +656 -0
- app/AppLayout.py +291 -0
- app/DataProcessor/DataProcessor.py +25 -0
- app/DataProcessor/ImageProcessor.py +23 -0
- app/DataProcessor/MultiImageProcessor.py +23 -0
- app/DataProcessor/PointCloudProcessor.py +44 -0
- app/DataProcessor/SingleImageProcessor.py +14 -0
- app/DataProcessor/TxtProcessor.py +5 -0
- app/DataProcessor/__init__.py +14 -0
- app/GeneratingMethod/ConditionedGenerating.py +246 -0
- app/GeneratingMethod/UnconditionedGenerating.py +138 -0
- app/GeneratingMethod/__init__.py +4 -0
- app/ModelBuilder.py +126 -0
- app/ModelDirector/MVRDirector.py +18 -0
- app/ModelDirector/ModelDirector.py +55 -0
- app/ModelDirector/PointCloudDirector.py +12 -0
- app/ModelDirector/SVRDirector.py +12 -0
- app/ModelDirector/SketchDirector.py +12 -0
- app/ModelDirector/TextDirector.py +12 -0
- app/ModelDirector/__init__.py +8 -0
- app/__init__.py +3 -0
- app/inference.py +65 -0
- construct_brep.py +431 -0
- environment.yml +10 -0
- eval/__init__.py +0 -0
- eval/check_data_deduplicate.py +247 -0
- eval/check_deduplicate_dis.py +317 -0
- eval/check_valid.py +159 -0
- eval/eval_brepgen.py +409 -0
- eval/eval_complexity.py +194 -0
- eval/eval_cond.sh +13 -0
- eval/eval_condition.py +479 -0
- eval/eval_lfd.sh +11 -0
- eval/eval_pc_set.py +44 -0
- eval/eval_uncond.sh +15 -0
- eval/eval_unique_novel.py +395 -0
- eval/eval_validity.py +81 -0
- eval/lfd/evaluation_scripts/README.md +75 -0
- eval/lfd/evaluation_scripts/compute_lfd.py +137 -0
- eval/lfd/evaluation_scripts/compute_lfd_check_data.py +193 -0
- eval/lfd/evaluation_scripts/compute_lfd_feat/compute_lfd_feat_multiprocess.py +158 -0
- eval/lfd/evaluation_scripts/compute_lfd_feat/dummy-1920x1080.conf +25 -0
- eval/lfd/evaluation_scripts/compute_lfd_feat/lfd_me.py +133 -0
- eval/lfd/evaluation_scripts/lfd_all_compute/lfd.py +123 -0
.gitattributes
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
app/examples/mvr.png filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
app/examples/pc_examples/00052336/pc.ply filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
app/examples/pc_examples/00052336/pc.png filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
app/examples/pc_examples/00058704/pc.ply filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
app/examples/pc_examples/00058704/pc.png filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
app/examples/pc_examples/00181288/pc.ply filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
app/examples/pc_examples/00181288/pc.png filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
app/examples/pc_examples/00200380/pc.ply filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
app/examples/pc_examples/00200380/pc.png filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
app/examples/pc_examples/00268284/pc.ply filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
app/examples/pc_examples/00268284/pc.png filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
app/examples/pc_examples/00352224/pc.ply filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
app/examples/pc_examples/00352224/pc.png filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
app/examples/pc_examples/00423708/pc.ply filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
app/examples/pc_examples/00423708/pc.png filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
app/examples/pc_examples/00471383/pc.ply filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
app/examples/pc_examples/00471383/pc.png filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
app/examples/pc_examples/00480992/pc.ply filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
app/examples/pc_examples/00480992/pc.png filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
app/examples/pc_examples/00518919/pc.ply filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
app/examples/pc_examples/00518919/pc.png filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
app/examples/pc_examples/00773954/pc.ply filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
app/examples/pc_examples/00773954/pc.png filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
app/examples/pc_examples/00847353/pc.ply filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
app/examples/pc_examples/00847353/pc.png filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
|
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Byte-compiled / optimized / DLL files
|
| 2 |
+
__pycache__/
|
| 3 |
+
*.py[cod]
|
| 4 |
+
*$py.class
|
| 5 |
+
|
| 6 |
+
# C extensions
|
| 7 |
+
*.so
|
| 8 |
+
|
| 9 |
+
# Distribution / packaging
|
| 10 |
+
.Python
|
| 11 |
+
build/
|
| 12 |
+
develop-eggs/
|
| 13 |
+
dist/
|
| 14 |
+
downloads/
|
| 15 |
+
eggs/
|
| 16 |
+
.eggs/
|
| 17 |
+
lib/
|
| 18 |
+
lib64/
|
| 19 |
+
parts/
|
| 20 |
+
sdist/
|
| 21 |
+
var/
|
| 22 |
+
wheels/
|
| 23 |
+
share/python-wheels/
|
| 24 |
+
*.egg-info/
|
| 25 |
+
.installed.cfg
|
| 26 |
+
*.egg
|
| 27 |
+
MANIFEST
|
| 28 |
+
|
| 29 |
+
# PyInstaller
|
| 30 |
+
# Usually these files are written by a python script from a template
|
| 31 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
| 32 |
+
*.manifest
|
| 33 |
+
*.spec
|
| 34 |
+
|
| 35 |
+
# Installer logs
|
| 36 |
+
pip-log.txt
|
| 37 |
+
pip-delete-this-directory.txt
|
| 38 |
+
|
| 39 |
+
# Unit test / coverage reports
|
| 40 |
+
htmlcov/
|
| 41 |
+
.tox/
|
| 42 |
+
.nox/
|
| 43 |
+
.coverage
|
| 44 |
+
.coverage.*
|
| 45 |
+
.cache
|
| 46 |
+
nosetests.xml
|
| 47 |
+
coverage.xml
|
| 48 |
+
*.cover
|
| 49 |
+
*.py,cover
|
| 50 |
+
.hypothesis/
|
| 51 |
+
.pytest_cache/
|
| 52 |
+
cover/
|
| 53 |
+
|
| 54 |
+
# Translations
|
| 55 |
+
*.mo
|
| 56 |
+
*.pot
|
| 57 |
+
|
| 58 |
+
# Django stuff:
|
| 59 |
+
*.log
|
| 60 |
+
local_settings.py
|
| 61 |
+
db.sqlite3
|
| 62 |
+
db.sqlite3-journal
|
| 63 |
+
|
| 64 |
+
# Flask stuff:
|
| 65 |
+
instance/
|
| 66 |
+
.webassets-cache
|
| 67 |
+
|
| 68 |
+
# Scrapy stuff:
|
| 69 |
+
.scrapy
|
| 70 |
+
|
| 71 |
+
# Sphinx documentation
|
| 72 |
+
docs/_build/
|
| 73 |
+
|
| 74 |
+
# PyBuilder
|
| 75 |
+
.pybuilder/
|
| 76 |
+
target/
|
| 77 |
+
|
| 78 |
+
# Jupyter Notebook
|
| 79 |
+
.ipynb_checkpoints
|
| 80 |
+
|
| 81 |
+
# IPython
|
| 82 |
+
profile_default/
|
| 83 |
+
ipython_config.py
|
| 84 |
+
|
| 85 |
+
# pyenv
|
| 86 |
+
# For a library or package, you might want to ignore these files since the code is
|
| 87 |
+
# intended to run in multiple environments; otherwise, check them in:
|
| 88 |
+
# .python-version
|
| 89 |
+
|
| 90 |
+
# pipenv
|
| 91 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
| 92 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
| 93 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
| 94 |
+
# install all needed dependencies.
|
| 95 |
+
#Pipfile.lock
|
| 96 |
+
|
| 97 |
+
# UV
|
| 98 |
+
# Similar to Pipfile.lock, it is generally recommended to include uv.lock in version control.
|
| 99 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
| 100 |
+
# commonly ignored for libraries.
|
| 101 |
+
#uv.lock
|
| 102 |
+
|
| 103 |
+
# poetry
|
| 104 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
| 105 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
| 106 |
+
# commonly ignored for libraries.
|
| 107 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
| 108 |
+
#poetry.lock
|
| 109 |
+
|
| 110 |
+
# pdm
|
| 111 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
| 112 |
+
#pdm.lock
|
| 113 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
| 114 |
+
# in version control.
|
| 115 |
+
# https://pdm.fming.dev/latest/usage/project/#working-with-version-control
|
| 116 |
+
.pdm.toml
|
| 117 |
+
.pdm-python
|
| 118 |
+
.pdm-build/
|
| 119 |
+
|
| 120 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
| 121 |
+
__pypackages__/
|
| 122 |
+
|
| 123 |
+
# Celery stuff
|
| 124 |
+
celerybeat-schedule
|
| 125 |
+
celerybeat.pid
|
| 126 |
+
|
| 127 |
+
# SageMath parsed files
|
| 128 |
+
*.sage.py
|
| 129 |
+
|
| 130 |
+
# Environments
|
| 131 |
+
.env
|
| 132 |
+
.venv
|
| 133 |
+
env/
|
| 134 |
+
venv/
|
| 135 |
+
ENV/
|
| 136 |
+
env.bak/
|
| 137 |
+
venv.bak/
|
| 138 |
+
|
| 139 |
+
# Spyder project settings
|
| 140 |
+
.spyderproject
|
| 141 |
+
.spyproject
|
| 142 |
+
|
| 143 |
+
# Rope project settings
|
| 144 |
+
.ropeproject
|
| 145 |
+
|
| 146 |
+
# mkdocs documentation
|
| 147 |
+
/site
|
| 148 |
+
|
| 149 |
+
# mypy
|
| 150 |
+
.mypy_cache/
|
| 151 |
+
.dmypy.json
|
| 152 |
+
dmypy.json
|
| 153 |
+
|
| 154 |
+
# Pyre type checker
|
| 155 |
+
.pyre/
|
| 156 |
+
|
| 157 |
+
# pytype static type analyzer
|
| 158 |
+
.pytype/
|
| 159 |
+
|
| 160 |
+
# Cython debug symbols
|
| 161 |
+
cython_debug/
|
| 162 |
+
|
| 163 |
+
# PyCharm
|
| 164 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
| 165 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
| 166 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
| 167 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
| 168 |
+
#.idea/
|
| 169 |
+
|
| 170 |
+
# Ruff stuff:
|
| 171 |
+
.ruff_cache/
|
| 172 |
+
|
| 173 |
+
# PyPI configuration file
|
| 174 |
+
.pypirc
|
| 175 |
+
.gradio
|
| 176 |
+
outputs/
|
| 177 |
+
.vscode
|
Dockerfile
ADDED
|
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM nvidia/cuda:12.4.1-cudnn-devel-ubuntu22.04
|
| 2 |
+
|
| 3 |
+
ENV DEBIAN_FRONTEND=noninteractive
|
| 4 |
+
|
| 5 |
+
ENV FORCE_CUDA="1"
|
| 6 |
+
ENV CUDA_HOME="/usr/local/cuda-12.4"
|
| 7 |
+
ARG TORCH_CUDA_ARCH_LIST="7.5+PTX"
|
| 8 |
+
ENV LD_LIBRARY_PATH="${CUDA_HOME}/lib64:${LD_LIBRARY_PATH}"
|
| 9 |
+
ENV PATH="/usr/local/cuda/bin:/usr/local/cuda-12/bin:${CUDA_HOME}/bin:${PATH}"
|
| 10 |
+
ENV HF_HOME="/data/.huggingface"
|
| 11 |
+
|
| 12 |
+
###########################
|
| 13 |
+
# Prepare the environment #
|
| 14 |
+
###########################
|
| 15 |
+
WORKDIR /code
|
| 16 |
+
|
| 17 |
+
RUN apt-get update && apt-get install -y \
|
| 18 |
+
wget \
|
| 19 |
+
bzip2 \
|
| 20 |
+
ca-certificates \
|
| 21 |
+
curl \
|
| 22 |
+
libglib2.0-0 \
|
| 23 |
+
libx11-6 \
|
| 24 |
+
git \
|
| 25 |
+
vim \
|
| 26 |
+
cmake \
|
| 27 |
+
make \
|
| 28 |
+
g++-9 \
|
| 29 |
+
libgl-dev \
|
| 30 |
+
freeglut3 \
|
| 31 |
+
freeglut3-dev \
|
| 32 |
+
libosmesa6-dev \
|
| 33 |
+
libglu1-mesa-dev \
|
| 34 |
+
libglu1-mesa \
|
| 35 |
+
xserver-xorg-video-dummy \
|
| 36 |
+
&& rm -rf /var/lib/apt/lists/*
|
| 37 |
+
|
| 38 |
+
RUN wget https://repo.anaconda.com/miniconda/Miniconda3-py310_24.5.0-0-Linux-x86_64.sh -O /tmp/miniconda.sh \
|
| 39 |
+
&& bash /tmp/miniconda.sh -b -p /opt/conda \
|
| 40 |
+
&& rm /tmp/miniconda.sh
|
| 41 |
+
|
| 42 |
+
ENV PATH="/opt/conda/bin:${PATH}"
|
| 43 |
+
COPY ./environment.yml /code/environment.yml
|
| 44 |
+
COPY ./pointnet2_ops_lib /code/pointnet2_ops_lib
|
| 45 |
+
|
| 46 |
+
RUN conda env create -f environment.yml
|
| 47 |
+
|
| 48 |
+
COPY ./requirements.txt /code/requirements.txt
|
| 49 |
+
|
| 50 |
+
SHELL ["/bin/bash", "-c"]
|
| 51 |
+
RUN source activate HoLa-Brep && \
|
| 52 |
+
export CUDA_HOME=/usr/local/cuda-12.4 && \
|
| 53 |
+
export FORCE_CUDA=1 && \
|
| 54 |
+
python -m pip install --no-cache-dir torch==2.4.1 torchvision==0.19.1 torchaudio==2.4.1 --index-url https://download.pytorch.org/whl/cu124
|
| 55 |
+
|
| 56 |
+
RUN conda list -n HoLa-Brep | grep pytorch
|
| 57 |
+
|
| 58 |
+
RUN source activate HoLa-Brep && \
|
| 59 |
+
export CUDA_HOME=/usr/local/cuda-12.4 && \
|
| 60 |
+
export FORCE_CUDA=1 && \
|
| 61 |
+
python -m pip install --no-cache-dir -r /code/requirements.txt
|
| 62 |
+
|
| 63 |
+
###########
|
| 64 |
+
# Run app #
|
| 65 |
+
###########
|
| 66 |
+
RUN useradd -m -u 1000 user
|
| 67 |
+
USER user
|
| 68 |
+
ENV HOME="/home/user"
|
| 69 |
+
ENV PYTHONPATH="/home/user/HoLa-Brep:/data:${PYTHONPATH}"
|
| 70 |
+
EXPOSE 7860
|
| 71 |
+
ENV GRADIO_SERVER_NAME="0.0.0.0"
|
| 72 |
+
WORKDIR ${HOME}/HoLa-Brep
|
| 73 |
+
|
| 74 |
+
COPY --chown=user . ${HOME}/HoLa-Brep
|
| 75 |
+
|
| 76 |
+
CMD ["/bin/bash", "-c", "source activate HoLa-Brep && python app.py"]
|
LICENSE
ADDED
|
@@ -0,0 +1,674 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
GNU GENERAL PUBLIC LICENSE
|
| 2 |
+
Version 3, 29 June 2007
|
| 3 |
+
|
| 4 |
+
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
|
| 5 |
+
Everyone is permitted to copy and distribute verbatim copies
|
| 6 |
+
of this license document, but changing it is not allowed.
|
| 7 |
+
|
| 8 |
+
Preamble
|
| 9 |
+
|
| 10 |
+
The GNU General Public License is a free, copyleft license for
|
| 11 |
+
software and other kinds of works.
|
| 12 |
+
|
| 13 |
+
The licenses for most software and other practical works are designed
|
| 14 |
+
to take away your freedom to share and change the works. By contrast,
|
| 15 |
+
the GNU General Public License is intended to guarantee your freedom to
|
| 16 |
+
share and change all versions of a program--to make sure it remains free
|
| 17 |
+
software for all its users. We, the Free Software Foundation, use the
|
| 18 |
+
GNU General Public License for most of our software; it applies also to
|
| 19 |
+
any other work released this way by its authors. You can apply it to
|
| 20 |
+
your programs, too.
|
| 21 |
+
|
| 22 |
+
When we speak of free software, we are referring to freedom, not
|
| 23 |
+
price. Our General Public Licenses are designed to make sure that you
|
| 24 |
+
have the freedom to distribute copies of free software (and charge for
|
| 25 |
+
them if you wish), that you receive source code or can get it if you
|
| 26 |
+
want it, that you can change the software or use pieces of it in new
|
| 27 |
+
free programs, and that you know you can do these things.
|
| 28 |
+
|
| 29 |
+
To protect your rights, we need to prevent others from denying you
|
| 30 |
+
these rights or asking you to surrender the rights. Therefore, you have
|
| 31 |
+
certain responsibilities if you distribute copies of the software, or if
|
| 32 |
+
you modify it: responsibilities to respect the freedom of others.
|
| 33 |
+
|
| 34 |
+
For example, if you distribute copies of such a program, whether
|
| 35 |
+
gratis or for a fee, you must pass on to the recipients the same
|
| 36 |
+
freedoms that you received. You must make sure that they, too, receive
|
| 37 |
+
or can get the source code. And you must show them these terms so they
|
| 38 |
+
know their rights.
|
| 39 |
+
|
| 40 |
+
Developers that use the GNU GPL protect your rights with two steps:
|
| 41 |
+
(1) assert copyright on the software, and (2) offer you this License
|
| 42 |
+
giving you legal permission to copy, distribute and/or modify it.
|
| 43 |
+
|
| 44 |
+
For the developers' and authors' protection, the GPL clearly explains
|
| 45 |
+
that there is no warranty for this free software. For both users' and
|
| 46 |
+
authors' sake, the GPL requires that modified versions be marked as
|
| 47 |
+
changed, so that their problems will not be attributed erroneously to
|
| 48 |
+
authors of previous versions.
|
| 49 |
+
|
| 50 |
+
Some devices are designed to deny users access to install or run
|
| 51 |
+
modified versions of the software inside them, although the manufacturer
|
| 52 |
+
can do so. This is fundamentally incompatible with the aim of
|
| 53 |
+
protecting users' freedom to change the software. The systematic
|
| 54 |
+
pattern of such abuse occurs in the area of products for individuals to
|
| 55 |
+
use, which is precisely where it is most unacceptable. Therefore, we
|
| 56 |
+
have designed this version of the GPL to prohibit the practice for those
|
| 57 |
+
products. If such problems arise substantially in other domains, we
|
| 58 |
+
stand ready to extend this provision to those domains in future versions
|
| 59 |
+
of the GPL, as needed to protect the freedom of users.
|
| 60 |
+
|
| 61 |
+
Finally, every program is threatened constantly by software patents.
|
| 62 |
+
States should not allow patents to restrict development and use of
|
| 63 |
+
software on general-purpose computers, but in those that do, we wish to
|
| 64 |
+
avoid the special danger that patents applied to a free program could
|
| 65 |
+
make it effectively proprietary. To prevent this, the GPL assures that
|
| 66 |
+
patents cannot be used to render the program non-free.
|
| 67 |
+
|
| 68 |
+
The precise terms and conditions for copying, distribution and
|
| 69 |
+
modification follow.
|
| 70 |
+
|
| 71 |
+
TERMS AND CONDITIONS
|
| 72 |
+
|
| 73 |
+
0. Definitions.
|
| 74 |
+
|
| 75 |
+
"This License" refers to version 3 of the GNU General Public License.
|
| 76 |
+
|
| 77 |
+
"Copyright" also means copyright-like laws that apply to other kinds of
|
| 78 |
+
works, such as semiconductor masks.
|
| 79 |
+
|
| 80 |
+
"The Program" refers to any copyrightable work licensed under this
|
| 81 |
+
License. Each licensee is addressed as "you". "Licensees" and
|
| 82 |
+
"recipients" may be individuals or organizations.
|
| 83 |
+
|
| 84 |
+
To "modify" a work means to copy from or adapt all or part of the work
|
| 85 |
+
in a fashion requiring copyright permission, other than the making of an
|
| 86 |
+
exact copy. The resulting work is called a "modified version" of the
|
| 87 |
+
earlier work or a work "based on" the earlier work.
|
| 88 |
+
|
| 89 |
+
A "covered work" means either the unmodified Program or a work based
|
| 90 |
+
on the Program.
|
| 91 |
+
|
| 92 |
+
To "propagate" a work means to do anything with it that, without
|
| 93 |
+
permission, would make you directly or secondarily liable for
|
| 94 |
+
infringement under applicable copyright law, except executing it on a
|
| 95 |
+
computer or modifying a private copy. Propagation includes copying,
|
| 96 |
+
distribution (with or without modification), making available to the
|
| 97 |
+
public, and in some countries other activities as well.
|
| 98 |
+
|
| 99 |
+
To "convey" a work means any kind of propagation that enables other
|
| 100 |
+
parties to make or receive copies. Mere interaction with a user through
|
| 101 |
+
a computer network, with no transfer of a copy, is not conveying.
|
| 102 |
+
|
| 103 |
+
An interactive user interface displays "Appropriate Legal Notices"
|
| 104 |
+
to the extent that it includes a convenient and prominently visible
|
| 105 |
+
feature that (1) displays an appropriate copyright notice, and (2)
|
| 106 |
+
tells the user that there is no warranty for the work (except to the
|
| 107 |
+
extent that warranties are provided), that licensees may convey the
|
| 108 |
+
work under this License, and how to view a copy of this License. If
|
| 109 |
+
the interface presents a list of user commands or options, such as a
|
| 110 |
+
menu, a prominent item in the list meets this criterion.
|
| 111 |
+
|
| 112 |
+
1. Source Code.
|
| 113 |
+
|
| 114 |
+
The "source code" for a work means the preferred form of the work
|
| 115 |
+
for making modifications to it. "Object code" means any non-source
|
| 116 |
+
form of a work.
|
| 117 |
+
|
| 118 |
+
A "Standard Interface" means an interface that either is an official
|
| 119 |
+
standard defined by a recognized standards body, or, in the case of
|
| 120 |
+
interfaces specified for a particular programming language, one that
|
| 121 |
+
is widely used among developers working in that language.
|
| 122 |
+
|
| 123 |
+
The "System Libraries" of an executable work include anything, other
|
| 124 |
+
than the work as a whole, that (a) is included in the normal form of
|
| 125 |
+
packaging a Major Component, but which is not part of that Major
|
| 126 |
+
Component, and (b) serves only to enable use of the work with that
|
| 127 |
+
Major Component, or to implement a Standard Interface for which an
|
| 128 |
+
implementation is available to the public in source code form. A
|
| 129 |
+
"Major Component", in this context, means a major essential component
|
| 130 |
+
(kernel, window system, and so on) of the specific operating system
|
| 131 |
+
(if any) on which the executable work runs, or a compiler used to
|
| 132 |
+
produce the work, or an object code interpreter used to run it.
|
| 133 |
+
|
| 134 |
+
The "Corresponding Source" for a work in object code form means all
|
| 135 |
+
the source code needed to generate, install, and (for an executable
|
| 136 |
+
work) run the object code and to modify the work, including scripts to
|
| 137 |
+
control those activities. However, it does not include the work's
|
| 138 |
+
System Libraries, or general-purpose tools or generally available free
|
| 139 |
+
programs which are used unmodified in performing those activities but
|
| 140 |
+
which are not part of the work. For example, Corresponding Source
|
| 141 |
+
includes interface definition files associated with source files for
|
| 142 |
+
the work, and the source code for shared libraries and dynamically
|
| 143 |
+
linked subprograms that the work is specifically designed to require,
|
| 144 |
+
such as by intimate data communication or control flow between those
|
| 145 |
+
subprograms and other parts of the work.
|
| 146 |
+
|
| 147 |
+
The Corresponding Source need not include anything that users
|
| 148 |
+
can regenerate automatically from other parts of the Corresponding
|
| 149 |
+
Source.
|
| 150 |
+
|
| 151 |
+
The Corresponding Source for a work in source code form is that
|
| 152 |
+
same work.
|
| 153 |
+
|
| 154 |
+
2. Basic Permissions.
|
| 155 |
+
|
| 156 |
+
All rights granted under this License are granted for the term of
|
| 157 |
+
copyright on the Program, and are irrevocable provided the stated
|
| 158 |
+
conditions are met. This License explicitly affirms your unlimited
|
| 159 |
+
permission to run the unmodified Program. The output from running a
|
| 160 |
+
covered work is covered by this License only if the output, given its
|
| 161 |
+
content, constitutes a covered work. This License acknowledges your
|
| 162 |
+
rights of fair use or other equivalent, as provided by copyright law.
|
| 163 |
+
|
| 164 |
+
You may make, run and propagate covered works that you do not
|
| 165 |
+
convey, without conditions so long as your license otherwise remains
|
| 166 |
+
in force. You may convey covered works to others for the sole purpose
|
| 167 |
+
of having them make modifications exclusively for you, or provide you
|
| 168 |
+
with facilities for running those works, provided that you comply with
|
| 169 |
+
the terms of this License in conveying all material for which you do
|
| 170 |
+
not control copyright. Those thus making or running the covered works
|
| 171 |
+
for you must do so exclusively on your behalf, under your direction
|
| 172 |
+
and control, on terms that prohibit them from making any copies of
|
| 173 |
+
your copyrighted material outside their relationship with you.
|
| 174 |
+
|
| 175 |
+
Conveying under any other circumstances is permitted solely under
|
| 176 |
+
the conditions stated below. Sublicensing is not allowed; section 10
|
| 177 |
+
makes it unnecessary.
|
| 178 |
+
|
| 179 |
+
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
|
| 180 |
+
|
| 181 |
+
No covered work shall be deemed part of an effective technological
|
| 182 |
+
measure under any applicable law fulfilling obligations under article
|
| 183 |
+
11 of the WIPO copyright treaty adopted on 20 December 1996, or
|
| 184 |
+
similar laws prohibiting or restricting circumvention of such
|
| 185 |
+
measures.
|
| 186 |
+
|
| 187 |
+
When you convey a covered work, you waive any legal power to forbid
|
| 188 |
+
circumvention of technological measures to the extent such circumvention
|
| 189 |
+
is effected by exercising rights under this License with respect to
|
| 190 |
+
the covered work, and you disclaim any intention to limit operation or
|
| 191 |
+
modification of the work as a means of enforcing, against the work's
|
| 192 |
+
users, your or third parties' legal rights to forbid circumvention of
|
| 193 |
+
technological measures.
|
| 194 |
+
|
| 195 |
+
4. Conveying Verbatim Copies.
|
| 196 |
+
|
| 197 |
+
You may convey verbatim copies of the Program's source code as you
|
| 198 |
+
receive it, in any medium, provided that you conspicuously and
|
| 199 |
+
appropriately publish on each copy an appropriate copyright notice;
|
| 200 |
+
keep intact all notices stating that this License and any
|
| 201 |
+
non-permissive terms added in accord with section 7 apply to the code;
|
| 202 |
+
keep intact all notices of the absence of any warranty; and give all
|
| 203 |
+
recipients a copy of this License along with the Program.
|
| 204 |
+
|
| 205 |
+
You may charge any price or no price for each copy that you convey,
|
| 206 |
+
and you may offer support or warranty protection for a fee.
|
| 207 |
+
|
| 208 |
+
5. Conveying Modified Source Versions.
|
| 209 |
+
|
| 210 |
+
You may convey a work based on the Program, or the modifications to
|
| 211 |
+
produce it from the Program, in the form of source code under the
|
| 212 |
+
terms of section 4, provided that you also meet all of these conditions:
|
| 213 |
+
|
| 214 |
+
a) The work must carry prominent notices stating that you modified
|
| 215 |
+
it, and giving a relevant date.
|
| 216 |
+
|
| 217 |
+
b) The work must carry prominent notices stating that it is
|
| 218 |
+
released under this License and any conditions added under section
|
| 219 |
+
7. This requirement modifies the requirement in section 4 to
|
| 220 |
+
"keep intact all notices".
|
| 221 |
+
|
| 222 |
+
c) You must license the entire work, as a whole, under this
|
| 223 |
+
License to anyone who comes into possession of a copy. This
|
| 224 |
+
License will therefore apply, along with any applicable section 7
|
| 225 |
+
additional terms, to the whole of the work, and all its parts,
|
| 226 |
+
regardless of how they are packaged. This License gives no
|
| 227 |
+
permission to license the work in any other way, but it does not
|
| 228 |
+
invalidate such permission if you have separately received it.
|
| 229 |
+
|
| 230 |
+
d) If the work has interactive user interfaces, each must display
|
| 231 |
+
Appropriate Legal Notices; however, if the Program has interactive
|
| 232 |
+
interfaces that do not display Appropriate Legal Notices, your
|
| 233 |
+
work need not make them do so.
|
| 234 |
+
|
| 235 |
+
A compilation of a covered work with other separate and independent
|
| 236 |
+
works, which are not by their nature extensions of the covered work,
|
| 237 |
+
and which are not combined with it such as to form a larger program,
|
| 238 |
+
in or on a volume of a storage or distribution medium, is called an
|
| 239 |
+
"aggregate" if the compilation and its resulting copyright are not
|
| 240 |
+
used to limit the access or legal rights of the compilation's users
|
| 241 |
+
beyond what the individual works permit. Inclusion of a covered work
|
| 242 |
+
in an aggregate does not cause this License to apply to the other
|
| 243 |
+
parts of the aggregate.
|
| 244 |
+
|
| 245 |
+
6. Conveying Non-Source Forms.
|
| 246 |
+
|
| 247 |
+
You may convey a covered work in object code form under the terms
|
| 248 |
+
of sections 4 and 5, provided that you also convey the
|
| 249 |
+
machine-readable Corresponding Source under the terms of this License,
|
| 250 |
+
in one of these ways:
|
| 251 |
+
|
| 252 |
+
a) Convey the object code in, or embodied in, a physical product
|
| 253 |
+
(including a physical distribution medium), accompanied by the
|
| 254 |
+
Corresponding Source fixed on a durable physical medium
|
| 255 |
+
customarily used for software interchange.
|
| 256 |
+
|
| 257 |
+
b) Convey the object code in, or embodied in, a physical product
|
| 258 |
+
(including a physical distribution medium), accompanied by a
|
| 259 |
+
written offer, valid for at least three years and valid for as
|
| 260 |
+
long as you offer spare parts or customer support for that product
|
| 261 |
+
model, to give anyone who possesses the object code either (1) a
|
| 262 |
+
copy of the Corresponding Source for all the software in the
|
| 263 |
+
product that is covered by this License, on a durable physical
|
| 264 |
+
medium customarily used for software interchange, for a price no
|
| 265 |
+
more than your reasonable cost of physically performing this
|
| 266 |
+
conveying of source, or (2) access to copy the
|
| 267 |
+
Corresponding Source from a network server at no charge.
|
| 268 |
+
|
| 269 |
+
c) Convey individual copies of the object code with a copy of the
|
| 270 |
+
written offer to provide the Corresponding Source. This
|
| 271 |
+
alternative is allowed only occasionally and noncommercially, and
|
| 272 |
+
only if you received the object code with such an offer, in accord
|
| 273 |
+
with subsection 6b.
|
| 274 |
+
|
| 275 |
+
d) Convey the object code by offering access from a designated
|
| 276 |
+
place (gratis or for a charge), and offer equivalent access to the
|
| 277 |
+
Corresponding Source in the same way through the same place at no
|
| 278 |
+
further charge. You need not require recipients to copy the
|
| 279 |
+
Corresponding Source along with the object code. If the place to
|
| 280 |
+
copy the object code is a network server, the Corresponding Source
|
| 281 |
+
may be on a different server (operated by you or a third party)
|
| 282 |
+
that supports equivalent copying facilities, provided you maintain
|
| 283 |
+
clear directions next to the object code saying where to find the
|
| 284 |
+
Corresponding Source. Regardless of what server hosts the
|
| 285 |
+
Corresponding Source, you remain obligated to ensure that it is
|
| 286 |
+
available for as long as needed to satisfy these requirements.
|
| 287 |
+
|
| 288 |
+
e) Convey the object code using peer-to-peer transmission, provided
|
| 289 |
+
you inform other peers where the object code and Corresponding
|
| 290 |
+
Source of the work are being offered to the general public at no
|
| 291 |
+
charge under subsection 6d.
|
| 292 |
+
|
| 293 |
+
A separable portion of the object code, whose source code is excluded
|
| 294 |
+
from the Corresponding Source as a System Library, need not be
|
| 295 |
+
included in conveying the object code work.
|
| 296 |
+
|
| 297 |
+
A "User Product" is either (1) a "consumer product", which means any
|
| 298 |
+
tangible personal property which is normally used for personal, family,
|
| 299 |
+
or household purposes, or (2) anything designed or sold for incorporation
|
| 300 |
+
into a dwelling. In determining whether a product is a consumer product,
|
| 301 |
+
doubtful cases shall be resolved in favor of coverage. For a particular
|
| 302 |
+
product received by a particular user, "normally used" refers to a
|
| 303 |
+
typical or common use of that class of product, regardless of the status
|
| 304 |
+
of the particular user or of the way in which the particular user
|
| 305 |
+
actually uses, or expects or is expected to use, the product. A product
|
| 306 |
+
is a consumer product regardless of whether the product has substantial
|
| 307 |
+
commercial, industrial or non-consumer uses, unless such uses represent
|
| 308 |
+
the only significant mode of use of the product.
|
| 309 |
+
|
| 310 |
+
"Installation Information" for a User Product means any methods,
|
| 311 |
+
procedures, authorization keys, or other information required to install
|
| 312 |
+
and execute modified versions of a covered work in that User Product from
|
| 313 |
+
a modified version of its Corresponding Source. The information must
|
| 314 |
+
suffice to ensure that the continued functioning of the modified object
|
| 315 |
+
code is in no case prevented or interfered with solely because
|
| 316 |
+
modification has been made.
|
| 317 |
+
|
| 318 |
+
If you convey an object code work under this section in, or with, or
|
| 319 |
+
specifically for use in, a User Product, and the conveying occurs as
|
| 320 |
+
part of a transaction in which the right of possession and use of the
|
| 321 |
+
User Product is transferred to the recipient in perpetuity or for a
|
| 322 |
+
fixed term (regardless of how the transaction is characterized), the
|
| 323 |
+
Corresponding Source conveyed under this section must be accompanied
|
| 324 |
+
by the Installation Information. But this requirement does not apply
|
| 325 |
+
if neither you nor any third party retains the ability to install
|
| 326 |
+
modified object code on the User Product (for example, the work has
|
| 327 |
+
been installed in ROM).
|
| 328 |
+
|
| 329 |
+
The requirement to provide Installation Information does not include a
|
| 330 |
+
requirement to continue to provide support service, warranty, or updates
|
| 331 |
+
for a work that has been modified or installed by the recipient, or for
|
| 332 |
+
the User Product in which it has been modified or installed. Access to a
|
| 333 |
+
network may be denied when the modification itself materially and
|
| 334 |
+
adversely affects the operation of the network or violates the rules and
|
| 335 |
+
protocols for communication across the network.
|
| 336 |
+
|
| 337 |
+
Corresponding Source conveyed, and Installation Information provided,
|
| 338 |
+
in accord with this section must be in a format that is publicly
|
| 339 |
+
documented (and with an implementation available to the public in
|
| 340 |
+
source code form), and must require no special password or key for
|
| 341 |
+
unpacking, reading or copying.
|
| 342 |
+
|
| 343 |
+
7. Additional Terms.
|
| 344 |
+
|
| 345 |
+
"Additional permissions" are terms that supplement the terms of this
|
| 346 |
+
License by making exceptions from one or more of its conditions.
|
| 347 |
+
Additional permissions that are applicable to the entire Program shall
|
| 348 |
+
be treated as though they were included in this License, to the extent
|
| 349 |
+
that they are valid under applicable law. If additional permissions
|
| 350 |
+
apply only to part of the Program, that part may be used separately
|
| 351 |
+
under those permissions, but the entire Program remains governed by
|
| 352 |
+
this License without regard to the additional permissions.
|
| 353 |
+
|
| 354 |
+
When you convey a copy of a covered work, you may at your option
|
| 355 |
+
remove any additional permissions from that copy, or from any part of
|
| 356 |
+
it. (Additional permissions may be written to require their own
|
| 357 |
+
removal in certain cases when you modify the work.) You may place
|
| 358 |
+
additional permissions on material, added by you to a covered work,
|
| 359 |
+
for which you have or can give appropriate copyright permission.
|
| 360 |
+
|
| 361 |
+
Notwithstanding any other provision of this License, for material you
|
| 362 |
+
add to a covered work, you may (if authorized by the copyright holders of
|
| 363 |
+
that material) supplement the terms of this License with terms:
|
| 364 |
+
|
| 365 |
+
a) Disclaiming warranty or limiting liability differently from the
|
| 366 |
+
terms of sections 15 and 16 of this License; or
|
| 367 |
+
|
| 368 |
+
b) Requiring preservation of specified reasonable legal notices or
|
| 369 |
+
author attributions in that material or in the Appropriate Legal
|
| 370 |
+
Notices displayed by works containing it; or
|
| 371 |
+
|
| 372 |
+
c) Prohibiting misrepresentation of the origin of that material, or
|
| 373 |
+
requiring that modified versions of such material be marked in
|
| 374 |
+
reasonable ways as different from the original version; or
|
| 375 |
+
|
| 376 |
+
d) Limiting the use for publicity purposes of names of licensors or
|
| 377 |
+
authors of the material; or
|
| 378 |
+
|
| 379 |
+
e) Declining to grant rights under trademark law for use of some
|
| 380 |
+
trade names, trademarks, or service marks; or
|
| 381 |
+
|
| 382 |
+
f) Requiring indemnification of licensors and authors of that
|
| 383 |
+
material by anyone who conveys the material (or modified versions of
|
| 384 |
+
it) with contractual assumptions of liability to the recipient, for
|
| 385 |
+
any liability that these contractual assumptions directly impose on
|
| 386 |
+
those licensors and authors.
|
| 387 |
+
|
| 388 |
+
All other non-permissive additional terms are considered "further
|
| 389 |
+
restrictions" within the meaning of section 10. If the Program as you
|
| 390 |
+
received it, or any part of it, contains a notice stating that it is
|
| 391 |
+
governed by this License along with a term that is a further
|
| 392 |
+
restriction, you may remove that term. If a license document contains
|
| 393 |
+
a further restriction but permits relicensing or conveying under this
|
| 394 |
+
License, you may add to a covered work material governed by the terms
|
| 395 |
+
of that license document, provided that the further restriction does
|
| 396 |
+
not survive such relicensing or conveying.
|
| 397 |
+
|
| 398 |
+
If you add terms to a covered work in accord with this section, you
|
| 399 |
+
must place, in the relevant source files, a statement of the
|
| 400 |
+
additional terms that apply to those files, or a notice indicating
|
| 401 |
+
where to find the applicable terms.
|
| 402 |
+
|
| 403 |
+
Additional terms, permissive or non-permissive, may be stated in the
|
| 404 |
+
form of a separately written license, or stated as exceptions;
|
| 405 |
+
the above requirements apply either way.
|
| 406 |
+
|
| 407 |
+
8. Termination.
|
| 408 |
+
|
| 409 |
+
You may not propagate or modify a covered work except as expressly
|
| 410 |
+
provided under this License. Any attempt otherwise to propagate or
|
| 411 |
+
modify it is void, and will automatically terminate your rights under
|
| 412 |
+
this License (including any patent licenses granted under the third
|
| 413 |
+
paragraph of section 11).
|
| 414 |
+
|
| 415 |
+
However, if you cease all violation of this License, then your
|
| 416 |
+
license from a particular copyright holder is reinstated (a)
|
| 417 |
+
provisionally, unless and until the copyright holder explicitly and
|
| 418 |
+
finally terminates your license, and (b) permanently, if the copyright
|
| 419 |
+
holder fails to notify you of the violation by some reasonable means
|
| 420 |
+
prior to 60 days after the cessation.
|
| 421 |
+
|
| 422 |
+
Moreover, your license from a particular copyright holder is
|
| 423 |
+
reinstated permanently if the copyright holder notifies you of the
|
| 424 |
+
violation by some reasonable means, this is the first time you have
|
| 425 |
+
received notice of violation of this License (for any work) from that
|
| 426 |
+
copyright holder, and you cure the violation prior to 30 days after
|
| 427 |
+
your receipt of the notice.
|
| 428 |
+
|
| 429 |
+
Termination of your rights under this section does not terminate the
|
| 430 |
+
licenses of parties who have received copies or rights from you under
|
| 431 |
+
this License. If your rights have been terminated and not permanently
|
| 432 |
+
reinstated, you do not qualify to receive new licenses for the same
|
| 433 |
+
material under section 10.
|
| 434 |
+
|
| 435 |
+
9. Acceptance Not Required for Having Copies.
|
| 436 |
+
|
| 437 |
+
You are not required to accept this License in order to receive or
|
| 438 |
+
run a copy of the Program. Ancillary propagation of a covered work
|
| 439 |
+
occurring solely as a consequence of using peer-to-peer transmission
|
| 440 |
+
to receive a copy likewise does not require acceptance. However,
|
| 441 |
+
nothing other than this License grants you permission to propagate or
|
| 442 |
+
modify any covered work. These actions infringe copyright if you do
|
| 443 |
+
not accept this License. Therefore, by modifying or propagating a
|
| 444 |
+
covered work, you indicate your acceptance of this License to do so.
|
| 445 |
+
|
| 446 |
+
10. Automatic Licensing of Downstream Recipients.
|
| 447 |
+
|
| 448 |
+
Each time you convey a covered work, the recipient automatically
|
| 449 |
+
receives a license from the original licensors, to run, modify and
|
| 450 |
+
propagate that work, subject to this License. You are not responsible
|
| 451 |
+
for enforcing compliance by third parties with this License.
|
| 452 |
+
|
| 453 |
+
An "entity transaction" is a transaction transferring control of an
|
| 454 |
+
organization, or substantially all assets of one, or subdividing an
|
| 455 |
+
organization, or merging organizations. If propagation of a covered
|
| 456 |
+
work results from an entity transaction, each party to that
|
| 457 |
+
transaction who receives a copy of the work also receives whatever
|
| 458 |
+
licenses to the work the party's predecessor in interest had or could
|
| 459 |
+
give under the previous paragraph, plus a right to possession of the
|
| 460 |
+
Corresponding Source of the work from the predecessor in interest, if
|
| 461 |
+
the predecessor has it or can get it with reasonable efforts.
|
| 462 |
+
|
| 463 |
+
You may not impose any further restrictions on the exercise of the
|
| 464 |
+
rights granted or affirmed under this License. For example, you may
|
| 465 |
+
not impose a license fee, royalty, or other charge for exercise of
|
| 466 |
+
rights granted under this License, and you may not initiate litigation
|
| 467 |
+
(including a cross-claim or counterclaim in a lawsuit) alleging that
|
| 468 |
+
any patent claim is infringed by making, using, selling, offering for
|
| 469 |
+
sale, or importing the Program or any portion of it.
|
| 470 |
+
|
| 471 |
+
11. Patents.
|
| 472 |
+
|
| 473 |
+
A "contributor" is a copyright holder who authorizes use under this
|
| 474 |
+
License of the Program or a work on which the Program is based. The
|
| 475 |
+
work thus licensed is called the contributor's "contributor version".
|
| 476 |
+
|
| 477 |
+
A contributor's "essential patent claims" are all patent claims
|
| 478 |
+
owned or controlled by the contributor, whether already acquired or
|
| 479 |
+
hereafter acquired, that would be infringed by some manner, permitted
|
| 480 |
+
by this License, of making, using, or selling its contributor version,
|
| 481 |
+
but do not include claims that would be infringed only as a
|
| 482 |
+
consequence of further modification of the contributor version. For
|
| 483 |
+
purposes of this definition, "control" includes the right to grant
|
| 484 |
+
patent sublicenses in a manner consistent with the requirements of
|
| 485 |
+
this License.
|
| 486 |
+
|
| 487 |
+
Each contributor grants you a non-exclusive, worldwide, royalty-free
|
| 488 |
+
patent license under the contributor's essential patent claims, to
|
| 489 |
+
make, use, sell, offer for sale, import and otherwise run, modify and
|
| 490 |
+
propagate the contents of its contributor version.
|
| 491 |
+
|
| 492 |
+
In the following three paragraphs, a "patent license" is any express
|
| 493 |
+
agreement or commitment, however denominated, not to enforce a patent
|
| 494 |
+
(such as an express permission to practice a patent or covenant not to
|
| 495 |
+
sue for patent infringement). To "grant" such a patent license to a
|
| 496 |
+
party means to make such an agreement or commitment not to enforce a
|
| 497 |
+
patent against the party.
|
| 498 |
+
|
| 499 |
+
If you convey a covered work, knowingly relying on a patent license,
|
| 500 |
+
and the Corresponding Source of the work is not available for anyone
|
| 501 |
+
to copy, free of charge and under the terms of this License, through a
|
| 502 |
+
publicly available network server or other readily accessible means,
|
| 503 |
+
then you must either (1) cause the Corresponding Source to be so
|
| 504 |
+
available, or (2) arrange to deprive yourself of the benefit of the
|
| 505 |
+
patent license for this particular work, or (3) arrange, in a manner
|
| 506 |
+
consistent with the requirements of this License, to extend the patent
|
| 507 |
+
license to downstream recipients. "Knowingly relying" means you have
|
| 508 |
+
actual knowledge that, but for the patent license, your conveying the
|
| 509 |
+
covered work in a country, or your recipient's use of the covered work
|
| 510 |
+
in a country, would infringe one or more identifiable patents in that
|
| 511 |
+
country that you have reason to believe are valid.
|
| 512 |
+
|
| 513 |
+
If, pursuant to or in connection with a single transaction or
|
| 514 |
+
arrangement, you convey, or propagate by procuring conveyance of, a
|
| 515 |
+
covered work, and grant a patent license to some of the parties
|
| 516 |
+
receiving the covered work authorizing them to use, propagate, modify
|
| 517 |
+
or convey a specific copy of the covered work, then the patent license
|
| 518 |
+
you grant is automatically extended to all recipients of the covered
|
| 519 |
+
work and works based on it.
|
| 520 |
+
|
| 521 |
+
A patent license is "discriminatory" if it does not include within
|
| 522 |
+
the scope of its coverage, prohibits the exercise of, or is
|
| 523 |
+
conditioned on the non-exercise of one or more of the rights that are
|
| 524 |
+
specifically granted under this License. You may not convey a covered
|
| 525 |
+
work if you are a party to an arrangement with a third party that is
|
| 526 |
+
in the business of distributing software, under which you make payment
|
| 527 |
+
to the third party based on the extent of your activity of conveying
|
| 528 |
+
the work, and under which the third party grants, to any of the
|
| 529 |
+
parties who would receive the covered work from you, a discriminatory
|
| 530 |
+
patent license (a) in connection with copies of the covered work
|
| 531 |
+
conveyed by you (or copies made from those copies), or (b) primarily
|
| 532 |
+
for and in connection with specific products or compilations that
|
| 533 |
+
contain the covered work, unless you entered into that arrangement,
|
| 534 |
+
or that patent license was granted, prior to 28 March 2007.
|
| 535 |
+
|
| 536 |
+
Nothing in this License shall be construed as excluding or limiting
|
| 537 |
+
any implied license or other defenses to infringement that may
|
| 538 |
+
otherwise be available to you under applicable patent law.
|
| 539 |
+
|
| 540 |
+
12. No Surrender of Others' Freedom.
|
| 541 |
+
|
| 542 |
+
If conditions are imposed on you (whether by court order, agreement or
|
| 543 |
+
otherwise) that contradict the conditions of this License, they do not
|
| 544 |
+
excuse you from the conditions of this License. If you cannot convey a
|
| 545 |
+
covered work so as to satisfy simultaneously your obligations under this
|
| 546 |
+
License and any other pertinent obligations, then as a consequence you may
|
| 547 |
+
not convey it at all. For example, if you agree to terms that obligate you
|
| 548 |
+
to collect a royalty for further conveying from those to whom you convey
|
| 549 |
+
the Program, the only way you could satisfy both those terms and this
|
| 550 |
+
License would be to refrain entirely from conveying the Program.
|
| 551 |
+
|
| 552 |
+
13. Use with the GNU Affero General Public License.
|
| 553 |
+
|
| 554 |
+
Notwithstanding any other provision of this License, you have
|
| 555 |
+
permission to link or combine any covered work with a work licensed
|
| 556 |
+
under version 3 of the GNU Affero General Public License into a single
|
| 557 |
+
combined work, and to convey the resulting work. The terms of this
|
| 558 |
+
License will continue to apply to the part which is the covered work,
|
| 559 |
+
but the special requirements of the GNU Affero General Public License,
|
| 560 |
+
section 13, concerning interaction through a network will apply to the
|
| 561 |
+
combination as such.
|
| 562 |
+
|
| 563 |
+
14. Revised Versions of this License.
|
| 564 |
+
|
| 565 |
+
The Free Software Foundation may publish revised and/or new versions of
|
| 566 |
+
the GNU General Public License from time to time. Such new versions will
|
| 567 |
+
be similar in spirit to the present version, but may differ in detail to
|
| 568 |
+
address new problems or concerns.
|
| 569 |
+
|
| 570 |
+
Each version is given a distinguishing version number. If the
|
| 571 |
+
Program specifies that a certain numbered version of the GNU General
|
| 572 |
+
Public License "or any later version" applies to it, you have the
|
| 573 |
+
option of following the terms and conditions either of that numbered
|
| 574 |
+
version or of any later version published by the Free Software
|
| 575 |
+
Foundation. If the Program does not specify a version number of the
|
| 576 |
+
GNU General Public License, you may choose any version ever published
|
| 577 |
+
by the Free Software Foundation.
|
| 578 |
+
|
| 579 |
+
If the Program specifies that a proxy can decide which future
|
| 580 |
+
versions of the GNU General Public License can be used, that proxy's
|
| 581 |
+
public statement of acceptance of a version permanently authorizes you
|
| 582 |
+
to choose that version for the Program.
|
| 583 |
+
|
| 584 |
+
Later license versions may give you additional or different
|
| 585 |
+
permissions. However, no additional obligations are imposed on any
|
| 586 |
+
author or copyright holder as a result of your choosing to follow a
|
| 587 |
+
later version.
|
| 588 |
+
|
| 589 |
+
15. Disclaimer of Warranty.
|
| 590 |
+
|
| 591 |
+
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
|
| 592 |
+
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
|
| 593 |
+
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
|
| 594 |
+
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
|
| 595 |
+
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
| 596 |
+
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
|
| 597 |
+
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
|
| 598 |
+
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
| 599 |
+
|
| 600 |
+
16. Limitation of Liability.
|
| 601 |
+
|
| 602 |
+
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
| 603 |
+
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
|
| 604 |
+
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
|
| 605 |
+
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
|
| 606 |
+
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
|
| 607 |
+
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
|
| 608 |
+
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
|
| 609 |
+
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
|
| 610 |
+
SUCH DAMAGES.
|
| 611 |
+
|
| 612 |
+
17. Interpretation of Sections 15 and 16.
|
| 613 |
+
|
| 614 |
+
If the disclaimer of warranty and limitation of liability provided
|
| 615 |
+
above cannot be given local legal effect according to their terms,
|
| 616 |
+
reviewing courts shall apply local law that most closely approximates
|
| 617 |
+
an absolute waiver of all civil liability in connection with the
|
| 618 |
+
Program, unless a warranty or assumption of liability accompanies a
|
| 619 |
+
copy of the Program in return for a fee.
|
| 620 |
+
|
| 621 |
+
END OF TERMS AND CONDITIONS
|
| 622 |
+
|
| 623 |
+
How to Apply These Terms to Your New Programs
|
| 624 |
+
|
| 625 |
+
If you develop a new program, and you want it to be of the greatest
|
| 626 |
+
possible use to the public, the best way to achieve this is to make it
|
| 627 |
+
free software which everyone can redistribute and change under these terms.
|
| 628 |
+
|
| 629 |
+
To do so, attach the following notices to the program. It is safest
|
| 630 |
+
to attach them to the start of each source file to most effectively
|
| 631 |
+
state the exclusion of warranty; and each file should have at least
|
| 632 |
+
the "copyright" line and a pointer to where the full notice is found.
|
| 633 |
+
|
| 634 |
+
<one line to give the program's name and a brief idea of what it does.>
|
| 635 |
+
Copyright (C) <year> <name of author>
|
| 636 |
+
|
| 637 |
+
This program is free software: you can redistribute it and/or modify
|
| 638 |
+
it under the terms of the GNU General Public License as published by
|
| 639 |
+
the Free Software Foundation, either version 3 of the License, or
|
| 640 |
+
(at your option) any later version.
|
| 641 |
+
|
| 642 |
+
This program is distributed in the hope that it will be useful,
|
| 643 |
+
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 644 |
+
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 645 |
+
GNU General Public License for more details.
|
| 646 |
+
|
| 647 |
+
You should have received a copy of the GNU General Public License
|
| 648 |
+
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
| 649 |
+
|
| 650 |
+
Also add information on how to contact you by electronic and paper mail.
|
| 651 |
+
|
| 652 |
+
If the program does terminal interaction, make it output a short
|
| 653 |
+
notice like this when it starts in an interactive mode:
|
| 654 |
+
|
| 655 |
+
<program> Copyright (C) <year> <name of author>
|
| 656 |
+
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
|
| 657 |
+
This is free software, and you are welcome to redistribute it
|
| 658 |
+
under certain conditions; type `show c' for details.
|
| 659 |
+
|
| 660 |
+
The hypothetical commands `show w' and `show c' should show the appropriate
|
| 661 |
+
parts of the General Public License. Of course, your program's commands
|
| 662 |
+
might be different; for a GUI interface, you would use an "about box".
|
| 663 |
+
|
| 664 |
+
You should also get your employer (if you work as a programmer) or school,
|
| 665 |
+
if any, to sign a "copyright disclaimer" for the program, if necessary.
|
| 666 |
+
For more information on this, and how to apply and follow the GNU GPL, see
|
| 667 |
+
<https://www.gnu.org/licenses/>.
|
| 668 |
+
|
| 669 |
+
The GNU General Public License does not permit incorporating your program
|
| 670 |
+
into proprietary programs. If your program is a subroutine library, you
|
| 671 |
+
may consider it more useful to permit linking proprietary applications with
|
| 672 |
+
the library. If this is what you want to do, use the GNU Lesser General
|
| 673 |
+
Public License instead of this License. But first, please read
|
| 674 |
+
<https://www.gnu.org/licenses/why-not-lgpl.html>.
|
README.md
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: HoLa-BRep
|
| 3 |
+
sdk: docker
|
| 4 |
+
---
|
__init__.py
ADDED
|
File without changes
|
app.py
ADDED
|
@@ -0,0 +1,656 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#Frontend
|
| 2 |
+
import sys
|
| 3 |
+
import gradio as gr
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
import os
|
| 6 |
+
sys.path.insert(0, "/data")
|
| 7 |
+
from app.AppLayout import *
|
| 8 |
+
from app.GeneratingMethod import *
|
| 9 |
+
from app.ModelDirector import *
|
| 10 |
+
from app.DataProcessor import *
|
| 11 |
+
|
| 12 |
+
os.environ["HF_HOME"] = "/data/.huggingface"
|
| 13 |
+
os.environ["TORCH_HOME"] = "/data/.cache/torch"
|
| 14 |
+
|
| 15 |
+
# Theme
|
| 16 |
+
theme = gr.themes.Soft(
|
| 17 |
+
primary_hue="slate",
|
| 18 |
+
text_size="lg",
|
| 19 |
+
font=['IBM Plex Sans', 'ui-sans-serif', 'system-ui', gr.themes.GoogleFont('sans-serif')],
|
| 20 |
+
).set(
|
| 21 |
+
block_background_fill='*primary_200',
|
| 22 |
+
button_primary_background_fill='*primary_100',
|
| 23 |
+
body_background_fill='*secondary_50',
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
force_light = """
|
| 27 |
+
function refresh() {
|
| 28 |
+
const url = new URL(window.location);
|
| 29 |
+
|
| 30 |
+
if (url.searchParams.get('__theme') !== 'light') {
|
| 31 |
+
url.searchParams.set('__theme', 'light');
|
| 32 |
+
window.location.href = url.href;
|
| 33 |
+
}
|
| 34 |
+
}
|
| 35 |
+
"""
|
| 36 |
+
|
| 37 |
+
# 自定义CSS样式
|
| 38 |
+
custom_css = """
|
| 39 |
+
.gr-tabs.gr-tab-label {
|
| 40 |
+
text-align: center;
|
| 41 |
+
}
|
| 42 |
+
button[role="tab"] {
|
| 43 |
+
font-size: 20px;
|
| 44 |
+
}
|
| 45 |
+
div[role="tablist"] {
|
| 46 |
+
height: var(--size-12);
|
| 47 |
+
}
|
| 48 |
+
|
| 49 |
+
#top-row {
|
| 50 |
+
display: flex;
|
| 51 |
+
justify-content: space-between;
|
| 52 |
+
align-items: center;
|
| 53 |
+
width: 100%;
|
| 54 |
+
}
|
| 55 |
+
#button-group {
|
| 56 |
+
display: flex;
|
| 57 |
+
gap: 10px;
|
| 58 |
+
justify-content: flex-end;
|
| 59 |
+
}
|
| 60 |
+
.small-button {
|
| 61 |
+
max-width: 80px;
|
| 62 |
+
padding: 6px 10px;
|
| 63 |
+
font-size: 14px;
|
| 64 |
+
}
|
| 65 |
+
|
| 66 |
+
@media (min-width: 1024px) {
|
| 67 |
+
div[role="tablist"] {
|
| 68 |
+
/* 电脑端居中 */
|
| 69 |
+
justify-content: center;
|
| 70 |
+
}
|
| 71 |
+
}
|
| 72 |
+
|
| 73 |
+
.tabs {
|
| 74 |
+
margin-top: 20px;
|
| 75 |
+
}
|
| 76 |
+
|
| 77 |
+
div[data-testid="markdown"] span p:not(:first-child) {
|
| 78 |
+
margin-top: unset;
|
| 79 |
+
}
|
| 80 |
+
div[data-testid="markdown"] pre code {
|
| 81 |
+
font-family: 'IBM Plex Sans', 'ui-sans-serif', 'system-ui', 'sans-serif';
|
| 82 |
+
font-size: 14px;
|
| 83 |
+
}
|
| 84 |
+
|
| 85 |
+
/* 媒体查询 */
|
| 86 |
+
@media (max-width: 768px) {
|
| 87 |
+
button[role="tab"] {
|
| 88 |
+
font-size: 15px;
|
| 89 |
+
}
|
| 90 |
+
p.title1 {
|
| 91 |
+
font-size: 46px !important;
|
| 92 |
+
letter-spacing: unset !important;
|
| 93 |
+
}
|
| 94 |
+
p.title2 {
|
| 95 |
+
font-size: 21px !important;
|
| 96 |
+
}
|
| 97 |
+
p.title4 {
|
| 98 |
+
font-size: 16px !important;
|
| 99 |
+
}
|
| 100 |
+
p.title5 {
|
| 101 |
+
font-size: 12px !important;
|
| 102 |
+
}
|
| 103 |
+
}
|
| 104 |
+
|
| 105 |
+
h2.heading {
|
| 106 |
+
font-size: 23px;
|
| 107 |
+
}
|
| 108 |
+
|
| 109 |
+
@media (max-width: 550px) {
|
| 110 |
+
.title3-responsive {
|
| 111 |
+
gap: 0 !important;
|
| 112 |
+
}
|
| 113 |
+
.title3-responsive span:first-child,
|
| 114 |
+
.title3-responsive span:last-child {
|
| 115 |
+
width: 20px !important;
|
| 116 |
+
}
|
| 117 |
+
.title3-responsive span:nth-child(2) {
|
| 118 |
+
padding: 2px 6px !important;
|
| 119 |
+
font-size: 12px;
|
| 120 |
+
}
|
| 121 |
+
}
|
| 122 |
+
|
| 123 |
+
@media (min-width: 551px) and (max-width: 768px) {
|
| 124 |
+
.title3-responsive {
|
| 125 |
+
gap: 0 !important;
|
| 126 |
+
}
|
| 127 |
+
.title3-responsive span:first-child,
|
| 128 |
+
.title3-responsive span:last-child {
|
| 129 |
+
width: 50px !important;
|
| 130 |
+
}
|
| 131 |
+
.title3-responsive span:nth-child(2) {
|
| 132 |
+
font-size: 15px;
|
| 133 |
+
}
|
| 134 |
+
}
|
| 135 |
+
|
| 136 |
+
@media (min-width: 769px) and (max-width: 1024px) {
|
| 137 |
+
.title3-responsive span:first-child,
|
| 138 |
+
.title3-responsive span:last-child {
|
| 139 |
+
width: 70px !important;
|
| 140 |
+
}
|
| 141 |
+
.title3-responsive span:nth-child(2) {
|
| 142 |
+
font-size: 20px;
|
| 143 |
+
}
|
| 144 |
+
}
|
| 145 |
+
|
| 146 |
+
@media (max-width: 768px) {
|
| 147 |
+
.mobile-break {
|
| 148 |
+
display: block;
|
| 149 |
+
}
|
| 150 |
+
}
|
| 151 |
+
@media (min-width: 769px) {
|
| 152 |
+
.mobile-break {
|
| 153 |
+
display: none;
|
| 154 |
+
}
|
| 155 |
+
}
|
| 156 |
+
"""
|
| 157 |
+
|
| 158 |
+
DEMO_NUM = 4
|
| 159 |
+
WIREFRAME_FILE = 0
|
| 160 |
+
SOLID_FILE = 1
|
| 161 |
+
STEP_FILE = 2
|
| 162 |
+
|
| 163 |
+
BACKEND_CONDITION_DICT = {
|
| 164 |
+
'Unconditional': 'uncond',
|
| 165 |
+
'Point Cloud' : 'pc',
|
| 166 |
+
'Text' : 'txt',
|
| 167 |
+
'Sketch' : 'sketch',
|
| 168 |
+
'SVR' : 'single_img',
|
| 169 |
+
'MVR': 'multi_img'
|
| 170 |
+
}
|
| 171 |
+
|
| 172 |
+
# Dynamically registered functions
|
| 173 |
+
def switch_model(user_state: dict, generate_mode: str, model_index: int, offset: int):
|
| 174 |
+
model_index = (model_index + offset) % DEMO_NUM
|
| 175 |
+
generate_mode = BACKEND_CONDITION_DICT[generate_mode]
|
| 176 |
+
# Check if the condition has been generated
|
| 177 |
+
if generate_mode not in user_state.keys():
|
| 178 |
+
return model_index, gr.update(value='empty.obj', label=f'Wireframe{model_index + 1}'), gr.update(value='empty.obj', label=f'Solid{model_index + 1}'), gr.update( value=["app/examples/empty_examples/sample.stl", "app/examples/empty_examples/sample.ply", "app/examples/empty_examples/sample.step"], label=f'Models{model_index + 1}')
|
| 179 |
+
|
| 180 |
+
# Check if model_index exceeds the number of current valid models
|
| 181 |
+
if model_index >= len(user_state[generate_mode]):
|
| 182 |
+
return model_index, gr.update(value='empty.obj', label=f'Wireframe{model_index + 1}'), gr.update(value='empty.obj', label=f'Solid{model_index + 1}'), gr.update( value=["app/examples/empty_examples/sample.stl", "app/examples/empty_examples/sample.ply", "app/examples/empty_examples/sample.step"], label=f'Models{model_index + 1}')
|
| 183 |
+
|
| 184 |
+
wireframe_model = user_state[generate_mode][model_index][WIREFRAME_FILE]
|
| 185 |
+
solid_model = user_state[generate_mode][model_index][SOLID_FILE]
|
| 186 |
+
if not (os.path.exists(wireframe_model) and os.path.exists(solid_model)):
|
| 187 |
+
gr.Warning("The operation is too frequent!", title="Frequent Operation")
|
| 188 |
+
return gr.update(), gr.update(), gr.update(), gr.update()
|
| 189 |
+
return model_index, gr.Model3D(wireframe_model, label=f'Wireframe{model_index + 1}'), gr.Model3D(solid_model, label=f'Solid{model_index + 1}'), gr.Files(user_state[generate_mode][model_index], label=f'Models{model_index + 1}', interactive=False)
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
def set_generating_type(mode):
|
| 193 |
+
return gr.Text(mode, visible=False)
|
| 194 |
+
|
| 195 |
+
def make_Chinese_descriptions():
|
| 196 |
+
return (title_cn,
|
| 197 |
+
description_cn,
|
| 198 |
+
UncondLayout().get_Chinese_note(),
|
| 199 |
+
PCLayout().get_Chinese_note(),
|
| 200 |
+
SketchLayout().get_Chinese_note(),
|
| 201 |
+
TextLayout().get_Chinese_note(),
|
| 202 |
+
SVRLayout().get_Chinese_note(),
|
| 203 |
+
MVRLayout().get_Chinese_note(),
|
| 204 |
+
notification_mvr_cn,
|
| 205 |
+
gr.update(label="无条件"),
|
| 206 |
+
gr.update(label="点云"),
|
| 207 |
+
gr.update(label="草图"),
|
| 208 |
+
gr.update(label="文本"),
|
| 209 |
+
gr.update(label="单视图"),
|
| 210 |
+
gr.update(label="多视图"),
|
| 211 |
+
gr.update(label="多视图输入注意事项:"),
|
| 212 |
+
gr.update(value="生成"),
|
| 213 |
+
gr.update(value="生成"),
|
| 214 |
+
gr.update(value="生成"),
|
| 215 |
+
gr.update(value="生成"),
|
| 216 |
+
gr.update(value="生成"),
|
| 217 |
+
gr.update(value="生成"),
|
| 218 |
+
gr.update(value="上一个"),
|
| 219 |
+
gr.update(value="下一个"),
|
| 220 |
+
gr.update(label="实体"),
|
| 221 |
+
gr.update(label="线框"),
|
| 222 |
+
gr.update(label="下载"),
|
| 223 |
+
citation_cn
|
| 224 |
+
)
|
| 225 |
+
|
| 226 |
+
def make_English_descriptions():
|
| 227 |
+
return (title_en,
|
| 228 |
+
description_en,
|
| 229 |
+
UncondLayout().get_English_note(),
|
| 230 |
+
PCLayout().get_English_note(),
|
| 231 |
+
SketchLayout().get_English_note(),
|
| 232 |
+
TextLayout().get_English_note(),
|
| 233 |
+
SVRLayout().get_English_note(),
|
| 234 |
+
MVRLayout().get_English_note(),
|
| 235 |
+
notification_mvr_en,
|
| 236 |
+
gr.update(label="Unconditional"),
|
| 237 |
+
gr.update(label="Point Cloud"),
|
| 238 |
+
gr.update(label="Sketch"),
|
| 239 |
+
gr.update(label="Text"),
|
| 240 |
+
gr.update(label="SVR"),
|
| 241 |
+
gr.update(label="MVR"),
|
| 242 |
+
gr.update(label="MVR input notification:"),
|
| 243 |
+
gr.update(value="generate"),
|
| 244 |
+
gr.update(value="generate"),
|
| 245 |
+
gr.update(value="generate"),
|
| 246 |
+
gr.update(value="generate"),
|
| 247 |
+
gr.update(value="generate"),
|
| 248 |
+
gr.update(value="generate"),
|
| 249 |
+
gr.update(value="Last"),
|
| 250 |
+
gr.update(value="Next"),
|
| 251 |
+
gr.update(label="Solid"),
|
| 252 |
+
gr.update(label="Wireframe"),
|
| 253 |
+
gr.update(label="Download"),
|
| 254 |
+
citation_en
|
| 255 |
+
)
|
| 256 |
+
|
| 257 |
+
# Declarations for pre-rendering
|
| 258 |
+
model_solid = gr.Model3D(label=f'Solid1', value='empty.obj', key="Solid")
|
| 259 |
+
model_wireframe = gr.Model3D(label=f'Wireframe1', value='empty.obj', key="Wireframe")
|
| 260 |
+
step_file = gr.File(label=f'Step', file_count='single', file_types=['.step'], interactive=False, visible=False)
|
| 261 |
+
download_files = gr.Files(label=f"Models1", value=["app/examples/empty_examples/sample.stl", "app/examples/empty_examples/sample.ply", "app/examples/empty_examples/sample.step"], interactive=False, key="Downloads")
|
| 262 |
+
|
| 263 |
+
input_tab = gr.Tabs()
|
| 264 |
+
|
| 265 |
+
generating_type = gr.Text("Unconditional",visible=False)
|
| 266 |
+
|
| 267 |
+
title_en = gr.Markdown(
|
| 268 |
+
"""
|
| 269 |
+
<h1 style='display: block; position: relative; text-align: center; text-rendering: optimizelegibility;'>
|
| 270 |
+
<p class='title1' style='font-size: 100px; text-align: center;'>
|
| 271 |
+
HoLa-BRep
|
| 272 |
+
</p>
|
| 273 |
+
<p class='title2' style='font-size: 32px; text-align: center;'>
|
| 274 |
+
HoLa: B-Rep Generation using a Holistic Latent Representation
|
| 275 |
+
</p>
|
| 276 |
+
<p class='title3-responsive' style='font-size: 22px; text-align: center; display: flex; align-items: center; justify-content: center; gap: 12px; flex-wrap: nowrap;'>
|
| 277 |
+
<span style="width: 100px; height: 1px; background-color: #999;"></span>
|
| 278 |
+
<span style="color: #3b3891; padding: 4px 8px; border-radius: 8px; font-weight: bold;">
|
| 279 |
+
ACM Trans. on Graphics (SIGGRAPH) 2025
|
| 280 |
+
</span>
|
| 281 |
+
<span style="width: 100px; height: 1px; background-color: #999;"></span>
|
| 282 |
+
</p>
|
| 283 |
+
<p class='title4' style='font-size: 20px; text-align: center;'>
|
| 284 |
+
Yilin Liu, Duoteng Xu, Xingyao Yu, Xiang Xu, Daniel Cohen-Or, Hao Zhang, Hui Huang*
|
| 285 |
+
</p>
|
| 286 |
+
<p class='title5' style='font-size: 20px; text-align: center;'>
|
| 287 |
+
(Visual Computing Research Center, Shenzhen University)
|
| 288 |
+
</p>
|
| 289 |
+
</h1>
|
| 290 |
+
"""
|
| 291 |
+
)
|
| 292 |
+
title_cn = gr.Markdown(
|
| 293 |
+
"""
|
| 294 |
+
<h1 style='display: block; position: relative; text-align: center; text-rendering: optimizelegibility;'>
|
| 295 |
+
<p class='title1' style='font-size: 100px; text-align: center;'>
|
| 296 |
+
HoLa-BRep
|
| 297 |
+
</p>
|
| 298 |
+
<p class='title2' style='font-size: 32px; text-align: center;'>
|
| 299 |
+
HoLa: B-Rep Generation using a Holistic Latent Representation
|
| 300 |
+
</p>
|
| 301 |
+
<p class='title3-responsive' style='font-size: 22px; text-align: center; display: flex; align-items: center; justify-content: center; gap: 12px; flex-wrap: nowrap;'>
|
| 302 |
+
<span style="width: 100px; height: 1px; background-color: #999;"></span>
|
| 303 |
+
<span style="color: #3b3891; padding: 4px 8px; border-radius: 8px; font-weight: bold;">
|
| 304 |
+
ACM Trans. on Graphics (SIGGRAPH) 2025
|
| 305 |
+
</span>
|
| 306 |
+
<span style="width: 100px; height: 1px; background-color: #999;"></span>
|
| 307 |
+
</p>
|
| 308 |
+
<p class='title4' style='font-size: 20px; text-align: center;'>
|
| 309 |
+
<span>刘奕林, 许铎腾, 余星耀, 徐翔, </span>
|
| 310 |
+
<br class="mobile-break">
|
| 311 |
+
<span>Daniel Cohen-Or, 张皓, 黄惠*</span>
|
| 312 |
+
</p>
|
| 313 |
+
<p class='title5' style='font-size: 20px; text-align: center;'>
|
| 314 |
+
(深圳大学可视计算研究中心)
|
| 315 |
+
</p>
|
| 316 |
+
</h1>
|
| 317 |
+
"""
|
| 318 |
+
)
|
| 319 |
+
|
| 320 |
+
description_en = gr.Markdown(
|
| 321 |
+
"""
|
| 322 |
+
# <h2 class='heading'>What is HoLa-BRep?</h2>
|
| 323 |
+
HoLa-BRep is a generative model that produces CAD models in boundary representation (BRep) based on various conditions, including point cloud, single-view image, multi-view images, single-view sketch or text description.
|
| 324 |
+
It contains **1 unified** BRep variational encoder (VAE) to encode a BRep model's topological and geometric information into a holistic latent space, and a latent diffusion model (LDM) to generate such latent from multiple modalities.
|
| 325 |
+
Compared with the state-of-the-art method, HoLa-BRep only has 1 unified VAE and the corresponding latent space and 1 LDM for generation, so it is easier to train the model without any inter-dependency of the model. This is extremely useful when incorporating more modalities and even mix-modality training.
|
| 326 |
+
|
| 327 |
+
# <h2 class='heading'>How to use it?</h2>
|
| 328 |
+
+ Please refer to the example below for more details. You can select the desired **modality** below and upload your own data.
|
| 329 |
+
+ We generate **4** plausible BRep models for each input(**about 3 minutes**) and visualize them in the 3D viewer.
|
| 330 |
+
+ Try to explore the generated BRep models by rotating, zooming, and panning the 3D viewer, or **download** either the wireframe, surface mesh, or solid BRep model as OBJ or STEP files.
|
| 331 |
+
|
| 332 |
+
# <h2 class='heading'>Project page</h2>
|
| 333 |
+
+ https://vcc.tech/research/2025/HolaBRep
|
| 334 |
+
"""
|
| 335 |
+
)
|
| 336 |
+
description_cn = gr.Markdown(
|
| 337 |
+
"""
|
| 338 |
+
# <h2 class='heading'>HoLa-BRep是什么?</h2>
|
| 339 |
+
HoLa-BRep 是一个多模态CAD生成模型,它支持输入点云、单视角图像、多视角图像、单视角草图或文本描述等多种模态条件,生成边界表示 (BRep) 的 CAD 模型。
|
| 340 |
+
它包含**1个统一**的 BRep变分自编码器 (VAE),可将 BRep 模型的拓扑和几何信息编码到一个结构化的低维隐空间,以及一个隐式扩散模型(LDM)用于从多种模态生成这种BRep结构化嵌入。
|
| 341 |
+
与目前国内外领先技术相比,HoLa-BRep 只有1个 自编码器和1个扩散模型的特性极大地减少了训练的复杂程度并且利于向更大规模的训练拓展。同时这种单个结构化隐空间的设计模式也解决了现有方法多个模型相互依赖复杂的问题。在结合更多模态甚至混合模态训练时能显著提升训练效率。
|
| 342 |
+
|
| 343 |
+
# <h2 class='heading'>如何使用?</h2>
|
| 344 |
+
+ 请参考下面的示例。您可以在下面选择所需的**模式**并上传自己的数据。
|
| 345 |
+
+ 我们会为每个输入生成 4 个可选的 BRep 模型(**大约3分钟**),并在 3D 查看器中可视化。
|
| 346 |
+
+ 你可以通过旋转、缩放和平移等操作查看生成的 BRep 模型,也可以将线框、曲面网格或实体 BRep 模型下载为 OBJ 或 STEP 文件。
|
| 347 |
+
|
| 348 |
+
# <h2 class='heading'>项目主页</h2>
|
| 349 |
+
+ https://vcc.tech/research/2025/HolaBRep
|
| 350 |
+
"""
|
| 351 |
+
)
|
| 352 |
+
|
| 353 |
+
citation_en = gr.Markdown(
|
| 354 |
+
value=
|
| 355 |
+
"""
|
| 356 |
+
<h2 class='heading' style='margin-top: 16px;'>Citation</h2>
|
| 357 |
+
|
| 358 |
+
If our work is helpful for your research or applications, please cite us via:
|
| 359 |
+
<br>
|
| 360 |
+
```
|
| 361 |
+
@article{HolaBRep25,
|
| 362 |
+
title={HoLa: B-Rep Generation using a Holistic Latent Representation},
|
| 363 |
+
author={Yilin Liu and Duoteng Xu and Xinyao Yu and Xiang Xu and Daniel Cohen-Or and Hao Zhang and Hui Huang},
|
| 364 |
+
journal={ACM Transactions on Graphics (SIGGRAPH)},
|
| 365 |
+
volume={44},
|
| 366 |
+
number={4},
|
| 367 |
+
year={2025},
|
| 368 |
+
}
|
| 369 |
+
```
|
| 370 |
+
""",
|
| 371 |
+
height=300,
|
| 372 |
+
)
|
| 373 |
+
|
| 374 |
+
citation_cn = gr.Markdown(
|
| 375 |
+
value=
|
| 376 |
+
"""
|
| 377 |
+
<h2 class='heading' style='margin-top: 16px;'>引用</h2>
|
| 378 |
+
|
| 379 |
+
如果我们的工作对您的研究或者应用有帮助,请通过以下方式进行引用:
|
| 380 |
+
<br>
|
| 381 |
+
|
| 382 |
+
```
|
| 383 |
+
@article{HolaBRep25,
|
| 384 |
+
title={HoLa: B-Rep Generation using a Holistic Latent Representation},
|
| 385 |
+
author={Yilin Liu and Duoteng Xu and Xinyao Yu and Xiang Xu and Daniel Cohen-Or and Hao Zhang and Hui Huang},
|
| 386 |
+
journal={ACM Transactions on Graphics (SIGGRAPH)},
|
| 387 |
+
volume={44},
|
| 388 |
+
number={4},
|
| 389 |
+
year={2025},
|
| 390 |
+
}
|
| 391 |
+
```
|
| 392 |
+
""",
|
| 393 |
+
height=300,
|
| 394 |
+
)
|
| 395 |
+
|
| 396 |
+
notification_mvr_en = gr.Markdown("**You can take and upload photos of objects as shown below.**")
|
| 397 |
+
notification_mvr_cn = gr.Markdown("**您可以按如下方式拍摄并上传物体照片**")
|
| 398 |
+
|
| 399 |
+
descriptions = []
|
| 400 |
+
|
| 401 |
+
# Main body
|
| 402 |
+
with gr.Blocks(js=force_light, theme=theme, css=custom_css) as inference:
|
| 403 |
+
with gr.Row(elem_id="top-row"):
|
| 404 |
+
gr.HTML(
|
| 405 |
+
"""
|
| 406 |
+
<div style="text-align: left;">
|
| 407 |
+
<a href="https://visitorbadge.io/status?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FYuXingyao%2FHoLa-BRep">
|
| 408 |
+
<img src="https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FYuXingyao%2FHoLa-BRep&labelColor=%23d9e3f0&countColor=%23555555" />
|
| 409 |
+
</a>
|
| 410 |
+
</div>
|
| 411 |
+
"""
|
| 412 |
+
)
|
| 413 |
+
|
| 414 |
+
with gr.Row(elem_id="button-group"):
|
| 415 |
+
btn_cn = gr.Button("中文", elem_classes="small-button")
|
| 416 |
+
btn_en = gr.Button("English", elem_classes="small-button")
|
| 417 |
+
btn_cn.click(fn=make_Chinese_descriptions, outputs=descriptions)
|
| 418 |
+
btn_en.click(fn=make_English_descriptions, outputs=descriptions)
|
| 419 |
+
|
| 420 |
+
title_en.render()
|
| 421 |
+
descriptions.append(title_en)
|
| 422 |
+
|
| 423 |
+
description_en.render()
|
| 424 |
+
descriptions.append(description_en)
|
| 425 |
+
|
| 426 |
+
user_state = gr.BrowserState({
|
| 427 |
+
"user_id" : None,
|
| 428 |
+
"user_output_dir" : None,
|
| 429 |
+
})
|
| 430 |
+
|
| 431 |
+
generating_type.render()
|
| 432 |
+
|
| 433 |
+
with gr.Row():
|
| 434 |
+
# Input Column
|
| 435 |
+
with gr.Column() as input_col:
|
| 436 |
+
with gr.Tabs() as input_tab:
|
| 437 |
+
with gr.Tab("Unconditional") as uncond_tab:
|
| 438 |
+
uncond_layout = UncondLayout()
|
| 439 |
+
uncond_description = uncond_layout.get_English_note()
|
| 440 |
+
descriptions.append(uncond_description)
|
| 441 |
+
uncond_input_components = uncond_layout.get_input_components()
|
| 442 |
+
|
| 443 |
+
uncond_button = gr.Button("Generate")
|
| 444 |
+
uncond_button.click(
|
| 445 |
+
fn=UncondGeneratingMethod().generate(),
|
| 446 |
+
inputs=[*uncond_input_components, user_state],
|
| 447 |
+
outputs=[model_wireframe, model_solid, step_file, download_files, user_state]
|
| 448 |
+
)
|
| 449 |
+
|
| 450 |
+
with gr.Tab("Point Cloud") as pc_tab:
|
| 451 |
+
pc_layout = PCLayout()
|
| 452 |
+
pc_description = pc_layout.get_English_note()
|
| 453 |
+
descriptions.append(pc_description)
|
| 454 |
+
pc_input_components = pc_layout.get_input_components()
|
| 455 |
+
|
| 456 |
+
pc_button = gr.Button("Generate")
|
| 457 |
+
pc_button.click(
|
| 458 |
+
fn=ConditionedGeneratingMethod(PointCloudDirector(), PointCloudProcessor(), DEMO_NUM).generate(),
|
| 459 |
+
inputs=[user_state, *pc_input_components],
|
| 460 |
+
outputs=[user_state, model_wireframe, model_solid, step_file, download_files]
|
| 461 |
+
)
|
| 462 |
+
|
| 463 |
+
with gr.Tab("Sketch") as sketch_tab:
|
| 464 |
+
sketch_layout = SketchLayout()
|
| 465 |
+
sketch_description = sketch_layout.get_English_note()
|
| 466 |
+
descriptions.append(sketch_description)
|
| 467 |
+
sketch_input_components = sketch_layout.get_input_components()
|
| 468 |
+
|
| 469 |
+
sketch_button = gr.Button("Generate")
|
| 470 |
+
sketch_button.click(
|
| 471 |
+
fn=ConditionedGeneratingMethod(SketchDirector(), SingleImageProcessor(), DEMO_NUM).generate(),
|
| 472 |
+
inputs=[user_state, *sketch_input_components],
|
| 473 |
+
outputs=[user_state, model_wireframe, model_solid, step_file, download_files]
|
| 474 |
+
)
|
| 475 |
+
|
| 476 |
+
with gr.Tab("Text") as text_tab:
|
| 477 |
+
text_layout = TextLayout()
|
| 478 |
+
text_description = text_layout.get_English_note()
|
| 479 |
+
descriptions.append(text_description)
|
| 480 |
+
text_input_components = text_layout.get_input_components()
|
| 481 |
+
|
| 482 |
+
text_button = gr.Button("Generate")
|
| 483 |
+
text_button.click(
|
| 484 |
+
fn=ConditionedGeneratingMethod(TextDirector(), TextProcessor(), DEMO_NUM).generate(),
|
| 485 |
+
inputs=[user_state, *text_input_components],
|
| 486 |
+
outputs=[user_state, model_wireframe, model_solid, step_file, download_files]
|
| 487 |
+
)
|
| 488 |
+
|
| 489 |
+
with gr.Tab("SVR") as svr_tab:
|
| 490 |
+
svr_layout = SVRLayout()
|
| 491 |
+
svr_description = svr_layout.get_English_note()
|
| 492 |
+
descriptions.append(svr_description)
|
| 493 |
+
svr_input_components = svr_layout.get_input_components()
|
| 494 |
+
|
| 495 |
+
svr_button = gr.Button("Generate")
|
| 496 |
+
svr_button.click(
|
| 497 |
+
fn=ConditionedGeneratingMethod(SVRDirector(), SingleImageProcessor(), DEMO_NUM).generate(),
|
| 498 |
+
inputs=[user_state, *svr_input_components],
|
| 499 |
+
outputs=[user_state, model_wireframe, model_solid, step_file, download_files]
|
| 500 |
+
)
|
| 501 |
+
|
| 502 |
+
with gr.Tab("MVR") as mvr_tab:
|
| 503 |
+
mvr_layout = MVRLayout()
|
| 504 |
+
mvr_description = mvr_layout.get_English_note()
|
| 505 |
+
descriptions.append(mvr_description)
|
| 506 |
+
with gr.Accordion("MVR input notification:", open=False) as mvr_notification:
|
| 507 |
+
notification_mvr_en.render()
|
| 508 |
+
gr.Image(value='app/examples/mvr.png',show_download_button=False, show_label=False,show_share_button=False,interactive=False)
|
| 509 |
+
|
| 510 |
+
with gr.Row():
|
| 511 |
+
mvr_input_components = mvr_layout.get_input_components()
|
| 512 |
+
mvr_button = gr.Button("Generate")
|
| 513 |
+
mvr_button.click(
|
| 514 |
+
fn=ConditionedGeneratingMethod(MVRDirector(), MultiImageProcessor(), DEMO_NUM).generate(),
|
| 515 |
+
inputs=[user_state, *mvr_input_components],
|
| 516 |
+
outputs=[user_state, model_wireframe, model_solid, step_file, download_files]
|
| 517 |
+
)
|
| 518 |
+
|
| 519 |
+
uncond_tab.select(fn=set_generating_type, inputs=gr.Text(uncond_tab.label, visible=False), outputs=generating_type)
|
| 520 |
+
pc_tab.select(fn=set_generating_type, inputs=gr.Text(pc_tab.label, visible=False), outputs=generating_type)
|
| 521 |
+
sketch_tab.select(fn=set_generating_type, inputs=gr.Text(sketch_tab.label, visible=False), outputs=generating_type)
|
| 522 |
+
svr_tab.select(fn=set_generating_type, inputs=gr.Text(svr_tab.label, visible=False), outputs=generating_type)
|
| 523 |
+
mvr_tab.select(fn=set_generating_type, inputs=gr.Text(mvr_tab.label, visible=False), outputs=generating_type)
|
| 524 |
+
text_tab.select(fn=set_generating_type, inputs=gr.Text(text_tab.label, visible=False), outputs=generating_type)
|
| 525 |
+
|
| 526 |
+
descriptions.append(notification_mvr_en)
|
| 527 |
+
descriptions.append(uncond_tab)
|
| 528 |
+
descriptions.append(pc_tab)
|
| 529 |
+
descriptions.append(sketch_tab)
|
| 530 |
+
descriptions.append(text_tab)
|
| 531 |
+
descriptions.append(svr_tab)
|
| 532 |
+
descriptions.append(mvr_tab)
|
| 533 |
+
descriptions.append(mvr_notification)
|
| 534 |
+
descriptions.append(uncond_button)
|
| 535 |
+
descriptions.append(pc_button)
|
| 536 |
+
descriptions.append(sketch_button)
|
| 537 |
+
descriptions.append(text_button)
|
| 538 |
+
descriptions.append(svr_button)
|
| 539 |
+
descriptions.append(mvr_button)
|
| 540 |
+
|
| 541 |
+
|
| 542 |
+
# Output demonstration
|
| 543 |
+
with gr.Column() as output_col:
|
| 544 |
+
with gr.Tabs():
|
| 545 |
+
with gr.Tab("Solid") as solid_tab:
|
| 546 |
+
model_solid.render()
|
| 547 |
+
with gr.Tab("Wireframe") as wireframe_tab:
|
| 548 |
+
model_wireframe.render()
|
| 549 |
+
with gr.Tab("Download") as download_tab:
|
| 550 |
+
step_file.render()
|
| 551 |
+
download_files.render()
|
| 552 |
+
|
| 553 |
+
|
| 554 |
+
model_index = gr.Number(value=0, visible=False)
|
| 555 |
+
with gr.Row() as switch_row:
|
| 556 |
+
last_button = gr.Button("Last")
|
| 557 |
+
next_button = gr.Button("Next")
|
| 558 |
+
|
| 559 |
+
last_button.click(
|
| 560 |
+
fn=switch_model,
|
| 561 |
+
inputs=[user_state, generating_type, model_index, gr.Number(-1, visible=False)],
|
| 562 |
+
outputs=[model_index, model_wireframe, model_solid, download_files])
|
| 563 |
+
next_button.click(
|
| 564 |
+
fn=switch_model,
|
| 565 |
+
inputs=[user_state, generating_type, model_index, gr.Number(1, visible=False)],
|
| 566 |
+
outputs=[model_index, model_wireframe, model_solid, download_files])
|
| 567 |
+
|
| 568 |
+
descriptions.append(last_button)
|
| 569 |
+
descriptions.append(next_button)
|
| 570 |
+
descriptions.append(solid_tab)
|
| 571 |
+
descriptions.append(wireframe_tab)
|
| 572 |
+
descriptions.append(download_tab)
|
| 573 |
+
|
| 574 |
+
# Examples
|
| 575 |
+
@gr.render(inputs=[generating_type], triggers=[generating_type.change, inference.load])
|
| 576 |
+
def show_examples(generate_mode):
|
| 577 |
+
if generate_mode == "Unconditional":
|
| 578 |
+
pass
|
| 579 |
+
|
| 580 |
+
elif generate_mode == "Point Cloud":
|
| 581 |
+
pc_samples=[
|
| 582 |
+
[Path("app/examples/pc_examples") / sample_number / "pc.png"] for sample_number in os.listdir("app/examples/pc_examples") if sample_number != "take_photo.py"
|
| 583 |
+
]
|
| 584 |
+
with gr.Row():
|
| 585 |
+
def dummy_pc_func(pic_path):
|
| 586 |
+
return Path(pic_path[0]).with_suffix(".ply").as_posix()
|
| 587 |
+
for i in range(len(pc_samples)):
|
| 588 |
+
with gr.Column(min_width=100):
|
| 589 |
+
dummy_image = gr.Image(type="filepath", format="png", visible=False)
|
| 590 |
+
point_cloud_data = gr.Dataset(
|
| 591 |
+
label=f"Example{i+1}",
|
| 592 |
+
components=[dummy_image],
|
| 593 |
+
samples=[pc_samples[i]],
|
| 594 |
+
layout="table"
|
| 595 |
+
)
|
| 596 |
+
point_cloud_data.click(dummy_pc_func, inputs=point_cloud_data, outputs=pc_input_components)
|
| 597 |
+
|
| 598 |
+
elif generate_mode == "Text":
|
| 599 |
+
text_data = gr.Dataset(
|
| 600 |
+
components=text_input_components,
|
| 601 |
+
samples=[
|
| 602 |
+
["The object is a rectangular prism with two protruding L-shaped sections on opposite sides."],
|
| 603 |
+
["This design creates a rectangular plate with rounded edges. The plate measures about 0.3214 units in length, 0.75 units in width, and 0.0429 units in height. The rounded edges give the plate a smooth, aesthetically pleasing appearance."],
|
| 604 |
+
["The U-shaped bracket has a flat top and a curved bottom. The design begins by creating a new coordinate system with specific Euler angles and a translation vector. A two-dimensional sketch is then drawn, forming a complex shape with multiple lines and arcs. This sketch is scaled down, rotated, and translated to align with the coordinate system. The sketch is extruded to create a three-dimensional model. The final dimensions of the bracket are approximately 0.7 units in length, 0.75 units in width, and 0.19 units in height. The bracket is designed to integrate seamlessly with other components, providing a sturdy and functional structure."]
|
| 605 |
+
],
|
| 606 |
+
layout='table',
|
| 607 |
+
label="Examples",
|
| 608 |
+
headers=["Prompt"]
|
| 609 |
+
)
|
| 610 |
+
def dummy_func(text):
|
| 611 |
+
return gr.Text(text[0])
|
| 612 |
+
text_data.click(fn=dummy_func, inputs=text_data, outputs=text_input_components)
|
| 613 |
+
|
| 614 |
+
elif generate_mode == "Sketch":
|
| 615 |
+
with gr.Row():
|
| 616 |
+
for i in range(12):
|
| 617 |
+
with gr.Column(min_width=100):
|
| 618 |
+
example = gr.Examples(
|
| 619 |
+
inputs=sketch_input_components,
|
| 620 |
+
examples=[
|
| 621 |
+
[f"app/examples/sketch_examples/{i + 1}.png"]
|
| 622 |
+
],
|
| 623 |
+
label=f"Example{i+1}"
|
| 624 |
+
)
|
| 625 |
+
|
| 626 |
+
elif generate_mode == "SVR":
|
| 627 |
+
with gr.Row():
|
| 628 |
+
for i in range(12):
|
| 629 |
+
with gr.Column(min_width=100):
|
| 630 |
+
example = gr.Examples(
|
| 631 |
+
inputs=svr_input_components,
|
| 632 |
+
examples=[
|
| 633 |
+
[f"app/examples/svr_examples/{i + 1}.png"]
|
| 634 |
+
],
|
| 635 |
+
label=f"Example{i+1}"
|
| 636 |
+
)
|
| 637 |
+
|
| 638 |
+
elif generate_mode == "MVR":
|
| 639 |
+
with gr.Row():
|
| 640 |
+
for i in range(4):
|
| 641 |
+
file_num = ["00017462", "00131007", "00189220", "00218887"]
|
| 642 |
+
with gr.Column():
|
| 643 |
+
example = gr.Examples(
|
| 644 |
+
inputs=mvr_input_components,
|
| 645 |
+
examples=[
|
| 646 |
+
[f"app/examples/mvr_examples/{file_num[i]}_img0.png", f"app/examples/mvr_examples/{file_num[i]}_img1.png", f"app/examples/mvr_examples/{file_num[i]}_img2.png", f"app/examples/mvr_examples/{file_num[i]}_img3.png"],
|
| 647 |
+
],
|
| 648 |
+
label=f"Example{i+1}"
|
| 649 |
+
)
|
| 650 |
+
|
| 651 |
+
citation_en.render()
|
| 652 |
+
descriptions.append(citation_en)
|
| 653 |
+
|
| 654 |
+
|
| 655 |
+
if __name__ == "__main__":
|
| 656 |
+
inference.launch(allowed_paths=['/data'], server_name='0.0.0.0', server_port=7860)
|
app/AppLayout.py
ADDED
|
@@ -0,0 +1,291 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import time
|
| 2 |
+
|
| 3 |
+
import gradio as gr
|
| 4 |
+
from typing import List, Callable
|
| 5 |
+
from abc import ABC, abstractmethod
|
| 6 |
+
|
| 7 |
+
# Tab Interface
|
| 8 |
+
class AppLayout(ABC):
|
| 9 |
+
@abstractmethod
|
| 10 |
+
def get_English_note(self) -> gr.Markdown:
|
| 11 |
+
pass
|
| 12 |
+
|
| 13 |
+
@abstractmethod
|
| 14 |
+
def get_Chinese_note(self):
|
| 15 |
+
pass
|
| 16 |
+
|
| 17 |
+
@abstractmethod
|
| 18 |
+
def get_input_components(self) -> List[gr.Component]:
|
| 19 |
+
pass
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
# Concrete Implementation
|
| 23 |
+
class UncondLayout(AppLayout):
|
| 24 |
+
|
| 25 |
+
def get_English_note(self):
|
| 26 |
+
return gr.Markdown(
|
| 27 |
+
"""
|
| 28 |
+
**Note:**
|
| 29 |
+
|
| 30 |
+
+ We generate 4 BRep models from sampled noise in Gaussian distribution.
|
| 31 |
+
+ The model is trained on ABC dataset with a complexity range of 10~100 surface primitives.
|
| 32 |
+
+ Compared with the state-of-the-art BRep generation methods, HoLa-BRep has a 20%-40% improvement in the validity ratio of the generated models on both the DeepCAD dataset and the ABC dataset.
|
| 33 |
+
+ Try to adjust the seed for various results.
|
| 34 |
+
|
| 35 |
+
<br>
|
| 36 |
+
<br>
|
| 37 |
+
<br>
|
| 38 |
+
<br>
|
| 39 |
+
<br>
|
| 40 |
+
<br>
|
| 41 |
+
<br>
|
| 42 |
+
<br>
|
| 43 |
+
"""
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
def get_Chinese_note(self):
|
| 47 |
+
return gr.Markdown(
|
| 48 |
+
"""
|
| 49 |
+
**无条件生成介绍:**
|
| 50 |
+
|
| 51 |
+
+ 我们从高斯分布的采样噪声中生成 4 个 BRep 模型。
|
| 52 |
+
+ 模型在 ABC 数据集上进行训练,复杂度范围为 10~100 个表面基元。
|
| 53 |
+
+ 与最先进的 BRep 生成方法相比,HoLa-BRep 在 DeepCAD 数据集和 ABC 数据集上生成模型的有效率提高了 20%-40%。
|
| 54 |
+
+ 请随意调整采样种子,以获得不同的结果。
|
| 55 |
+
|
| 56 |
+
<br>
|
| 57 |
+
<br>
|
| 58 |
+
<br>
|
| 59 |
+
<br>
|
| 60 |
+
<br>
|
| 61 |
+
<br>
|
| 62 |
+
<br>
|
| 63 |
+
<br>
|
| 64 |
+
"""
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
def get_input_components(self) -> List[gr.Component]:
|
| 68 |
+
return [
|
| 69 |
+
gr.Number(
|
| 70 |
+
label="Seed",
|
| 71 |
+
value=int(time.time()),
|
| 72 |
+
minimum=0,
|
| 73 |
+
maximum=2**31-1,
|
| 74 |
+
step=1
|
| 75 |
+
),
|
| 76 |
+
]
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
class TextLayout(AppLayout):
|
| 80 |
+
|
| 81 |
+
def get_English_note(self):
|
| 82 |
+
return gr.Markdown(
|
| 83 |
+
"""
|
| 84 |
+
**Note:**
|
| 85 |
+
|
| 86 |
+
+ Text can be either abstract or descriptive.
|
| 87 |
+
+ We use a frozen gte-large-en-v1.5 to extract the feature from the text description.
|
| 88 |
+
+ While we use the existing Text2CAD dataset which contains more descriptive text, the out of distribution abstract text prompt also works.
|
| 89 |
+
|
| 90 |
+
<br>
|
| 91 |
+
<br>
|
| 92 |
+
"""
|
| 93 |
+
)
|
| 94 |
+
def get_Chinese_note(self):
|
| 95 |
+
return gr.Markdown(
|
| 96 |
+
"""
|
| 97 |
+
**文本条件生成介绍:**
|
| 98 |
+
|
| 99 |
+
+ HoLa-BRep支持简单抽象的文本和复杂的描述性文本。
|
| 100 |
+
+ 我们使用冻结的gte-large-en-v1.5从文本描述中提取特征。
|
| 101 |
+
+ 虽然我们使用的是包含更多复杂描述性文本的Text2CAD 数据集,但HoLa-BRep同样适用于简单抽象的文本输入。
|
| 102 |
+
+ **当前文本输入仅支持英文,敬请谅解。**
|
| 103 |
+
|
| 104 |
+
<br>
|
| 105 |
+
"""
|
| 106 |
+
)
|
| 107 |
+
|
| 108 |
+
def get_input_components(self) -> List[gr.Component]:
|
| 109 |
+
return [
|
| 110 |
+
gr.Textbox(lines = 8,max_length=1024, label="Text"),
|
| 111 |
+
]
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
class PCLayout(AppLayout):
|
| 115 |
+
|
| 116 |
+
def get_English_note(self):
|
| 117 |
+
return gr.Markdown(
|
| 118 |
+
"""
|
| 119 |
+
**Note:**
|
| 120 |
+
|
| 121 |
+
+ The input point cloud should be in .ply format with the position in -1~+1 and normal vectors.
|
| 122 |
+
+ The input point cloud can be either sparse or dense. We will downsample the point cloud into 2048 points.
|
| 123 |
+
+ After test-time augmentation the validity of the generated B-Rep model can reach ~98%.
|
| 124 |
+
+ We use a small and trainable PointNet++ to extract the feature from the point cloud.
|
| 125 |
+
+ This checkpoint is only for a clean point cloud without any noise.
|
| 126 |
+
+ Point cloud contains less ambiguity and usually yields the best conditional generation results compared to other modalities.
|
| 127 |
+
"""
|
| 128 |
+
)
|
| 129 |
+
def get_Chinese_note(self):
|
| 130 |
+
return gr.Markdown(
|
| 131 |
+
"""
|
| 132 |
+
**点云条件生成介绍:**
|
| 133 |
+
|
| 134 |
+
+ HoLa-BRep接受.ply 格式的点云输入,且坐标值应该归一化到-1~+1并带有法向信息。
|
| 135 |
+
+ HoLa-BRep接受稀疏或密集点云,网络处理点云时会将其降采样到2048 个点。
|
| 136 |
+
+ 经过测试时增强后点云条件生成的有效性可达98%以上。
|
| 137 |
+
+ 我们使用一个小型可训练的 PointNet++ 从点云中提取特征。
|
| 138 |
+
+ 目前开放权重仅���持没有任何噪声的点云。
|
| 139 |
+
+ 三维点云作为条件输入具有更少的歧义性,与其他条件相比通常能产生最佳的生成结果。
|
| 140 |
+
"""
|
| 141 |
+
)
|
| 142 |
+
|
| 143 |
+
def get_input_components(self):
|
| 144 |
+
return [
|
| 145 |
+
gr.File(
|
| 146 |
+
label='PC',
|
| 147 |
+
file_count='single',
|
| 148 |
+
),
|
| 149 |
+
]
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
class SketchLayout(AppLayout):
|
| 153 |
+
|
| 154 |
+
def get_English_note(self):
|
| 155 |
+
return gr.Markdown(
|
| 156 |
+
"""
|
| 157 |
+
**Note:**
|
| 158 |
+
|
| 159 |
+
+ The input sketch is in 1:1 ratio and on a white background, it will be further downsampled to 224*224 before feeding into the network.
|
| 160 |
+
+ The input sketch should be a perspective projection rather than an orthogonal projection.
|
| 161 |
+
+ We use a frozen DINOv2 to extract the feature from the sketch image.
|
| 162 |
+
+ We obtained the training sketches using wireframe rendering in OpenCascade.
|
| 163 |
+
|
| 164 |
+
<br>
|
| 165 |
+
<br>
|
| 166 |
+
"""
|
| 167 |
+
)
|
| 168 |
+
|
| 169 |
+
def get_Chinese_note(self):
|
| 170 |
+
return gr.Markdown(
|
| 171 |
+
"""
|
| 172 |
+
**线框图条件生成介绍:**
|
| 173 |
+
|
| 174 |
+
+ 输入线框图的长宽比应为1:1,背景为白色,系统处理时会降采样到224*224分辨率。
|
| 175 |
+
+ 输入的线框图应该是透视投影,而不是正交投影。
|
| 176 |
+
+ 我们使用冻结的 DINOv2 从线框图图像中提取特征。
|
| 177 |
+
+ 我们使用 OpenCascade 中的线框渲染来获取训练线框图。
|
| 178 |
+
|
| 179 |
+
<br>
|
| 180 |
+
<br>
|
| 181 |
+
"""
|
| 182 |
+
)
|
| 183 |
+
|
| 184 |
+
def get_input_components(self) -> List[gr.Component]:
|
| 185 |
+
return [
|
| 186 |
+
gr.Image(
|
| 187 |
+
label='Sketch',
|
| 188 |
+
type='filepath',
|
| 189 |
+
sources=["upload"],
|
| 190 |
+
interactive=True,
|
| 191 |
+
)
|
| 192 |
+
]
|
| 193 |
+
|
| 194 |
+
|
| 195 |
+
class SVRLayout(AppLayout):
|
| 196 |
+
|
| 197 |
+
def get_English_note(self):
|
| 198 |
+
return gr.Markdown(
|
| 199 |
+
"""
|
| 200 |
+
**Note:**
|
| 201 |
+
|
| 202 |
+
+ The input image is in 1:1 ratio and on a white background, it will be further downsampled to 224*224 before feeding into the network.
|
| 203 |
+
+ Keep the object in grey for better generation results.
|
| 204 |
+
+ We use a frozen DINOv2 to extract the feature from the sketch image.
|
| 205 |
+
+ We obtained the training images using solid rendering in OpenCascade.
|
| 206 |
+
|
| 207 |
+
<br>
|
| 208 |
+
<br>
|
| 209 |
+
"""
|
| 210 |
+
)
|
| 211 |
+
|
| 212 |
+
def get_Chinese_note(self):
|
| 213 |
+
return gr.Markdown(
|
| 214 |
+
"""
|
| 215 |
+
**单视角图片条件生成介绍:**
|
| 216 |
+
|
| 217 |
+
+ 输入图片的长宽比应为1:1,背景为白色,系统处理时会降采样到224*224分辨率。
|
| 218 |
+
+ 为了获得更好的生成效果,请将对象保持为灰色。
|
| 219 |
+
+ 我们使用冻结的 DINOv2 从草图图像中提取特征。
|
| 220 |
+
+ 我们使用 OpenCascade 中的实体渲染来获取训练图像。
|
| 221 |
+
|
| 222 |
+
<br>
|
| 223 |
+
<br>
|
| 224 |
+
"""
|
| 225 |
+
)
|
| 226 |
+
|
| 227 |
+
def get_input_components(self) -> List[gr.Component]:
|
| 228 |
+
return [
|
| 229 |
+
gr.Image(
|
| 230 |
+
label='Image',
|
| 231 |
+
type='filepath',
|
| 232 |
+
sources=["upload"],
|
| 233 |
+
interactive=True,
|
| 234 |
+
),
|
| 235 |
+
]
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
class MVRLayout(AppLayout):
|
| 239 |
+
|
| 240 |
+
def get_English_note(self):
|
| 241 |
+
return gr.Markdown(
|
| 242 |
+
"""
|
| 243 |
+
**Note:**
|
| 244 |
+
|
| 245 |
+
+ Similar to the single-view condition, the input image should be in 1:1 ratio and 4 fixed angles, **see the camera pose schematic**.
|
| 246 |
+
+ Image features are extracted by a frozen DINOv2 and averaged after adding the positional encoding on the camera **pose** embedding.
|
| 247 |
+
"""
|
| 248 |
+
)
|
| 249 |
+
|
| 250 |
+
def get_Chinese_note(self):
|
| 251 |
+
return gr.Markdown(
|
| 252 |
+
"""
|
| 253 |
+
**多视角图片条件生成介绍:**
|
| 254 |
+
|
| 255 |
+
+ 与单视角条件类似,输入图像应为 1:1长宽比和4 个固定角度,**见相机位姿示意图**。
|
| 256 |
+
+ 图像特征由冻结的 DINOv2 提取,并在对相机**位姿**特征进行位置编码后取平均值。
|
| 257 |
+
|
| 258 |
+
"""
|
| 259 |
+
)
|
| 260 |
+
|
| 261 |
+
def get_input_components(self) -> List[gr.Component]:
|
| 262 |
+
return [
|
| 263 |
+
gr.Image(
|
| 264 |
+
label='View1',
|
| 265 |
+
type='filepath',
|
| 266 |
+
interactive=True,
|
| 267 |
+
sources=["upload"]
|
| 268 |
+
),
|
| 269 |
+
gr.Image(
|
| 270 |
+
label='View2',
|
| 271 |
+
type='filepath',
|
| 272 |
+
interactive=True,
|
| 273 |
+
sources=["upload"]
|
| 274 |
+
|
| 275 |
+
),
|
| 276 |
+
gr.Image(
|
| 277 |
+
label='View3',
|
| 278 |
+
type='filepath',
|
| 279 |
+
interactive=True,
|
| 280 |
+
sources=["upload"]
|
| 281 |
+
|
| 282 |
+
),
|
| 283 |
+
|
| 284 |
+
gr.Image(
|
| 285 |
+
label='View4',
|
| 286 |
+
type='filepath',
|
| 287 |
+
interactive=True,
|
| 288 |
+
sources=["upload"]
|
| 289 |
+
|
| 290 |
+
),
|
| 291 |
+
]
|
app/DataProcessor/DataProcessor.py
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import numpy as np
|
| 3 |
+
import open3d as o3d
|
| 4 |
+
import torchvision.transforms as T
|
| 5 |
+
from PIL import Image
|
| 6 |
+
from pathlib import Path
|
| 7 |
+
from abc import abstractmethod, ABC
|
| 8 |
+
|
| 9 |
+
class DataProcessor(ABC):
|
| 10 |
+
NUM_PROPOSALS = 16
|
| 11 |
+
|
| 12 |
+
def __init__(self, device=None):
|
| 13 |
+
if device is None:
|
| 14 |
+
self._device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 15 |
+
else:
|
| 16 |
+
self._device = device
|
| 17 |
+
|
| 18 |
+
def process(self, input_data):
|
| 19 |
+
data = dict()
|
| 20 |
+
data["conditions"] = self.process_input_data(input_data)
|
| 21 |
+
return data
|
| 22 |
+
|
| 23 |
+
@abstractmethod
|
| 24 |
+
def process_input_data(self, input_data):
|
| 25 |
+
pass
|
app/DataProcessor/ImageProcessor.py
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import numpy as np
|
| 3 |
+
import torchvision.transforms as T
|
| 4 |
+
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
from PIL import Image
|
| 7 |
+
from pathlib import Path
|
| 8 |
+
from app.DataProcessor.DataProcessor import DataProcessor
|
| 9 |
+
|
| 10 |
+
class ImageProcessor(DataProcessor):
|
| 11 |
+
def _get_img_tensor(self, image_file: Path) -> torch.Tensor:
|
| 12 |
+
"""
|
| 13 |
+
Return a (3, 224, 224) shape tensor
|
| 14 |
+
"""
|
| 15 |
+
transform = T.Compose([
|
| 16 |
+
T.ToPILImage(),
|
| 17 |
+
T.Resize((224, 224)),
|
| 18 |
+
T.ToTensor(),
|
| 19 |
+
T.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
|
| 20 |
+
])
|
| 21 |
+
img = np.array(Image.open(Path(image_file)).convert("RGB"))
|
| 22 |
+
img = transform(img).to(self._device)
|
| 23 |
+
return img
|
app/DataProcessor/MultiImageProcessor.py
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import numpy as np
|
| 3 |
+
import torchvision.transforms as T
|
| 4 |
+
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
from typing import Tuple
|
| 7 |
+
from app.DataProcessor.ImageProcessor import ImageProcessor
|
| 8 |
+
|
| 9 |
+
class MultiImageProcessor(ImageProcessor):
|
| 10 |
+
def process_input_data(self, image_files: Tuple[str]):
|
| 11 |
+
multi_imgs = None
|
| 12 |
+
for one_imgage in image_files:
|
| 13 |
+
single_img = self._get_img_tensor(Path(one_imgage))[None, None, ...]
|
| 14 |
+
if multi_imgs is None:
|
| 15 |
+
multi_imgs = single_img
|
| 16 |
+
else:
|
| 17 |
+
multi_imgs = torch.cat((multi_imgs, single_img), axis=1)
|
| 18 |
+
multi_imgs = multi_imgs.repeat(self.NUM_PROPOSALS, 1, 1, 1, 1)
|
| 19 |
+
img_id = torch.tensor([list(range(len(image_files)))], device=self._device).repeat(self.NUM_PROPOSALS, 1)
|
| 20 |
+
return {
|
| 21 |
+
"imgs" : multi_imgs,
|
| 22 |
+
"img_id" : img_id
|
| 23 |
+
}
|
app/DataProcessor/PointCloudProcessor.py
ADDED
|
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import numpy as np
|
| 3 |
+
import open3d as o3d
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
from app.DataProcessor.DataProcessor import DataProcessor
|
| 6 |
+
|
| 7 |
+
'''
|
| 8 |
+
Raw Data should be a Pathlike or str path, accept file path only
|
| 9 |
+
'''
|
| 10 |
+
class PointCloudProcessor(DataProcessor):
|
| 11 |
+
PC_DOWNSAMPLE_NUM = 4096
|
| 12 |
+
def process_input_data(self, pc_file_path):
|
| 13 |
+
points_tensor = self._get_point_cloud_tensor(Path(pc_file_path[0]))
|
| 14 |
+
return {"points" : points_tensor[None, None, :, :].repeat(self.NUM_PROPOSALS, 1, 1, 1)}
|
| 15 |
+
|
| 16 |
+
def _get_point_cloud_tensor(self, input_file: Path | str) -> torch.Tensor:
|
| 17 |
+
# Read point cloud
|
| 18 |
+
pcd = o3d.io.read_point_cloud(input_file)
|
| 19 |
+
points = np.array(pcd.points)
|
| 20 |
+
|
| 21 |
+
# Check normals
|
| 22 |
+
if pcd.has_normals():
|
| 23 |
+
normals = np.array(pcd.normals)
|
| 24 |
+
else:
|
| 25 |
+
normals = np.zeros_like(points)
|
| 26 |
+
|
| 27 |
+
# Concatenate points and normals
|
| 28 |
+
points = np.concatenate([self._normalize_points(points), normals], axis=1)
|
| 29 |
+
|
| 30 |
+
# Downsample
|
| 31 |
+
index = np.random.choice(points.shape[0], self.PC_DOWNSAMPLE_NUM, replace=False)
|
| 32 |
+
points = points[index]
|
| 33 |
+
|
| 34 |
+
return torch.tensor(points, dtype=torch.float32).to(self._device)
|
| 35 |
+
|
| 36 |
+
def _normalize_points(self, points):
|
| 37 |
+
bbox_min = np.min(points, axis=0)
|
| 38 |
+
bbox_max = np.max(points, axis=0)
|
| 39 |
+
center = (bbox_min + bbox_max) / 2
|
| 40 |
+
points -= center
|
| 41 |
+
scale = np.max(bbox_max - bbox_min)
|
| 42 |
+
points /= scale
|
| 43 |
+
points *= 0.9 * 2
|
| 44 |
+
return points
|
app/DataProcessor/SingleImageProcessor.py
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
|
| 3 |
+
from pathlib import Path
|
| 4 |
+
from app.DataProcessor.ImageProcessor import ImageProcessor
|
| 5 |
+
|
| 6 |
+
class SingleImageProcessor(ImageProcessor):
|
| 7 |
+
def process_input_data(self, image_file : Path | str):
|
| 8 |
+
img = self._get_img_tensor(Path(image_file[0]))
|
| 9 |
+
img = img[None, None, :].repeat(self.NUM_PROPOSALS, 1, 1, 1, 1)
|
| 10 |
+
img_id = torch.tensor([[0]], device=self._device).repeat(self.NUM_PROPOSALS, 1)
|
| 11 |
+
return {
|
| 12 |
+
"imgs" : img,
|
| 13 |
+
"img_id" : img_id
|
| 14 |
+
}
|
app/DataProcessor/TxtProcessor.py
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from app.DataProcessor.DataProcessor import DataProcessor
|
| 2 |
+
|
| 3 |
+
class TextProcessor(DataProcessor):
|
| 4 |
+
def process_input_data(self, text: str):
|
| 5 |
+
return { "txt" : [text[0]] * self.NUM_PROPOSALS}
|
app/DataProcessor/__init__.py
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .DataProcessor import DataProcessor
|
| 2 |
+
from .ImageProcessor import ImageProcessor
|
| 3 |
+
from .MultiImageProcessor import MultiImageProcessor
|
| 4 |
+
from .PointCloudProcessor import PointCloudProcessor
|
| 5 |
+
from .SingleImageProcessor import SingleImageProcessor
|
| 6 |
+
from .TxtProcessor import TextProcessor
|
| 7 |
+
|
| 8 |
+
# __init__.py
|
| 9 |
+
|
| 10 |
+
# This package contains modules for processing data in the HoLa-Brep-Space application.
|
| 11 |
+
# Import necessary classes or functions here for easier access.
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
__all__ = ["DataProcessor", "ImageProcessor", "MultiImageProcessor", "PointCloudProcessor", "SingleImageProcessor", "TextProcessor"]
|
app/GeneratingMethod/ConditionedGenerating.py
ADDED
|
@@ -0,0 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import shutil
|
| 3 |
+
import uuid
|
| 4 |
+
import torch
|
| 5 |
+
import gradio as gr
|
| 6 |
+
import numpy as np
|
| 7 |
+
import ray
|
| 8 |
+
import time
|
| 9 |
+
|
| 10 |
+
from pathlib import Path
|
| 11 |
+
|
| 12 |
+
from diffusion.utils import export_edges
|
| 13 |
+
from construct_brep import construct_brep_from_datanpz
|
| 14 |
+
from app.DataProcessor import DataProcessor
|
| 15 |
+
from app.ModelDirector import ModelDirector
|
| 16 |
+
|
| 17 |
+
_EDGE_FILE = 0
|
| 18 |
+
_SOLID_FILE = 1
|
| 19 |
+
_STEP_FILE = 2
|
| 20 |
+
|
| 21 |
+
class ConditionedGeneratingMethod():
|
| 22 |
+
def __init__(
|
| 23 |
+
self,
|
| 24 |
+
model_building_director: ModelDirector,
|
| 25 |
+
dataprocessor: DataProcessor,
|
| 26 |
+
model_num_to_return: int,
|
| 27 |
+
model_seed: int = 0,
|
| 28 |
+
output_main_dir: Path | str = Path('./outputs')
|
| 29 |
+
):
|
| 30 |
+
self.director = model_building_director
|
| 31 |
+
self.dataprocessor = dataprocessor
|
| 32 |
+
self.model_num_to_return = model_num_to_return
|
| 33 |
+
self.model_seed = model_seed
|
| 34 |
+
self.output_main_dir = output_main_dir
|
| 35 |
+
|
| 36 |
+
def generate(self):
|
| 37 |
+
def generating_method(browser_state: dict, *inputs):
|
| 38 |
+
try:
|
| 39 |
+
# Some checks
|
| 40 |
+
assert len(inputs) > 0
|
| 41 |
+
self._user_state_check(browser_state)
|
| 42 |
+
self._empty_input_check(inputs)
|
| 43 |
+
|
| 44 |
+
# Inference device(also shouldn't appear here)
|
| 45 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 46 |
+
|
| 47 |
+
# Process user input data
|
| 48 |
+
tensor_data = self.dataprocessor.process(inputs)
|
| 49 |
+
|
| 50 |
+
# Basic configuration of a model
|
| 51 |
+
self.director.config_setup()
|
| 52 |
+
model_builder = self.director.buider
|
| 53 |
+
|
| 54 |
+
# Should be refactored in the future since picking an output folder is not the responsibility of a model
|
| 55 |
+
diffusion_output_dir = self._get_diffusion_output_dir(browser_state, self.director.get_generating_condition())
|
| 56 |
+
postprocess_output_dir = self._get_postprocess_output_dir(browser_state, self.director.get_generating_condition())
|
| 57 |
+
|
| 58 |
+
model_builder.setup_output_dir(diffusion_output_dir)
|
| 59 |
+
model_builder.setup_seed(self.model_seed)
|
| 60 |
+
|
| 61 |
+
model_builder.make_model(device)
|
| 62 |
+
model = model_builder.model
|
| 63 |
+
|
| 64 |
+
#############
|
| 65 |
+
# Inference #
|
| 66 |
+
#############
|
| 67 |
+
gr.Info("Start diffusing", title="Runtime Info")
|
| 68 |
+
with torch.no_grad():
|
| 69 |
+
pred_results = model.inference(self.dataprocessor.NUM_PROPOSALS, device, v_data=tensor_data, v_log=True)
|
| 70 |
+
|
| 71 |
+
# Save intermediate files for post-processing
|
| 72 |
+
for i, result in enumerate(pred_results):
|
| 73 |
+
diffusion_output_subdir = diffusion_output_dir / f"00_{i:02d}"
|
| 74 |
+
diffusion_output_subdir.mkdir(parents=True, exist_ok=True)
|
| 75 |
+
|
| 76 |
+
export_edges(result["pred_edge"], (diffusion_output_subdir / "edge.obj").as_posix())
|
| 77 |
+
|
| 78 |
+
np.savez_compressed(
|
| 79 |
+
file = (diffusion_output_subdir / "data.npz").as_posix(),
|
| 80 |
+
pred_face_adj_prob = result["pred_face_adj_prob"],
|
| 81 |
+
pred_face_adj = result["pred_face_adj"].cpu().numpy(),
|
| 82 |
+
pred_face = result["pred_face"],
|
| 83 |
+
pred_edge = result["pred_edge"],
|
| 84 |
+
pred_edge_face_connectivity = result["pred_edge_face_connectivity"],
|
| 85 |
+
)
|
| 86 |
+
gr.Info("Finished diffusing", title="Runtime Info")
|
| 87 |
+
|
| 88 |
+
###################
|
| 89 |
+
# Post-Processing #
|
| 90 |
+
###################
|
| 91 |
+
# Multi-thread preparation
|
| 92 |
+
gr.Info("Start post-processing!", title="Runtime Info")
|
| 93 |
+
if not ray.is_initialized():
|
| 94 |
+
ray.init(
|
| 95 |
+
num_cpus=2,
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
construct_brep_from_datanpz_ray = ray.remote(num_cpus=1, max_retries=0)(construct_brep_from_datanpz)
|
| 99 |
+
diffusion_results = sorted(os.listdir(diffusion_output_dir))
|
| 100 |
+
|
| 101 |
+
tasks = [
|
| 102 |
+
construct_brep_from_datanpz_ray.remote(
|
| 103 |
+
data_root=diffusion_output_dir,
|
| 104 |
+
out_root=postprocess_output_dir,
|
| 105 |
+
folder_name=model_number,
|
| 106 |
+
v_drop_num=1,
|
| 107 |
+
use_cuda=False,
|
| 108 |
+
from_scratch=True,
|
| 109 |
+
is_log=False,
|
| 110 |
+
is_ray=True,
|
| 111 |
+
is_optimize_geom=True,
|
| 112 |
+
isdebug=False,
|
| 113 |
+
is_save_data=True
|
| 114 |
+
)
|
| 115 |
+
for model_number in diffusion_results
|
| 116 |
+
]
|
| 117 |
+
|
| 118 |
+
results = []
|
| 119 |
+
success_count = 0
|
| 120 |
+
while tasks and success_count < self.model_num_to_return:
|
| 121 |
+
done_ids, tasks = ray.wait(tasks, num_returns=1, timeout=30)
|
| 122 |
+
for done_id in done_ids:
|
| 123 |
+
try:
|
| 124 |
+
result = ray.get(done_id)
|
| 125 |
+
results.append(result)
|
| 126 |
+
|
| 127 |
+
# Delay just a bit to ensure file handles are released
|
| 128 |
+
time.sleep(0.2)
|
| 129 |
+
|
| 130 |
+
# Check for 'success.txt' in output folders
|
| 131 |
+
for done_folder in postprocess_output_dir.iterdir():
|
| 132 |
+
output_files = os.listdir(done_folder)
|
| 133 |
+
if 'success.txt' in output_files:
|
| 134 |
+
success_count += 1
|
| 135 |
+
|
| 136 |
+
except Exception as e:
|
| 137 |
+
print(f"Task failed or timed out: {e}")
|
| 138 |
+
results.append(None)
|
| 139 |
+
|
| 140 |
+
if success_count >= self.model_num_to_return:
|
| 141 |
+
# Make sure the files are written successfully
|
| 142 |
+
time.sleep(5.0)
|
| 143 |
+
break
|
| 144 |
+
time.sleep(5.0)
|
| 145 |
+
gr.Info("Finished post-processing!", title="Runtime Info")
|
| 146 |
+
# Get valid model serial numbers
|
| 147 |
+
valid_models = self._get_valid_models(postprocess_output_dir)
|
| 148 |
+
|
| 149 |
+
#####################
|
| 150 |
+
# Update User State #
|
| 151 |
+
#####################
|
| 152 |
+
browser_state = self._update_user_state(browser_state, postprocess_output_dir, valid_models)
|
| 153 |
+
|
| 154 |
+
# Check if there's no valid output
|
| 155 |
+
self._postprocess_output_check(valid_models)
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
# Multi-thread processing may return valid models more than 4
|
| 159 |
+
gr.Info(f"{len(valid_models) if len(valid_models) < 4 else 4} valid models generated!", title="Finish generating")
|
| 160 |
+
condition = self.director.get_generating_condition()
|
| 161 |
+
|
| 162 |
+
# Return the first model as the default demonstration
|
| 163 |
+
edge_file = browser_state[condition][0][_EDGE_FILE]
|
| 164 |
+
solid_file = browser_state[condition][0][_SOLID_FILE]
|
| 165 |
+
step_file = browser_state[condition][0][_STEP_FILE]
|
| 166 |
+
|
| 167 |
+
return browser_state, edge_file, solid_file, step_file, browser_state[condition][0]
|
| 168 |
+
|
| 169 |
+
except EmptyInputException as input_e:
|
| 170 |
+
gr.Warning(str(input_e), title="Empty Input")
|
| 171 |
+
|
| 172 |
+
except GeneraingException as generating_e:
|
| 173 |
+
gr.Warning(str(generating_e), title="No Valid Generation")
|
| 174 |
+
|
| 175 |
+
except UnicodeEncodeError as uni_error:
|
| 176 |
+
gr.Warning("We sincerely apologize, but we currently only support English.", title="English Support Only")
|
| 177 |
+
|
| 178 |
+
except FileNotFoundError as file_e:
|
| 179 |
+
gr.Warning("The operation is too frequent!", title="Frequent Operation")
|
| 180 |
+
|
| 181 |
+
except Exception as e:
|
| 182 |
+
print(e)
|
| 183 |
+
gr.Warning("Something bad happened. Please try some other models", title="Unknown Error")
|
| 184 |
+
|
| 185 |
+
return browser_state, gr.update(), gr.update(), gr.update(), gr.update()
|
| 186 |
+
|
| 187 |
+
return generating_method
|
| 188 |
+
|
| 189 |
+
def _update_user_state(self, browser_state, postprocess_output_dir, valid_model):
|
| 190 |
+
# Unstable. May be refactored in the future
|
| 191 |
+
condition = self.director.get_generating_condition()
|
| 192 |
+
browser_state[condition] = list()
|
| 193 |
+
for i, model_number in enumerate(valid_model):
|
| 194 |
+
if (postprocess_output_dir / model_number / 'debug_face_loop' / 'optimized_edge.obj').exists():
|
| 195 |
+
edge = (postprocess_output_dir / model_number / 'debug_face_loop' / 'optimized_edge.obj').as_posix()
|
| 196 |
+
else:
|
| 197 |
+
edge = (postprocess_output_dir / model_number / 'debug_face_loop' / 'edge.obj').as_posix() # Hard coding is not good.
|
| 198 |
+
solid = (postprocess_output_dir / model_number / 'recon_brep.stl').as_posix()
|
| 199 |
+
step = (postprocess_output_dir / model_number / 'recon_brep.step').as_posix()
|
| 200 |
+
browser_state[condition].append([edge, solid, step])
|
| 201 |
+
return browser_state
|
| 202 |
+
|
| 203 |
+
def _postprocess_output_check(self, valid_model):
|
| 204 |
+
if len(valid_model) <= 0:
|
| 205 |
+
raise GeneraingException("No Valid Model Generated!")
|
| 206 |
+
|
| 207 |
+
def _empty_input_check(self, inputs):
|
| 208 |
+
for input_component in inputs:
|
| 209 |
+
if input_component is None:
|
| 210 |
+
raise EmptyInputException("Empty input exists!")
|
| 211 |
+
|
| 212 |
+
def _user_state_check(self, state_dict):
|
| 213 |
+
if state_dict['user_id'] is None:
|
| 214 |
+
state_dict['user_id'] = uuid.uuid4()
|
| 215 |
+
if state_dict['user_output_dir'] is None:
|
| 216 |
+
state_dict['user_output_dir'] = Path(self.output_main_dir) / f"user_{state_dict['user_id']}"
|
| 217 |
+
os.makedirs(state_dict['user_output_dir'], exist_ok=True)
|
| 218 |
+
|
| 219 |
+
def _get_valid_models(self, postprocess_output: Path):
|
| 220 |
+
# Get valid **model number** after post-processing
|
| 221 |
+
output_folders = [model_folder for model_folder in os.listdir(postprocess_output) if 'success.txt' in os.listdir(postprocess_output / model_folder)]
|
| 222 |
+
return output_folders
|
| 223 |
+
|
| 224 |
+
def _get_diffusion_output_dir(self, state_dict, condition):
|
| 225 |
+
# Create and clean the diffusion output directory
|
| 226 |
+
diffusion_output_dir = Path(state_dict['user_output_dir']) / condition
|
| 227 |
+
os.makedirs(diffusion_output_dir, exist_ok=True)
|
| 228 |
+
if len(os.listdir(diffusion_output_dir)) > 0:
|
| 229 |
+
shutil.rmtree(diffusion_output_dir)
|
| 230 |
+
return diffusion_output_dir
|
| 231 |
+
|
| 232 |
+
def _get_postprocess_output_dir(self, state_dict, condition):
|
| 233 |
+
# Create and clean the post-process output directory
|
| 234 |
+
postprocess_output_dir = Path(state_dict['user_output_dir']) / f'{condition}_post'
|
| 235 |
+
os.makedirs(postprocess_output_dir, exist_ok=True)
|
| 236 |
+
if len(os.listdir(postprocess_output_dir)) > 0:
|
| 237 |
+
shutil.rmtree(postprocess_output_dir)
|
| 238 |
+
return postprocess_output_dir
|
| 239 |
+
|
| 240 |
+
class GeneraingException(Exception):
|
| 241 |
+
"""Custom exception if generating failed."""
|
| 242 |
+
pass
|
| 243 |
+
|
| 244 |
+
class EmptyInputException(Exception):
|
| 245 |
+
"""Custom exception if the input is empty."""
|
| 246 |
+
pass
|
app/GeneratingMethod/UnconditionedGenerating.py
ADDED
|
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import shutil
|
| 3 |
+
import subprocess
|
| 4 |
+
import uuid
|
| 5 |
+
import gradio as gr
|
| 6 |
+
|
| 7 |
+
from pathlib import Path
|
| 8 |
+
from typing import Tuple
|
| 9 |
+
|
| 10 |
+
from app.inference import inference_batch_postprocess
|
| 11 |
+
|
| 12 |
+
# Should be refactored in the future
|
| 13 |
+
class UncondGeneratingMethod():
|
| 14 |
+
def __init__(self, output_main_dir=Path('./outputs')):
|
| 15 |
+
self.output_main_dir = output_main_dir
|
| 16 |
+
|
| 17 |
+
def generate(self):
|
| 18 |
+
def generate_uncond(seed, state: gr.BrowserState):
|
| 19 |
+
try:
|
| 20 |
+
state = check_user_output_dir(state, self.output_main_dir)
|
| 21 |
+
|
| 22 |
+
generate_output = Path(state['user_output_dir']) / 'unconditional'
|
| 23 |
+
os.makedirs(generate_output, exist_ok=True)
|
| 24 |
+
if len(os.listdir(generate_output)) > 0:
|
| 25 |
+
shutil.rmtree(generate_output)
|
| 26 |
+
os.makedirs(generate_output, exist_ok=True)
|
| 27 |
+
|
| 28 |
+
# Get the generated model
|
| 29 |
+
command = [
|
| 30 |
+
"python", "-m", "diffusion.train_diffusion",
|
| 31 |
+
"trainer.evaluate=true",
|
| 32 |
+
"trainer.batch_size=1000",
|
| 33 |
+
"trainer.gpu=1",
|
| 34 |
+
f"trainer.test_output_dir={generate_output.as_posix()}",
|
| 35 |
+
"trainer.resume_from_checkpoint=YuXingyao/HoLa-Brep/Diffusion_uncond_1100k.ckpt",
|
| 36 |
+
"trainer.num_worker=1",
|
| 37 |
+
"trainer.accelerator=\"32-true\"",
|
| 38 |
+
"trainer.exp_name=test",
|
| 39 |
+
"dataset.name=Dummy_dataset",
|
| 40 |
+
"dataset.length=32",
|
| 41 |
+
"dataset.num_max_faces=30",
|
| 42 |
+
"dataset.condition=None",
|
| 43 |
+
f"dataset.random_seed={seed}",
|
| 44 |
+
"model.name=Diffusion_condition",
|
| 45 |
+
"model.autoencoder_weights=YuXingyao/HoLa-Brep/AE_deepcad_1100k.ckpt",
|
| 46 |
+
"model.autoencoder=AutoEncoder_1119_light",
|
| 47 |
+
"model.with_intersection=true",
|
| 48 |
+
"model.in_channels=6",
|
| 49 |
+
"model.dim_shape=768",
|
| 50 |
+
"model.dim_latent=8",
|
| 51 |
+
"model.gaussian_weights=1e-6",
|
| 52 |
+
"model.pad_method=random",
|
| 53 |
+
"model.diffusion_latent=768",
|
| 54 |
+
"model.diffusion_type=epsilon",
|
| 55 |
+
"model.gaussian_weights=1e-6",
|
| 56 |
+
"model.condition=None",
|
| 57 |
+
"model.num_max_faces=30",
|
| 58 |
+
"model.beta_schedule=linear",
|
| 59 |
+
"model.addition_tag=false",
|
| 60 |
+
"model.name=Diffusion_condition"
|
| 61 |
+
]
|
| 62 |
+
env = os.environ.copy()
|
| 63 |
+
env["CUDA_VISIBLE_DEVICES"] = "0"
|
| 64 |
+
|
| 65 |
+
gr.Info("Start diffusing", title="Runtime Info")
|
| 66 |
+
subprocess.run(command, check=True, env=env)
|
| 67 |
+
gr.Info("Finished diffusing", title="Runtime Info")
|
| 68 |
+
|
| 69 |
+
# Post-process the generated model
|
| 70 |
+
postprocess_output = Path(state['user_output_dir']) / 'unconditional_post'
|
| 71 |
+
os.makedirs(postprocess_output, exist_ok=True)
|
| 72 |
+
if len(os.listdir(postprocess_output)) > 0:
|
| 73 |
+
shutil.rmtree(postprocess_output)
|
| 74 |
+
os.makedirs(postprocess_output, exist_ok=True)
|
| 75 |
+
|
| 76 |
+
gr.Info("Start post-processing.", title="Runtime Info")
|
| 77 |
+
inference_batch_postprocess(
|
| 78 |
+
file_dir=generate_output.as_posix(),
|
| 79 |
+
output_dir=postprocess_output.as_posix(),
|
| 80 |
+
num_cpus=2,
|
| 81 |
+
drop_num=0
|
| 82 |
+
)
|
| 83 |
+
gr.Info("Finished post-processing!", title="Runtime Info")
|
| 84 |
+
valid_models = get_valid_models(postprocess_output)
|
| 85 |
+
|
| 86 |
+
# Should have valid outputs
|
| 87 |
+
if len(valid_models) <= 0:
|
| 88 |
+
raise UncondGeneraingException("No Valid Model Generated!")
|
| 89 |
+
|
| 90 |
+
# Update the user state
|
| 91 |
+
state["uncond"] = list()
|
| 92 |
+
for i, model_number in enumerate(valid_models):
|
| 93 |
+
if (postprocess_output / model_number / 'debug_face_loop' / 'optimized_edge.obj').exists():
|
| 94 |
+
edge = (postprocess_output / model_number / 'debug_face_loop' / 'optimized_edge.obj').as_posix()
|
| 95 |
+
else:
|
| 96 |
+
edge = (postprocess_output / model_number / 'debug_face_loop' / 'edge.obj').as_posix() # Hard coding is not good.
|
| 97 |
+
solid = (postprocess_output / model_number / 'recon_brep.stl').as_posix()
|
| 98 |
+
step = (postprocess_output / model_number / 'recon_brep.step').as_posix()
|
| 99 |
+
state["uncond"].append([edge, solid, step])
|
| 100 |
+
|
| 101 |
+
gr.Info(f"{len(valid_models) if len(valid_models) < 4 else 4} valid models generated!", title="Finish generating")
|
| 102 |
+
|
| 103 |
+
edge_file = state["uncond"][0][0]
|
| 104 |
+
solid_file = state["uncond"][0][1]
|
| 105 |
+
step_file = state["uncond"][0][2]
|
| 106 |
+
return edge_file, solid_file, step_file, state["uncond"][0], state
|
| 107 |
+
except UncondEmptyInputException as input_e:
|
| 108 |
+
gr.Warning(str(input_e), title="Empty Input")
|
| 109 |
+
|
| 110 |
+
except UncondGeneraingException as generating_e:
|
| 111 |
+
gr.Warning(str(generating_e), title="No Valid Generation")
|
| 112 |
+
|
| 113 |
+
except Exception as e:
|
| 114 |
+
print(e)
|
| 115 |
+
gr.Warning("Something bad happened. Please try some other models", title="Unknown Error")
|
| 116 |
+
return gr.update(), gr.update(), gr.update(), gr.update(), state
|
| 117 |
+
|
| 118 |
+
return generate_uncond
|
| 119 |
+
|
| 120 |
+
def get_valid_models(postprocess_output: Path) -> Tuple[Path, Path, Path]:
|
| 121 |
+
output_folders = [model_folder for model_folder in os.listdir(postprocess_output) if 'success.txt' in os.listdir(postprocess_output / model_folder)]
|
| 122 |
+
return output_folders
|
| 123 |
+
|
| 124 |
+
def check_user_output_dir(state: dict, output_dir):
|
| 125 |
+
if state['user_id'] is None:
|
| 126 |
+
state['user_id'] = uuid.uuid4()
|
| 127 |
+
if state['user_output_dir'] is None:
|
| 128 |
+
state['user_output_dir'] = Path(output_dir) / f"user_{state['user_id']}"
|
| 129 |
+
os.makedirs(state['user_output_dir'], exist_ok=True)
|
| 130 |
+
return state
|
| 131 |
+
|
| 132 |
+
class UncondGeneraingException(Exception):
|
| 133 |
+
"""Custom exception if generating failed."""
|
| 134 |
+
pass
|
| 135 |
+
|
| 136 |
+
class UncondEmptyInputException(Exception):
|
| 137 |
+
"""Custom exception if the input is empty."""
|
| 138 |
+
pass
|
app/GeneratingMethod/__init__.py
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .ConditionedGenerating import ConditionedGeneratingMethod
|
| 2 |
+
from .UnconditionedGenerating import UncondGeneratingMethod
|
| 3 |
+
|
| 4 |
+
__all__ = ["ConditionedGeneratingMethod", "UncondGeneratingMethod"]
|
app/ModelBuilder.py
ADDED
|
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from pathlib import Path
|
| 3 |
+
from typing import Optional
|
| 4 |
+
from lightning_fabric import seed_everything
|
| 5 |
+
from huggingface_hub import hf_hub_download
|
| 6 |
+
|
| 7 |
+
from diffusion.diffusion_model import Diffusion_condition
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
'''
|
| 11 |
+
Steps to make a model:
|
| 12 |
+
1. Set up the model structure depending on the modal
|
| 13 |
+
2. Set up AutoEncoder weights
|
| 14 |
+
3. Set up Diffusor weights
|
| 15 |
+
*. Set up the condition flag (Should be deleted in the future)
|
| 16 |
+
4. Pick a random seed
|
| 17 |
+
**. Designate the output folder (Also should be deleted in the future, this is not the responsibility of a model!)
|
| 18 |
+
'''
|
| 19 |
+
class ModelBuilder():
|
| 20 |
+
NUM_PROPOSALS = 32
|
| 21 |
+
def __init__(self):
|
| 22 |
+
self.reset()
|
| 23 |
+
|
| 24 |
+
def set_up_model_template(self, model_class: Diffusion_condition):
|
| 25 |
+
# This shouldn't exist due to the Diffusion_condition's inheritence
|
| 26 |
+
self._model_class = model_class
|
| 27 |
+
|
| 28 |
+
# Theoretically, this function should be the true Builder API
|
| 29 |
+
# def set_up_modal(self, modal: Diffusion_condition):
|
| 30 |
+
# # Set up the modal for the model(pc, txt, sketch, svr, mvr)
|
| 31 |
+
# self._model_instance = modal
|
| 32 |
+
|
| 33 |
+
def setup_autoencoder_weights(self, weights_path: Path | str):
|
| 34 |
+
self._config["autoencoder_weights"] = weights_path
|
| 35 |
+
|
| 36 |
+
def setup_diffusion_weights(self, weights_path: Path | str):
|
| 37 |
+
self._config["diffusion_weights"] = weights_path
|
| 38 |
+
|
| 39 |
+
def setup_condition(self, condition: str):
|
| 40 |
+
self._config["condition"] = [condition]
|
| 41 |
+
|
| 42 |
+
def setup_seed(self, seed: Optional[int] = None):
|
| 43 |
+
if seed is not None:
|
| 44 |
+
seed_everything(seed)
|
| 45 |
+
else:
|
| 46 |
+
seed_everything(0)
|
| 47 |
+
|
| 48 |
+
def setup_output_dir(self, output_dir: Path | str):
|
| 49 |
+
self._config["output_dir"] = output_dir
|
| 50 |
+
|
| 51 |
+
def make_model(self, device: Optional[torch.device] = None):
|
| 52 |
+
# Torch condition
|
| 53 |
+
torch.backends.cudnn.benchmark = False
|
| 54 |
+
torch.set_float32_matmul_precision("medium")
|
| 55 |
+
|
| 56 |
+
# Device
|
| 57 |
+
if device is None:
|
| 58 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 59 |
+
|
| 60 |
+
# Set up modal for the model
|
| 61 |
+
# (Need to be refactored in the future)
|
| 62 |
+
self._model_instance = self._model_class(self._config)
|
| 63 |
+
|
| 64 |
+
# Load diffusion weights
|
| 65 |
+
repo_id = Path(self._config["diffusion_weights"]).parent.as_posix()
|
| 66 |
+
model_name = Path(self._config["diffusion_weights"]).name
|
| 67 |
+
model_weights = hf_hub_download(repo_id=repo_id, filename=model_name)
|
| 68 |
+
diffusion_weights = torch.load(model_weights, map_location=device, weights_only=False)["state_dict"]
|
| 69 |
+
diffusion_weights = {k: v for k, v in diffusion_weights.items() if "ae_model" not in k}
|
| 70 |
+
diffusion_weights = {k[6:]: v for k, v in diffusion_weights.items() if "model" in k}
|
| 71 |
+
|
| 72 |
+
# Load Autoencoder weights
|
| 73 |
+
AE_repo_id = Path(self._config["autoencoder_weights"]).parent.as_posix()
|
| 74 |
+
AE_model_name = Path(self._config["autoencoder_weights"]).name
|
| 75 |
+
AE_model_weights = hf_hub_download(repo_id=AE_repo_id, filename=AE_model_name)
|
| 76 |
+
autoencoder_weights = torch.load(AE_model_weights, map_location=device, weights_only=False)["state_dict"]
|
| 77 |
+
autoencoder_weights = {k[6:]: v for k, v in autoencoder_weights.items() if "model" in k}
|
| 78 |
+
autoencoder_weights = {"ae_model."+k: v for k, v in autoencoder_weights.items()}
|
| 79 |
+
|
| 80 |
+
# Combine ae with diffusor
|
| 81 |
+
diffusion_weights.update(autoencoder_weights)
|
| 82 |
+
diffusion_weights = {k: v for k, v in diffusion_weights.items() if "camera_embedding" not in k}
|
| 83 |
+
|
| 84 |
+
self._model_instance.load_state_dict(diffusion_weights, strict=False)
|
| 85 |
+
self._model_instance.to(device)
|
| 86 |
+
self._model_instance.eval()
|
| 87 |
+
|
| 88 |
+
return self._model_instance
|
| 89 |
+
|
| 90 |
+
def reset(self):
|
| 91 |
+
self._model_class = Diffusion_condition # This shouldn't exist. See set_up_model_template()
|
| 92 |
+
self._model_instance = None
|
| 93 |
+
# Basic model config()
|
| 94 |
+
self._config = {
|
| 95 |
+
"name": "Diffusion_condition",
|
| 96 |
+
"train_decoder": False,
|
| 97 |
+
"stored_z": False,
|
| 98 |
+
"use_mean": True,
|
| 99 |
+
"diffusion_latent": 768,
|
| 100 |
+
"diffusion_type": "epsilon",
|
| 101 |
+
"loss": "l2",
|
| 102 |
+
"pad_method": "random",
|
| 103 |
+
"num_max_faces": 30,
|
| 104 |
+
"beta_schedule": "squaredcos_cap_v2",
|
| 105 |
+
"beta_start": 0.0001,
|
| 106 |
+
"beta_end": 0.02,
|
| 107 |
+
"variance_type": "fixed_small",
|
| 108 |
+
"addition_tag": False,
|
| 109 |
+
"autoencoder": "AutoEncoder_1119_light",
|
| 110 |
+
"with_intersection": True,
|
| 111 |
+
"dim_latent": 8,
|
| 112 |
+
"dim_shape": 768,
|
| 113 |
+
"sigmoid": False,
|
| 114 |
+
"in_channels": 6,
|
| 115 |
+
"gaussian_weights": 1e-6,
|
| 116 |
+
"norm": "layer",
|
| 117 |
+
"autoencoder_weights": "",
|
| 118 |
+
"is_aug": False,
|
| 119 |
+
"condition": [],
|
| 120 |
+
"cond_prob": []
|
| 121 |
+
}
|
| 122 |
+
|
| 123 |
+
@property
|
| 124 |
+
def model(self):
|
| 125 |
+
model = self._model_instance
|
| 126 |
+
return model
|
app/ModelDirector/MVRDirector.py
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from diffusion.diffusion_model import Diffusion_condition_mvr
|
| 2 |
+
from app.ModelDirector import ModelDirector
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
class MVRDirector(ModelDirector):
|
| 6 |
+
def get_ae_weights(self):
|
| 7 |
+
return 'YuXingyao/HoLa-Brep/AE_deepcad_1100k.ckpt'
|
| 8 |
+
|
| 9 |
+
def get_diffusion_weights(self):
|
| 10 |
+
return 'YuXingyao/HoLa-Brep/Diffusion_mvr_sq30_800k.ckpt'
|
| 11 |
+
|
| 12 |
+
def get_generating_condition(self):
|
| 13 |
+
return 'multi_img'
|
| 14 |
+
def config_setup(self):
|
| 15 |
+
# Bad smell, turly. Gonna refactor in the future... Hopefully...
|
| 16 |
+
super().config_setup()
|
| 17 |
+
self._builder.set_up_model_template(Diffusion_condition_mvr)
|
| 18 |
+
|
app/ModelDirector/ModelDirector.py
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Optional, Callable
|
| 2 |
+
from abc import ABC, abstractmethod
|
| 3 |
+
from app import ModelBuilder
|
| 4 |
+
|
| 5 |
+
'''
|
| 6 |
+
Direct the ModelBuilder to build a model depending on the modal the user choose
|
| 7 |
+
'''
|
| 8 |
+
class ModelDirector(ABC):
|
| 9 |
+
def __init__(
|
| 10 |
+
self,
|
| 11 |
+
builder: ModelBuilder = None,
|
| 12 |
+
additional_setup_fn: Optional[Callable[['ModelBuilder'], None]] = None
|
| 13 |
+
):
|
| 14 |
+
if builder is None:
|
| 15 |
+
self._builder = ModelBuilder()
|
| 16 |
+
else:
|
| 17 |
+
self._builder = builder
|
| 18 |
+
self._additional_setup_fn = additional_setup_fn
|
| 19 |
+
self._ae_weights = self.get_ae_weights()
|
| 20 |
+
self._diffusion_weights = self.get_diffusion_weights()
|
| 21 |
+
self._condition = self.get_generating_condition()
|
| 22 |
+
|
| 23 |
+
def config_setup(self):
|
| 24 |
+
self._builder.setup_autoencoder_weights(self._ae_weights)
|
| 25 |
+
self._builder.setup_diffusion_weights(self._diffusion_weights)
|
| 26 |
+
|
| 27 |
+
# User defined setup
|
| 28 |
+
if self._additional_setup_fn:
|
| 29 |
+
self._additional_setup_fn(self._builder)
|
| 30 |
+
|
| 31 |
+
self._builder.setup_condition(self._condition)
|
| 32 |
+
|
| 33 |
+
@property
|
| 34 |
+
def buider(self):
|
| 35 |
+
return self._builder
|
| 36 |
+
|
| 37 |
+
@abstractmethod
|
| 38 |
+
def get_ae_weights(self):
|
| 39 |
+
pass
|
| 40 |
+
|
| 41 |
+
@abstractmethod
|
| 42 |
+
def get_diffusion_weights(self):
|
| 43 |
+
pass
|
| 44 |
+
|
| 45 |
+
@abstractmethod
|
| 46 |
+
def get_generating_condition(self):
|
| 47 |
+
pass
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
|
app/ModelDirector/PointCloudDirector.py
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from app.ModelDirector import ModelDirector
|
| 2 |
+
|
| 3 |
+
class PointCloudDirector(ModelDirector):
|
| 4 |
+
def get_ae_weights(self):
|
| 5 |
+
return 'YuXingyao/HoLa-Brep/AE_deepcad_1100k.ckpt'
|
| 6 |
+
|
| 7 |
+
def get_diffusion_weights(self):
|
| 8 |
+
return 'YuXingyao/HoLa-Brep/Diffusion_pc_sq30_1600k.ckpt'
|
| 9 |
+
|
| 10 |
+
def get_generating_condition(self):
|
| 11 |
+
return 'pc'
|
| 12 |
+
|
app/ModelDirector/SVRDirector.py
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from app.ModelDirector import ModelDirector
|
| 2 |
+
|
| 3 |
+
class SVRDirector(ModelDirector):
|
| 4 |
+
def get_ae_weights(self):
|
| 5 |
+
return 'YuXingyao/HoLa-Brep/AE_deepcad_1100k.ckpt'
|
| 6 |
+
|
| 7 |
+
def get_diffusion_weights(self):
|
| 8 |
+
return 'YuXingyao/HoLa-Brep/Diffusion_svr_sq30_1500k.ckpt'
|
| 9 |
+
|
| 10 |
+
def get_generating_condition(self):
|
| 11 |
+
return 'single_img'
|
| 12 |
+
|
app/ModelDirector/SketchDirector.py
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from app.ModelDirector import ModelDirector
|
| 2 |
+
|
| 3 |
+
class SketchDirector(ModelDirector):
|
| 4 |
+
def get_ae_weights(self):
|
| 5 |
+
return 'YuXingyao/HoLa-Brep/AE_deepcad_1100k.ckpt'
|
| 6 |
+
|
| 7 |
+
def get_diffusion_weights(self):
|
| 8 |
+
return 'YuXingyao/HoLa-Brep/Diffusion_sketch_sq30_1500k.ckpt'
|
| 9 |
+
|
| 10 |
+
def get_generating_condition(self):
|
| 11 |
+
return 'sketch'
|
| 12 |
+
|
app/ModelDirector/TextDirector.py
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from app.ModelDirector import ModelDirector
|
| 2 |
+
|
| 3 |
+
class TextDirector(ModelDirector):
|
| 4 |
+
def get_ae_weights(self):
|
| 5 |
+
return 'YuXingyao/HoLa-Brep/AE_deepcad_1100k.ckpt'
|
| 6 |
+
|
| 7 |
+
def get_diffusion_weights(self):
|
| 8 |
+
return 'YuXingyao/HoLa-Brep/Diffusion_txt_sq30_1000k.ckpt'
|
| 9 |
+
|
| 10 |
+
def get_generating_condition(self):
|
| 11 |
+
return 'txt'
|
| 12 |
+
|
app/ModelDirector/__init__.py
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .ModelDirector import ModelDirector
|
| 2 |
+
from .MVRDirector import MVRDirector
|
| 3 |
+
from .PointCloudDirector import PointCloudDirector
|
| 4 |
+
from .SketchDirector import SketchDirector
|
| 5 |
+
from .SVRDirector import SVRDirector
|
| 6 |
+
from .TextDirector import TextDirector
|
| 7 |
+
|
| 8 |
+
__all__ = ["ModelDirector", "MVRDirector", "PointCloudDirector", "SketchDirector", "SVRDirector", "TextDirector"]
|
app/__init__.py
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .ModelBuilder import ModelBuilder
|
| 2 |
+
|
| 3 |
+
# Maybe I can add something to make this module better. BUT IT WORKS NOW.
|
app/inference.py
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import ray
|
| 3 |
+
import time
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
|
| 6 |
+
from construct_brep import construct_brep_from_datanpz
|
| 7 |
+
|
| 8 |
+
# This file still exists just because a UNSPEAKABLE evil class depends on it
|
| 9 |
+
|
| 10 |
+
def inference_batch_postprocess(file_dir: Path ,output_dir: Path, num_cpus: int=4, drop_num: int=2, timeout: int=60):
|
| 11 |
+
print("Start post-processing")
|
| 12 |
+
|
| 13 |
+
if not ray.is_initialized():
|
| 14 |
+
ray.init(
|
| 15 |
+
num_cpus=num_cpus,
|
| 16 |
+
)
|
| 17 |
+
|
| 18 |
+
construct_brep_from_datanpz_ray = ray.remote(num_cpus=1, max_retries=0)(construct_brep_from_datanpz)
|
| 19 |
+
|
| 20 |
+
all_folders = sorted(os.listdir(file_dir))
|
| 21 |
+
|
| 22 |
+
tasks = [
|
| 23 |
+
construct_brep_from_datanpz_ray.remote(
|
| 24 |
+
data_root=file_dir,
|
| 25 |
+
out_root=output_dir,
|
| 26 |
+
folder_name=model_number,
|
| 27 |
+
v_drop_num=1,
|
| 28 |
+
use_cuda=False,
|
| 29 |
+
from_scratch=True,
|
| 30 |
+
is_log=False,
|
| 31 |
+
is_ray=True,
|
| 32 |
+
is_optimize_geom=True,
|
| 33 |
+
isdebug=False,
|
| 34 |
+
is_save_data=True
|
| 35 |
+
)
|
| 36 |
+
for model_number in all_folders
|
| 37 |
+
]
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
results = []
|
| 41 |
+
success_count = 0
|
| 42 |
+
while tasks and success_count < 4:
|
| 43 |
+
done_ids, tasks = ray.wait(tasks, num_returns=1, timeout=60)
|
| 44 |
+
for done_id in done_ids:
|
| 45 |
+
try:
|
| 46 |
+
result = ray.get(done_id)
|
| 47 |
+
results.append(result)
|
| 48 |
+
|
| 49 |
+
# Delay just a bit to ensure file handles are released
|
| 50 |
+
time.sleep(0.2)
|
| 51 |
+
# Check for 'success.txt' in output folders
|
| 52 |
+
for done_folder in Path(output_dir).iterdir():
|
| 53 |
+
output_files = os.listdir(done_folder)
|
| 54 |
+
if 'success.txt' in output_files:
|
| 55 |
+
success_count += 1
|
| 56 |
+
|
| 57 |
+
except Exception as e:
|
| 58 |
+
print(f"Task failed or timed out: {e}")
|
| 59 |
+
results.append(None)
|
| 60 |
+
if success_count >= 4:
|
| 61 |
+
# Make sure the files are written successfully
|
| 62 |
+
time.sleep(5.0)
|
| 63 |
+
break
|
| 64 |
+
time.sleep(5.0)
|
| 65 |
+
print("Finished post-processing")
|
construct_brep.py
ADDED
|
@@ -0,0 +1,431 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import copy
|
| 2 |
+
import itertools
|
| 3 |
+
import math
|
| 4 |
+
import os, sys, shutil, traceback
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
|
| 7 |
+
import numpy as np
|
| 8 |
+
import torch
|
| 9 |
+
from OCC.Core import Message
|
| 10 |
+
from OCC.Core.Geom import Geom_BSplineSurface
|
| 11 |
+
from OCC.Core.IFSelect import IFSelect_ReturnStatus
|
| 12 |
+
from OCC.Core.IGESControl import IGESControl_Writer
|
| 13 |
+
from OCC.Core.Interface import Interface_Static
|
| 14 |
+
from OCC.Core.Message import Message_PrinterOStream, Message_Alarm
|
| 15 |
+
from OCC.Core.STEPControl import STEPControl_Writer, STEPControl_AsIs, STEPControl_ManifoldSolidBrep, \
|
| 16 |
+
STEPControl_FacetedBrep, STEPControl_ShellBasedSurfaceModel
|
| 17 |
+
from OCC.Core.ShapeFix import ShapeFix_ShapeTolerance
|
| 18 |
+
from OCC.Core.TopAbs import TopAbs_SHAPE
|
| 19 |
+
from OCC.Core.TopoDS import TopoDS_Face
|
| 20 |
+
from OCC.Extend.DataExchange import read_step_file
|
| 21 |
+
|
| 22 |
+
from diffusion.utils import *
|
| 23 |
+
|
| 24 |
+
import ray
|
| 25 |
+
import argparse
|
| 26 |
+
import trimesh
|
| 27 |
+
|
| 28 |
+
import time
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def get_data(v_filename):
|
| 32 |
+
# specify the key to get the face points, edge points and edge_face_connectivity in data.npz
|
| 33 |
+
# data_npz = np.load(os.path.join(data_root, folder_name, 'data.npz'), allow_pickle=True)['arr_0'].item()
|
| 34 |
+
data_npz = np.load(v_filename, allow_pickle=True)
|
| 35 |
+
if 'sample_points_faces' in data_npz and 'edge_face_connectivity' in data_npz:
|
| 36 |
+
face_points = data_npz['sample_points_faces'] # Face sample points (num_faces*20*20*3)
|
| 37 |
+
edge_points = data_npz['sample_points_lines'] # Edge sample points (num_lines*20*3)
|
| 38 |
+
edge_face_connectivity = data_npz['edge_face_connectivity'] # (num_intersection, (id_edge, id_face1, id_face2))
|
| 39 |
+
elif 'pred_face' in data_npz and 'pred_edge_face_connectivity' in data_npz:
|
| 40 |
+
face_points = data_npz['pred_face']
|
| 41 |
+
edge_points = data_npz['pred_edge']
|
| 42 |
+
edge_face_connectivity = data_npz['pred_edge_face_connectivity']
|
| 43 |
+
elif 'pred_face' in data_npz and 'face_edge_adj' in data_npz:
|
| 44 |
+
face_points = data_npz['pred_face'].astype(np.float32)
|
| 45 |
+
edge_points = data_npz['pred_edge'].astype(np.float32)
|
| 46 |
+
face_edge_adj = data_npz['face_edge_adj']
|
| 47 |
+
edge_face_connectivity = []
|
| 48 |
+
N = face_points.shape[0]
|
| 49 |
+
for i in range(N):
|
| 50 |
+
for j in range(i + 1, N):
|
| 51 |
+
intersection = list(set(face_edge_adj[i]).intersection(set(face_edge_adj[j])))
|
| 52 |
+
if len(intersection) > 0:
|
| 53 |
+
edge_face_connectivity.append([intersection[0], i, j])
|
| 54 |
+
edge_face_connectivity = np.array(edge_face_connectivity)
|
| 55 |
+
|
| 56 |
+
else:
|
| 57 |
+
raise ValueError(f"Unknown data npz format {v_filename}")
|
| 58 |
+
|
| 59 |
+
face_points = face_points[..., :3]
|
| 60 |
+
edge_points = edge_points[..., :3]
|
| 61 |
+
shape = Shape(face_points, edge_points, edge_face_connectivity, False)
|
| 62 |
+
return shape
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def get_candidate_shapes(num_drop, v_faces, v_curves, v_conn):
|
| 66 |
+
if num_drop == 0:
|
| 67 |
+
new_faces = [item for item in v_faces]
|
| 68 |
+
new_curves = [item for item in v_curves]
|
| 69 |
+
new_edge_face_connectivity = [item for item in v_conn]
|
| 70 |
+
return [(new_faces, new_curves, new_edge_face_connectivity)]
|
| 71 |
+
num_faces = len(v_faces)
|
| 72 |
+
candidate_shapes = []
|
| 73 |
+
drop_ids = list(itertools.combinations(range(num_faces), num_drop))
|
| 74 |
+
|
| 75 |
+
for drop_id in drop_ids:
|
| 76 |
+
preserved_ids = np.array(list(set(range(num_faces)) - set(drop_id)))
|
| 77 |
+
prev_id_to_new_id = {prev_id: new_id for new_id, prev_id in enumerate(preserved_ids)}
|
| 78 |
+
new_faces = [v_faces[idx] for idx in preserved_ids]
|
| 79 |
+
new_curves = [item for item in v_curves]
|
| 80 |
+
new_edge_face_connectivity = []
|
| 81 |
+
for edge_id, face_id1, face_id2 in v_conn:
|
| 82 |
+
if face_id1 in preserved_ids and face_id2 in preserved_ids:
|
| 83 |
+
new_edge_face_connectivity.append([edge_id, prev_id_to_new_id[face_id1], prev_id_to_new_id[face_id2]])
|
| 84 |
+
candidate_shapes.append((new_faces, new_curves, new_edge_face_connectivity))
|
| 85 |
+
return candidate_shapes
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
def construct_brep_from_datanpz(data_root, out_root, folder_name, v_drop_num=0,
|
| 89 |
+
is_ray=False, is_log=True,
|
| 90 |
+
is_optimize_geom=True, isdebug=False, use_cuda=False, from_scratch=True,
|
| 91 |
+
is_save_data=False):
|
| 92 |
+
disable_occ_log()
|
| 93 |
+
# is_log = False
|
| 94 |
+
# isdebug = False
|
| 95 |
+
time_records = [0, 0, 0, 0, 0, 0]
|
| 96 |
+
timer = time.time()
|
| 97 |
+
data_root = Path(data_root)
|
| 98 |
+
out_root = Path(out_root)
|
| 99 |
+
if from_scratch:
|
| 100 |
+
check_dir(out_root / folder_name)
|
| 101 |
+
|
| 102 |
+
# Check if it is already processed
|
| 103 |
+
if (out_root / folder_name / "success.txt").exists():
|
| 104 |
+
return time_records
|
| 105 |
+
safe_check_dir(out_root / folder_name)
|
| 106 |
+
|
| 107 |
+
debug_face_save_path = out_root / folder_name / "debug_face_loop"
|
| 108 |
+
if is_save_data:
|
| 109 |
+
safe_check_dir(debug_face_save_path)
|
| 110 |
+
|
| 111 |
+
if is_log:
|
| 112 |
+
print(
|
| 113 |
+
f"{Colors.GREEN}############################# Processing {folder_name} #############################{Colors.RESET}")
|
| 114 |
+
|
| 115 |
+
# Prepare the data
|
| 116 |
+
shape = get_data(os.path.join(data_root, folder_name, 'data.npz'))
|
| 117 |
+
if isdebug:
|
| 118 |
+
export_edges(shape.recon_edge_points, debug_face_save_path / 'edge_ori.obj')
|
| 119 |
+
shape.remove_half_edges()
|
| 120 |
+
shape.check_openness()
|
| 121 |
+
shape.build_fe()
|
| 122 |
+
shape.build_vertices(0.2)
|
| 123 |
+
|
| 124 |
+
if isdebug:
|
| 125 |
+
print(
|
| 126 |
+
f"{Colors.GREEN}Remove {len(shape.remove_edge_idx_src) + len(shape.remove_edge_idx_new)} edges{Colors.RESET}")
|
| 127 |
+
|
| 128 |
+
if is_save_data:
|
| 129 |
+
# export_point_cloud(os.path.join(debug_face_save_path, 'face.ply'), shape.recon_face_points.reshape(-1, 3))
|
| 130 |
+
updated_edge_points = np.delete(shape.recon_edge_points, shape.remove_edge_idx_new, axis=0)
|
| 131 |
+
export_edges(updated_edge_points, os.path.join(debug_face_save_path, 'edge.obj'))
|
| 132 |
+
# for face_idx in range(len(shape.face_edge_adj)):
|
| 133 |
+
# export_point_cloud(os.path.join(debug_face_save_path, f"face{face_idx}.ply"),
|
| 134 |
+
# shape.recon_face_points[face_idx].reshape(-1, 3))
|
| 135 |
+
# for edge_idx in shape.face_edge_adj[face_idx]:
|
| 136 |
+
# idx = np.where(shape.edge_face_connectivity[:, 0] == edge_idx)[0][0]
|
| 137 |
+
# adj_face = shape.edge_face_connectivity[idx][1:]
|
| 138 |
+
# export_point_cloud(
|
| 139 |
+
# os.path.join(debug_face_save_path, f"face{face_idx}_edge_idx{edge_idx}_face{adj_face}.ply"),
|
| 140 |
+
# shape.recon_edge_points[edge_idx].reshape(-1, 3),
|
| 141 |
+
# np.linspace([1, 0, 0], [0, 1, 0], shape.recon_edge_points[edge_idx].shape[0]))
|
| 142 |
+
# for edge_idx in range(len(shape.recon_edge_points)):
|
| 143 |
+
# if edge_idx in shape.remove_edge_idx_new:
|
| 144 |
+
# continue
|
| 145 |
+
# export_point_cloud(os.path.join(
|
| 146 |
+
# debug_face_save_path, f'edge{edge_idx}.ply'),
|
| 147 |
+
# shape.recon_edge_points[edge_idx].reshape(-1, 3),
|
| 148 |
+
# np.linspace([1, 0, 0], [0, 1, 0], shape.recon_edge_points[edge_idx].shape[0]))
|
| 149 |
+
|
| 150 |
+
# Optimize data
|
| 151 |
+
if is_optimize_geom:
|
| 152 |
+
interpolation_face = []
|
| 153 |
+
for item in shape.interpolation_face:
|
| 154 |
+
interpolation_face.append(item)
|
| 155 |
+
|
| 156 |
+
if not is_ray:
|
| 157 |
+
shape.recon_face_points, shape.recon_edge_points = optimize(
|
| 158 |
+
interpolation_face, shape.recon_edge_points, shape.recon_face_points,
|
| 159 |
+
shape.edge_face_connectivity, shape.is_end_point, shape.pair1,
|
| 160 |
+
shape.face_edge_adj, v_islog=isdebug, v_max_iter=50, use_cuda=use_cuda)
|
| 161 |
+
else:
|
| 162 |
+
shape.recon_face_points, shape.recon_edge_points = optimize(
|
| 163 |
+
shape.interpolation_face, shape.recon_edge_points, shape.recon_face_points,
|
| 164 |
+
shape.edge_face_connectivity, shape.is_end_point, shape.pair1,
|
| 165 |
+
shape.face_edge_adj, v_islog=False, v_max_iter=50, use_cuda=use_cuda)
|
| 166 |
+
|
| 167 |
+
if is_save_data:
|
| 168 |
+
updated_edge_points = np.delete(shape.recon_edge_points, shape.remove_edge_idx_new, axis=0)
|
| 169 |
+
export_edges(updated_edge_points, os.path.join(debug_face_save_path, 'optimized_edge.obj'))
|
| 170 |
+
# for face_idx in range(len(shape.face_edge_adj)):
|
| 171 |
+
# for edge_idx in shape.face_edge_adj[face_idx]:
|
| 172 |
+
# idx = np.where(shape.edge_face_connectivity[:, 0] == edge_idx)[0][0]
|
| 173 |
+
# adj_face = shape.edge_face_connectivity[idx][1:]
|
| 174 |
+
# export_point_cloud(
|
| 175 |
+
# os.path.join(debug_face_save_path,
|
| 176 |
+
# f"face{face_idx}_optim_edge_idx{edge_idx}_face{adj_face}.ply"),
|
| 177 |
+
# shape.recon_edge_points[edge_idx].reshape(-1, 3),
|
| 178 |
+
# np.linspace([1, 0, 0], [0, 1, 0], shape.recon_edge_points[edge_idx].shape[0]))
|
| 179 |
+
# export_point_cloud(debug_face_save_path / f'optim_face{face_idx}.ply',
|
| 180 |
+
# shape.recon_face_points[face_idx].reshape(-1, 3))
|
| 181 |
+
# for edge_idx in range(len(shape.recon_edge_points)):
|
| 182 |
+
# if edge_idx in shape.remove_edge_idx_new:
|
| 183 |
+
# continue
|
| 184 |
+
# export_point_cloud(
|
| 185 |
+
# os.path.join(debug_face_save_path, f'optim_edge{edge_idx}.ply'),
|
| 186 |
+
# shape.recon_edge_points[edge_idx].reshape(-1, 3),
|
| 187 |
+
# np.linspace([1, 0, 0], [0, 1, 0], shape.recon_edge_points[edge_idx].shape[0]))
|
| 188 |
+
|
| 189 |
+
ori_shape = copy.deepcopy(shape)
|
| 190 |
+
|
| 191 |
+
recon_geom_faces = [create_surface(points) for points in shape.recon_face_points]
|
| 192 |
+
recon_topo_faces = [
|
| 193 |
+
BRepBuilderAPI_MakeFace(geom_face, TRANSFER_PRECISION).Face() for geom_face in recon_geom_faces]
|
| 194 |
+
recon_geom_curves = [create_edge(points) for points in shape.recon_edge_points]
|
| 195 |
+
recon_topo_curves = [BRepBuilderAPI_MakeEdge(curve).Edge() for curve in recon_geom_curves]
|
| 196 |
+
|
| 197 |
+
shape.recon_geom_faces = [item for item in recon_geom_faces]
|
| 198 |
+
shape.recon_topo_faces = [item for item in recon_topo_faces]
|
| 199 |
+
shape.recon_geom_curves = [item for item in recon_geom_curves]
|
| 200 |
+
shape.recon_topo_curves = [item for item in recon_topo_curves]
|
| 201 |
+
shape.build_geom(is_replace_edge=True)
|
| 202 |
+
recon_topo_curves = [item for item in shape.recon_topo_curves]
|
| 203 |
+
|
| 204 |
+
# Write separate faces
|
| 205 |
+
v, f = get_separated_surface(shape.recon_topo_faces, v_precision1=0.1, v_precision2=0.2)
|
| 206 |
+
trimesh.Trimesh(vertices=v, faces=f).export(out_root / folder_name / "separate_faces.ply")
|
| 207 |
+
|
| 208 |
+
num_max_drop = min(v_drop_num, math.ceil(0.2 * len(ori_shape.recon_face_points)))
|
| 209 |
+
is_success = False
|
| 210 |
+
|
| 211 |
+
for num_drop in range(num_max_drop + 1):
|
| 212 |
+
candidate_shapes = get_candidate_shapes(num_drop, recon_geom_faces, recon_topo_curves, ori_shape.edge_face_connectivity)
|
| 213 |
+
|
| 214 |
+
for (faces, curves, connectivity) in candidate_shapes:
|
| 215 |
+
if len(faces) == 0:
|
| 216 |
+
if is_log:
|
| 217 |
+
print(f"{Colors.RED}No data in {folder_name}{Colors.RESET}")
|
| 218 |
+
# shutil.rmtree(os.path.join(out_root, folder_name))
|
| 219 |
+
continue
|
| 220 |
+
|
| 221 |
+
num_faces = len(faces)
|
| 222 |
+
face_edge_adj = [[] for _ in range(num_faces)]
|
| 223 |
+
for edge_face1_face2 in connectivity:
|
| 224 |
+
edge, face1, face2 = edge_face1_face2
|
| 225 |
+
if face1 == face2:
|
| 226 |
+
# raise ValueError("Face1 and Face2 should be different")
|
| 227 |
+
print("Face1 and Face2 should be different")
|
| 228 |
+
continue
|
| 229 |
+
assert edge not in face_edge_adj[face1]
|
| 230 |
+
face_edge_adj[face1].append(edge)
|
| 231 |
+
face_edge_adj[face2].append(edge)
|
| 232 |
+
|
| 233 |
+
# Construct trimmed surface
|
| 234 |
+
trimmed_faces = []
|
| 235 |
+
for i_face in range(num_faces):
|
| 236 |
+
if len(face_edge_adj[i_face]) == 0:
|
| 237 |
+
trimmed_faces.append(None)
|
| 238 |
+
continue
|
| 239 |
+
face_edge_idx = face_edge_adj[i_face]
|
| 240 |
+
geom_face = faces[i_face]
|
| 241 |
+
face_edges = [curves[edge_idx] for edge_idx in face_edge_idx]
|
| 242 |
+
|
| 243 |
+
# Build wire
|
| 244 |
+
trimmed_face = None
|
| 245 |
+
for threshold in CONNECT_TOLERANCE:
|
| 246 |
+
wire_list = create_wire_from_unordered_edges(face_edges, threshold)
|
| 247 |
+
if wire_list is None:
|
| 248 |
+
continue
|
| 249 |
+
|
| 250 |
+
trimmed_face = create_trimmed_face_from_wire(geom_face, face_edges, wire_list, threshold)
|
| 251 |
+
if trimmed_face is not None:
|
| 252 |
+
break
|
| 253 |
+
|
| 254 |
+
trimmed_faces.append(trimmed_face)
|
| 255 |
+
|
| 256 |
+
trimmed_faces = [face for face in trimmed_faces if face is not None]
|
| 257 |
+
if len(trimmed_faces) < 0.8 * num_faces:
|
| 258 |
+
continue
|
| 259 |
+
|
| 260 |
+
# Try construct solid from trimmed faces only
|
| 261 |
+
solid = None
|
| 262 |
+
if len(trimmed_faces) > 0.8 * num_faces:
|
| 263 |
+
for connected_tolerance in CONNECT_TOLERANCE:
|
| 264 |
+
if is_log:
|
| 265 |
+
print(f"Try construct solid with {connected_tolerance}")
|
| 266 |
+
solid = get_solid(trimmed_faces, connected_tolerance)
|
| 267 |
+
if solid is not None:
|
| 268 |
+
break
|
| 269 |
+
|
| 270 |
+
# Check solid
|
| 271 |
+
if solid is not None:
|
| 272 |
+
save_step_file(out_root / folder_name / 'recon_brep.step', solid)
|
| 273 |
+
if not check_step_valid_soild(str(out_root / folder_name / 'recon_brep.step')):
|
| 274 |
+
print("Inconsistent solid check in {}".format(folder_name))
|
| 275 |
+
os.remove(out_root / folder_name / 'recon_brep.step')
|
| 276 |
+
else:
|
| 277 |
+
write_stl_file(solid, str(out_root / folder_name / "recon_brep.stl"),
|
| 278 |
+
linear_deflection=0.1, angular_deflection=0.2)
|
| 279 |
+
open(out_root / folder_name / "success.txt", 'w').close()
|
| 280 |
+
is_success = True
|
| 281 |
+
break
|
| 282 |
+
if is_success:
|
| 283 |
+
break
|
| 284 |
+
|
| 285 |
+
# If solid is None, then try to obtain step file with all faces
|
| 286 |
+
if not is_success:
|
| 287 |
+
# Construct trimmed surface
|
| 288 |
+
num_faces = len(recon_topo_faces)
|
| 289 |
+
face_edge_adj = [[] for _ in range(num_faces)]
|
| 290 |
+
for edge_face1_face2 in ori_shape.edge_face_connectivity:
|
| 291 |
+
edge, face1, face2 = edge_face1_face2
|
| 292 |
+
if face1 == face2:
|
| 293 |
+
# raise ValueError("Face1 and Face2 should be different")
|
| 294 |
+
print("Face1 and Face2 should be different")
|
| 295 |
+
continue
|
| 296 |
+
assert edge not in face_edge_adj[face1]
|
| 297 |
+
face_edge_adj[face1].append(edge)
|
| 298 |
+
face_edge_adj[face2].append(edge)
|
| 299 |
+
|
| 300 |
+
trimmed_faces = []
|
| 301 |
+
for i_face in range(num_faces):
|
| 302 |
+
if len(face_edge_adj[i_face]) == 0:
|
| 303 |
+
trimmed_faces.append(None)
|
| 304 |
+
continue
|
| 305 |
+
face_edge_idx = face_edge_adj[i_face]
|
| 306 |
+
geom_face = recon_geom_faces[i_face]
|
| 307 |
+
face_edges = [recon_topo_curves[edge_idx] for edge_idx in face_edge_idx]
|
| 308 |
+
|
| 309 |
+
# Build wire
|
| 310 |
+
trimmed_face = None
|
| 311 |
+
for threshold in CONNECT_TOLERANCE:
|
| 312 |
+
wire_list = create_wire_from_unordered_edges(face_edges, threshold)
|
| 313 |
+
if wire_list is None:
|
| 314 |
+
continue
|
| 315 |
+
|
| 316 |
+
trimmed_face = create_trimmed_face_from_wire(geom_face, face_edges, wire_list, threshold)
|
| 317 |
+
if trimmed_face is not None:
|
| 318 |
+
break
|
| 319 |
+
|
| 320 |
+
trimmed_faces.append(trimmed_face)
|
| 321 |
+
|
| 322 |
+
mixed_faces = []
|
| 323 |
+
for i_face in range(num_faces):
|
| 324 |
+
if trimmed_faces[i_face] is None:
|
| 325 |
+
face = BRepBuilderAPI_MakeFace(recon_geom_faces[i_face], TRANSFER_PRECISION).Face()
|
| 326 |
+
mixed_faces.append(face)
|
| 327 |
+
else:
|
| 328 |
+
mixed_faces.append(trimmed_faces[i_face])
|
| 329 |
+
|
| 330 |
+
# trimmed_faces = [face for face in trimmed_faces if face is not None]
|
| 331 |
+
# if len(trimmed_faces) < 0.8 * num_faces:
|
| 332 |
+
# continue
|
| 333 |
+
|
| 334 |
+
compound = None
|
| 335 |
+
for connected_tolerance in CONNECT_TOLERANCE:
|
| 336 |
+
compound = get_compound(mixed_faces, connected_tolerance)
|
| 337 |
+
if compound is not None:
|
| 338 |
+
break
|
| 339 |
+
|
| 340 |
+
if compound is not None:
|
| 341 |
+
save_step_file(out_root / folder_name / 'recon_brep.step', compound)
|
| 342 |
+
else:
|
| 343 |
+
print(f"Failed to construct solid in {folder_name}")
|
| 344 |
+
return time_records
|
| 345 |
+
|
| 346 |
+
|
| 347 |
+
if __name__ == '__main__':
|
| 348 |
+
parser = argparse.ArgumentParser(description='Construct Brep From Data')
|
| 349 |
+
parser.add_argument('--data_root', type=str, required=True)
|
| 350 |
+
parser.add_argument('--list', type=str, default="")
|
| 351 |
+
parser.add_argument('--out_root', type=str, required=True)
|
| 352 |
+
parser.add_argument('--num_cpus', type=int, default=12)
|
| 353 |
+
parser.add_argument('--use_ray', action='store_true')
|
| 354 |
+
parser.add_argument('--prefix', type=str, default="")
|
| 355 |
+
parser.add_argument('--use_cuda', action='store_true')
|
| 356 |
+
parser.add_argument('--from_scratch', action='store_true')
|
| 357 |
+
parser.add_argument('--drop_num', type=int, default=0)
|
| 358 |
+
args = parser.parse_args()
|
| 359 |
+
v_data_root = args.data_root
|
| 360 |
+
v_out_root = args.out_root
|
| 361 |
+
filter_list = args.list
|
| 362 |
+
is_use_ray = args.use_ray
|
| 363 |
+
num_cpus = args.num_cpus
|
| 364 |
+
use_cuda = args.use_cuda
|
| 365 |
+
from_scratch = args.from_scratch
|
| 366 |
+
drop_num = args.drop_num
|
| 367 |
+
safe_check_dir(v_out_root)
|
| 368 |
+
if not os.path.exists(v_data_root):
|
| 369 |
+
raise ValueError(f"Data root path {v_data_root} does not exist.")
|
| 370 |
+
|
| 371 |
+
if args.prefix != "":
|
| 372 |
+
construct_brep_from_datanpz(v_data_root, v_out_root, args.prefix,
|
| 373 |
+
v_drop_num=drop_num,
|
| 374 |
+
use_cuda=use_cuda, is_optimize_geom=True, isdebug=True, is_save_data=True, )
|
| 375 |
+
exit()
|
| 376 |
+
all_folders = [folder for folder in os.listdir(v_data_root) if os.path.isdir(os.path.join(v_data_root, folder))]
|
| 377 |
+
if filter_list != "":
|
| 378 |
+
print(f"Use filter_list {filter_list}")
|
| 379 |
+
if not os.path.exists(filter_list):
|
| 380 |
+
raise ValueError(f"List {filter_list} does not exist.")
|
| 381 |
+
if os.path.isdir(filter_list):
|
| 382 |
+
valid_prefies = [f for f in os.listdir(filter_list) if os.path.isdir(os.path.join(filter_list, f))]
|
| 383 |
+
elif filter_list.endswith(".txt"):
|
| 384 |
+
valid_prefies = [item.strip() for item in open(filter_list).readlines()]
|
| 385 |
+
else:
|
| 386 |
+
raise ValueError(f"Invalid list {filter_list}")
|
| 387 |
+
all_folders = list(set(all_folders) & set(valid_prefies))
|
| 388 |
+
|
| 389 |
+
all_folders.sort()
|
| 390 |
+
all_folders = all_folders
|
| 391 |
+
|
| 392 |
+
print(f"Total {len(all_folders)} folders")
|
| 393 |
+
|
| 394 |
+
if not is_use_ray:
|
| 395 |
+
# random.shuffle(all_folders)
|
| 396 |
+
for i in tqdm(range(len(all_folders))):
|
| 397 |
+
construct_brep_from_datanpz(v_data_root, v_out_root, all_folders[i],
|
| 398 |
+
v_drop_num=drop_num,
|
| 399 |
+
use_cuda=use_cuda, from_scratch=from_scratch,
|
| 400 |
+
is_save_data=True, is_log=False, is_optimize_geom=True, is_ray=False, )
|
| 401 |
+
else:
|
| 402 |
+
ray.init(
|
| 403 |
+
dashboard_host="0.0.0.0",
|
| 404 |
+
dashboard_port=8080,
|
| 405 |
+
num_cpus=num_cpus,
|
| 406 |
+
# num_gpus=num_gpus,
|
| 407 |
+
# local_mode=True
|
| 408 |
+
)
|
| 409 |
+
construct_brep_from_datanpz_ray = ray.remote(num_gpus=0.1 if use_cuda else 0, max_retries=0)(
|
| 410 |
+
construct_brep_from_datanpz)
|
| 411 |
+
|
| 412 |
+
tasks = []
|
| 413 |
+
for i in range(len(all_folders)):
|
| 414 |
+
tasks.append(construct_brep_from_datanpz_ray.remote(
|
| 415 |
+
v_data_root, v_out_root,
|
| 416 |
+
all_folders[i],
|
| 417 |
+
v_drop_num=drop_num,
|
| 418 |
+
use_cuda=use_cuda, from_scratch=from_scratch,
|
| 419 |
+
is_log=False, is_ray=True, is_optimize_geom=True, isdebug=False,
|
| 420 |
+
))
|
| 421 |
+
results = []
|
| 422 |
+
for i in tqdm(range(len(all_folders))):
|
| 423 |
+
try:
|
| 424 |
+
results.append(ray.get(tasks[i], timeout=60))
|
| 425 |
+
except:
|
| 426 |
+
results.append(None)
|
| 427 |
+
results = [item for item in results if item is not None]
|
| 428 |
+
print(len(results))
|
| 429 |
+
results = np.array(results)
|
| 430 |
+
print(results.mean(axis=0))
|
| 431 |
+
print("Done")
|
environment.yml
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
name: HoLa-Brep
|
| 2 |
+
channels:
|
| 3 |
+
- conda-forge
|
| 4 |
+
- nvidia
|
| 5 |
+
- pytorch
|
| 6 |
+
dependencies:
|
| 7 |
+
- python=3.10
|
| 8 |
+
- pip=24.3.1
|
| 9 |
+
- numpy=2.2.2
|
| 10 |
+
- pythonocc-core==7.8.1
|
eval/__init__.py
ADDED
|
File without changes
|
eval/check_data_deduplicate.py
ADDED
|
@@ -0,0 +1,247 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import multiprocessing
|
| 2 |
+
|
| 3 |
+
import networkx as nx
|
| 4 |
+
import numpy as np
|
| 5 |
+
import argparse
|
| 6 |
+
import os
|
| 7 |
+
|
| 8 |
+
import trimesh
|
| 9 |
+
from tqdm import tqdm
|
| 10 |
+
import ray
|
| 11 |
+
|
| 12 |
+
from check_valid import check_step_valid_soild, load_data_with_prefix
|
| 13 |
+
from eval_brepgen import normalize_pc
|
| 14 |
+
from eval_unique_novel import *
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def find_connected_components(matrix):
|
| 18 |
+
N = len(matrix)
|
| 19 |
+
visited = [False] * N
|
| 20 |
+
components = []
|
| 21 |
+
|
| 22 |
+
def dfs(idx, component):
|
| 23 |
+
stack = [idx]
|
| 24 |
+
while stack:
|
| 25 |
+
node = stack.pop()
|
| 26 |
+
if not visited[node]:
|
| 27 |
+
visited[node] = True
|
| 28 |
+
component.append(node)
|
| 29 |
+
for neighbor in range(N):
|
| 30 |
+
if matrix[node][neighbor] and not visited[neighbor]:
|
| 31 |
+
stack.append(neighbor)
|
| 32 |
+
|
| 33 |
+
for i in range(N):
|
| 34 |
+
if not visited[i]:
|
| 35 |
+
component = []
|
| 36 |
+
dfs(i, component)
|
| 37 |
+
components.append(component)
|
| 38 |
+
|
| 39 |
+
return components
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def compute_unique(graph_list, atol=None, is_use_ray=False, batch_size=100000, num_max_split_batch=128):
|
| 43 |
+
N = len(graph_list)
|
| 44 |
+
identical_pairs = []
|
| 45 |
+
unique_graph_idx = list(range(N))
|
| 46 |
+
pair_0, pair_1 = np.triu_indices(N, k=1)
|
| 47 |
+
check_pairs = np.column_stack((pair_0, pair_1))
|
| 48 |
+
|
| 49 |
+
num_split_batch = len(check_pairs) // batch_size
|
| 50 |
+
if num_split_batch > 64:
|
| 51 |
+
num_split_batch = num_max_split_batch
|
| 52 |
+
batch_size = len(check_pairs) // num_split_batch
|
| 53 |
+
|
| 54 |
+
if not is_use_ray:
|
| 55 |
+
for idx1, idx2 in tqdm(check_pairs):
|
| 56 |
+
is_identical = is_graph_identical(graph_list[idx1], graph_list[idx2], atol=atol)
|
| 57 |
+
if is_identical:
|
| 58 |
+
unique_graph_idx.remove(idx2) if idx2 in unique_graph_idx else None
|
| 59 |
+
else:
|
| 60 |
+
N_batch = len(check_pairs) // batch_size
|
| 61 |
+
futures = []
|
| 62 |
+
for i in tqdm(range(N_batch)):
|
| 63 |
+
batch_pairs = check_pairs[i * batch_size: (i + 1) * batch_size]
|
| 64 |
+
batch_graph_pair = [(graph_list[idx1], graph_list[idx2]) for idx1, idx2 in batch_pairs]
|
| 65 |
+
futures.append(is_graph_identical_remote.remote(batch_graph_pair, atol))
|
| 66 |
+
results = ray.get(futures)
|
| 67 |
+
|
| 68 |
+
for batch_idx in tqdm(range(N_batch)):
|
| 69 |
+
for idx, is_identical in enumerate(results[batch_idx]):
|
| 70 |
+
if not is_identical:
|
| 71 |
+
continue
|
| 72 |
+
idx1, idx2 = check_pairs[batch_idx * batch_size + idx]
|
| 73 |
+
if idx2 in unique_graph_idx:
|
| 74 |
+
unique_graph_idx.remove(idx2)
|
| 75 |
+
identical_pairs.append((idx1, idx2))
|
| 76 |
+
|
| 77 |
+
return unique_graph_idx, identical_pairs
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
def test_check():
|
| 81 |
+
sample = np.random.rand(3, 32, 32, 3)
|
| 82 |
+
face1 = sample[[0, 1, 2]]
|
| 83 |
+
face2 = sample[[0, 2, 1]]
|
| 84 |
+
faces_adj1 = [[0, 1]]
|
| 85 |
+
faces_adj2 = [[0, 2]]
|
| 86 |
+
|
| 87 |
+
graph1 = build_graph(face1, faces_adj1)
|
| 88 |
+
graph2 = build_graph(face2, faces_adj2)
|
| 89 |
+
|
| 90 |
+
is_identical = is_graph_identical(graph1, graph2)
|
| 91 |
+
# 判断图是否相等
|
| 92 |
+
print("Graphs are equal" if is_identical else "Graphs are not equal")
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
def load_data_from_npz(data_npz_file):
|
| 96 |
+
data_npz = np.load(data_npz_file, allow_pickle=True)
|
| 97 |
+
data_npz1 = np.load(data_npz_file.replace("deepcad_32", "deepcad_train_v6"), allow_pickle=True)
|
| 98 |
+
# Brepgen
|
| 99 |
+
if 'face_edge_adj' in data_npz:
|
| 100 |
+
faces = data_npz['pred_face']
|
| 101 |
+
face_edge_adj = data_npz['face_edge_adj']
|
| 102 |
+
faces_adj_pair = []
|
| 103 |
+
N = face_edge_adj.shape[0]
|
| 104 |
+
for face_idx1 in range(N):
|
| 105 |
+
for face_idx2 in range(face_idx1 + 1, N):
|
| 106 |
+
face_edges1 = face_edge_adj[face_idx1]
|
| 107 |
+
face_edges2 = face_edge_adj[face_idx2]
|
| 108 |
+
if sorted((face_idx1, face_idx2)) in faces_adj_pair:
|
| 109 |
+
continue
|
| 110 |
+
if len(set(face_edges1).intersection(set(face_edges2))) > 0:
|
| 111 |
+
faces_adj_pair.append(sorted((face_idx1, face_idx2)))
|
| 112 |
+
return faces, faces_adj_pair
|
| 113 |
+
# Ours
|
| 114 |
+
if 'sample_points_faces' in data_npz:
|
| 115 |
+
face_points = data_npz['sample_points_faces'] # Face sample points (num_faces*20*20*3)
|
| 116 |
+
edge_face_connectivity = data_npz['edge_face_connectivity'] # (num_intersection, (id_edge, id_face1, id_face2))
|
| 117 |
+
elif 'pred_face' in data_npz and 'pred_edge_face_connectivity' in data_npz:
|
| 118 |
+
face_points = data_npz['pred_face']
|
| 119 |
+
edge_face_connectivity = data_npz['pred_edge_face_connectivity']
|
| 120 |
+
else:
|
| 121 |
+
raise ValueError("Invalid data format")
|
| 122 |
+
faces_adj_pair = []
|
| 123 |
+
for edge_idx, face_idx1, face_idx2 in edge_face_connectivity:
|
| 124 |
+
faces_adj_pair.append([face_idx1, face_idx2])
|
| 125 |
+
if face_points.shape[-1] != 3:
|
| 126 |
+
face_points = face_points[..., :3]
|
| 127 |
+
|
| 128 |
+
src_shape = face_points.shape
|
| 129 |
+
face_points = normalize_pc(face_points.reshape(-1, 3)).reshape(src_shape)
|
| 130 |
+
return face_points, faces_adj_pair
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
def main():
|
| 134 |
+
parser = argparse.ArgumentParser()
|
| 135 |
+
parser.add_argument("--train_root", type=str, required=True)
|
| 136 |
+
parser.add_argument("--n_bit", type=int)
|
| 137 |
+
parser.add_argument("--atol", type=float)
|
| 138 |
+
parser.add_argument("--use_ray", action='store_true')
|
| 139 |
+
parser.add_argument("--load_batch_size", type=int, default=100)
|
| 140 |
+
parser.add_argument("--compute_batch_size", type=int, default=10000)
|
| 141 |
+
parser.add_argument("--txt", type=str, default=None)
|
| 142 |
+
parser.add_argument("--num_cpus", type=int, default=32)
|
| 143 |
+
args = parser.parse_args()
|
| 144 |
+
train_data_root = args.train_root
|
| 145 |
+
is_use_ray = args.use_ray
|
| 146 |
+
n_bit = args.n_bit
|
| 147 |
+
atol = args.atol
|
| 148 |
+
load_batch_size = args.load_batch_size
|
| 149 |
+
compute_batch_size = args.compute_batch_size
|
| 150 |
+
folder_list_txt = args.txt
|
| 151 |
+
num_cpus = args.num_cpus
|
| 152 |
+
|
| 153 |
+
if not n_bit and not atol:
|
| 154 |
+
raise ValueError("Must set either n_bit or atol")
|
| 155 |
+
if n_bit and atol:
|
| 156 |
+
raise ValueError("Cannot set both n_bit and atol")
|
| 157 |
+
|
| 158 |
+
if n_bit:
|
| 159 |
+
atol = None
|
| 160 |
+
if atol:
|
| 161 |
+
n_bit = -1
|
| 162 |
+
|
| 163 |
+
if folder_list_txt:
|
| 164 |
+
with open(folder_list_txt, "r") as f:
|
| 165 |
+
check_folders = [line.strip() for line in f.readlines()]
|
| 166 |
+
else:
|
| 167 |
+
check_folders = None
|
| 168 |
+
|
| 169 |
+
################################################## Unqiue #######################################################
|
| 170 |
+
# Load all the data files
|
| 171 |
+
print("Loading data files...")
|
| 172 |
+
data_npz_file_list = load_data_with_prefix(train_data_root, 'data.npz')
|
| 173 |
+
data_npz_file_list.sort()
|
| 174 |
+
if is_use_ray:
|
| 175 |
+
ray.init()
|
| 176 |
+
futures = []
|
| 177 |
+
graph_list = []
|
| 178 |
+
prefix_list = []
|
| 179 |
+
for i in tqdm(range(0, len(data_npz_file_list), load_batch_size)):
|
| 180 |
+
batch_data_npz_file_list = data_npz_file_list[i: i + load_batch_size]
|
| 181 |
+
futures.append(load_and_build_graph_remote.remote(batch_data_npz_file_list, check_folders, n_bit))
|
| 182 |
+
for future in tqdm(futures):
|
| 183 |
+
result = ray.get(future)
|
| 184 |
+
graph_list_batch, prefix_list_batch = result
|
| 185 |
+
graph_list.extend(graph_list_batch)
|
| 186 |
+
prefix_list.extend(prefix_list_batch)
|
| 187 |
+
ray.shutdown()
|
| 188 |
+
else:
|
| 189 |
+
graph_list, prefix_list = load_and_build_graph(data_npz_file_list, n_bit)
|
| 190 |
+
print(f"Loaded {len(graph_list)} data files")
|
| 191 |
+
|
| 192 |
+
# sort the graph list according the face num
|
| 193 |
+
graph_node_num = np.array([graph.number_of_nodes() for graph in graph_list])
|
| 194 |
+
|
| 195 |
+
identical_pairs_txt = train_data_root + f"_identical_pairs_{n_bit}bit.txt"
|
| 196 |
+
fp_identical_pairs = open(identical_pairs_txt, "w")
|
| 197 |
+
fp_identical_pairs.close()
|
| 198 |
+
novel_txt = train_data_root + f"_novel_{n_bit}bit.txt"
|
| 199 |
+
fp_novel = open(novel_txt, "w")
|
| 200 |
+
fp_novel.close()
|
| 201 |
+
|
| 202 |
+
if is_use_ray:
|
| 203 |
+
ray.init(_temp_dir=r"/mnt/d/img2brep/ray_temp")
|
| 204 |
+
unique_graph_idx_list = []
|
| 205 |
+
pbar = tqdm(range(3, 31))
|
| 206 |
+
for num_face in pbar:
|
| 207 |
+
print(f"Processing {num_face}")
|
| 208 |
+
pbar.set_description(f"Processing {num_face}")
|
| 209 |
+
fp_identical_pairs = open(identical_pairs_txt, "a")
|
| 210 |
+
fp_novel = open(novel_txt, "a")
|
| 211 |
+
print(f"face_num = {num_face}", file=fp_identical_pairs)
|
| 212 |
+
|
| 213 |
+
hits_graph_idx = np.where(graph_node_num == num_face)[0]
|
| 214 |
+
hits_graph = [graph_list[idx] for idx in tqdm(hits_graph_idx)]
|
| 215 |
+
hits_graph_prefix = [prefix_list[idx] for idx in hits_graph_idx]
|
| 216 |
+
|
| 217 |
+
if len(hits_graph) != 0:
|
| 218 |
+
local_unique_graph_idx_list, identical_pairs = compute_unique(hits_graph, atol, is_use_ray, compute_batch_size)
|
| 219 |
+
for unique_graph_idx in local_unique_graph_idx_list:
|
| 220 |
+
print(f"{hits_graph_prefix[unique_graph_idx]}", file=fp_novel)
|
| 221 |
+
|
| 222 |
+
local_unique_graph_idx_list = [hits_graph_idx[idx] for idx in local_unique_graph_idx_list]
|
| 223 |
+
unique_graph_idx_list.extend(local_unique_graph_idx_list)
|
| 224 |
+
|
| 225 |
+
if len(identical_pairs) > 0:
|
| 226 |
+
for idx1, idx2 in identical_pairs:
|
| 227 |
+
print(f"{hits_graph_prefix[idx1]} {hits_graph_prefix[idx2]}", file=fp_identical_pairs)
|
| 228 |
+
pbar.set_postfix({"Local Unique": len(local_unique_graph_idx_list) / len(hits_graph),
|
| 229 |
+
"Total Unique": len(unique_graph_idx_list) / len(graph_list), })
|
| 230 |
+
print(f"Unique: {len(local_unique_graph_idx_list)}/{len(hits_graph_idx)}"
|
| 231 |
+
f"={len(local_unique_graph_idx_list) / len(hits_graph_idx)}", file=fp_identical_pairs)
|
| 232 |
+
else:
|
| 233 |
+
print(f"face_num = {num_face} has no data", file=fp_identical_pairs)
|
| 234 |
+
fp_identical_pairs.close()
|
| 235 |
+
fp_novel.close()
|
| 236 |
+
|
| 237 |
+
if is_use_ray:
|
| 238 |
+
ray.shutdown()
|
| 239 |
+
|
| 240 |
+
print(f"Unique num: {len(unique_graph_idx_list)}/{len(graph_list)}={len(unique_graph_idx_list) / len(graph_list)}")
|
| 241 |
+
print(f"Identical pairs are saved to {identical_pairs_txt}")
|
| 242 |
+
print(f"Novel txt are saved to {novel_txt}")
|
| 243 |
+
print("Done")
|
| 244 |
+
|
| 245 |
+
|
| 246 |
+
if __name__ == "__main__":
|
| 247 |
+
main()
|
eval/check_deduplicate_dis.py
ADDED
|
@@ -0,0 +1,317 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import networkx as nx
|
| 2 |
+
import numpy as np
|
| 3 |
+
import argparse
|
| 4 |
+
import os
|
| 5 |
+
|
| 6 |
+
from tqdm import tqdm
|
| 7 |
+
import ray
|
| 8 |
+
|
| 9 |
+
from check_valid import check_step_valid_soild, load_data_with_prefix
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def real2bit(data, n_bits=8, min_range=-1, max_range=1):
|
| 13 |
+
"""Convert vertices in [-1., 1.] to discrete values in [0, n_bits**2 - 1]."""
|
| 14 |
+
range_quantize = 2 ** n_bits - 1
|
| 15 |
+
data_quantize = (data - min_range) * range_quantize / (max_range - min_range)
|
| 16 |
+
data_quantize = np.clip(data_quantize, a_min=0, a_max=range_quantize) # clip values
|
| 17 |
+
return data_quantize.astype(int)
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def build_graph(faces, faces_adj, n_bit=4):
|
| 21 |
+
# faces1 and faces2 are np.array of shape (n_faces, n_points, n_points, 3)
|
| 22 |
+
# faces_adj1 and faces_adj2 are lists of (face_idx, face_idx) adjacency, ex. [[0, 1], [1, 2]]
|
| 23 |
+
faces_bits = real2bit(faces, n_bits=n_bit)
|
| 24 |
+
"""Build a graph from a shape."""
|
| 25 |
+
G = nx.Graph()
|
| 26 |
+
for face_idx, face_bit in enumerate(faces_bits):
|
| 27 |
+
face_bit = face_bit.reshape(-1, 3)
|
| 28 |
+
face_bit_ordered = face_bit[np.lexsort((face_bit[:, 0], face_bit[:, 1], face_bit[:, 2]))]
|
| 29 |
+
G.add_node(face_idx, shape_geometry=face_bit_ordered)
|
| 30 |
+
for pair in faces_adj:
|
| 31 |
+
G.add_edge(pair[0], pair[1])
|
| 32 |
+
return G
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def is_graph_identical(graph1, graph2):
|
| 36 |
+
"""Check if two shapes are identical."""
|
| 37 |
+
# Check if the two graphs are isomorphic considering node attributes
|
| 38 |
+
return nx.is_isomorphic(
|
| 39 |
+
graph1, graph2,
|
| 40 |
+
node_match=lambda n1, n2: np.array_equal(n1['shape_geometry'], n2['shape_geometry'])
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def is_graph_identical_batch(graph_pair_list):
|
| 45 |
+
is_identical_list = []
|
| 46 |
+
for graph1, graph2 in graph_pair_list:
|
| 47 |
+
is_identical = is_graph_identical(graph1, graph2)
|
| 48 |
+
is_identical_list.append(is_identical)
|
| 49 |
+
return is_identical_list
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
is_graph_identical_remote = ray.remote(is_graph_identical_batch)
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def find_connected_components(matrix):
|
| 56 |
+
N = len(matrix)
|
| 57 |
+
visited = [False] * N
|
| 58 |
+
components = []
|
| 59 |
+
|
| 60 |
+
def dfs(idx, component):
|
| 61 |
+
stack = [idx]
|
| 62 |
+
while stack:
|
| 63 |
+
node = stack.pop()
|
| 64 |
+
if not visited[node]:
|
| 65 |
+
visited[node] = True
|
| 66 |
+
component.append(node)
|
| 67 |
+
for neighbor in range(N):
|
| 68 |
+
if matrix[node][neighbor] and not visited[neighbor]:
|
| 69 |
+
stack.append(neighbor)
|
| 70 |
+
|
| 71 |
+
for i in range(N):
|
| 72 |
+
if not visited[i]:
|
| 73 |
+
component = []
|
| 74 |
+
dfs(i, component)
|
| 75 |
+
components.append(component)
|
| 76 |
+
|
| 77 |
+
return components
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
def compute_gen_unique(graph_list, is_use_ray=False, batch_size=100000):
|
| 81 |
+
N = len(graph_list)
|
| 82 |
+
unique_graph_idx = list(range(N))
|
| 83 |
+
pair_0, pair_1 = np.triu_indices(N, k=1)
|
| 84 |
+
check_pairs = list(zip(pair_0, pair_1))
|
| 85 |
+
deduplicate_matrix = np.zeros((N, N), dtype=bool)
|
| 86 |
+
|
| 87 |
+
if not is_use_ray:
|
| 88 |
+
for idx1, idx2 in tqdm(check_pairs):
|
| 89 |
+
is_identical = is_graph_identical(graph_list[idx1], graph_list[idx2])
|
| 90 |
+
if is_identical:
|
| 91 |
+
unique_graph_idx.remove(idx2) if idx2 in unique_graph_idx else None
|
| 92 |
+
deduplicate_matrix[idx1, idx2] = True
|
| 93 |
+
deduplicate_matrix[idx2, idx1] = True
|
| 94 |
+
else:
|
| 95 |
+
ray.init()
|
| 96 |
+
N_batch = len(check_pairs) // batch_size
|
| 97 |
+
futures = []
|
| 98 |
+
for i in tqdm(range(N_batch)):
|
| 99 |
+
batch_pairs = check_pairs[i * batch_size: (i + 1) * batch_size]
|
| 100 |
+
batch_graph_pair = [(graph_list[idx1], graph_list[idx2]) for idx1, idx2 in batch_pairs]
|
| 101 |
+
futures.append(is_graph_identical_remote.remote(batch_graph_pair))
|
| 102 |
+
results = ray.get(futures)
|
| 103 |
+
|
| 104 |
+
for batch_idx in tqdm(range(N_batch)):
|
| 105 |
+
for idx, is_identical in enumerate(results[batch_idx]):
|
| 106 |
+
if not is_identical:
|
| 107 |
+
continue
|
| 108 |
+
idx1, idx2 = check_pairs[batch_idx * batch_size + idx]
|
| 109 |
+
deduplicate_matrix[idx1, idx2] = True
|
| 110 |
+
deduplicate_matrix[idx2, idx1] = True
|
| 111 |
+
if idx2 in unique_graph_idx:
|
| 112 |
+
unique_graph_idx.remove(idx2)
|
| 113 |
+
ray.shutdown()
|
| 114 |
+
|
| 115 |
+
unique = len(unique_graph_idx)
|
| 116 |
+
print(f"Unique: {unique}/{N}")
|
| 117 |
+
unique_ratio = unique / N
|
| 118 |
+
|
| 119 |
+
return unique_ratio, deduplicate_matrix
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
def compute_gen_novel(gen_graph_list, train_graph_list, is_use_ray=False, batch_size=100000):
|
| 123 |
+
M, N = len(gen_graph_list), len(train_graph_list)
|
| 124 |
+
deduplicate_matrix = np.zeros((M, N), dtype=bool)
|
| 125 |
+
pair_0, pair_1 = np.triu_indices_from(deduplicate_matrix, k=1)
|
| 126 |
+
check_pairs = list(zip(pair_0, pair_1))
|
| 127 |
+
non_novel_graph_idx = np.zeros(M, dtype=bool)
|
| 128 |
+
|
| 129 |
+
if not is_use_ray:
|
| 130 |
+
for idx1, idx2 in tqdm(check_pairs):
|
| 131 |
+
if non_novel_graph_idx[idx1]:
|
| 132 |
+
continue
|
| 133 |
+
is_identical = is_graph_identical(gen_graph_list[idx1], train_graph_list[idx2])
|
| 134 |
+
if is_identical:
|
| 135 |
+
non_novel_graph_idx[idx1] = True
|
| 136 |
+
deduplicate_matrix[idx1, idx2] = True
|
| 137 |
+
else:
|
| 138 |
+
ray.init()
|
| 139 |
+
N_batch = len(check_pairs) // batch_size
|
| 140 |
+
futures = []
|
| 141 |
+
for i in tqdm(range(N_batch)):
|
| 142 |
+
batch_pairs = check_pairs[i * batch_size: (i + 1) * batch_size]
|
| 143 |
+
batch_graph_pair = [(gen_graph_list[idx1], train_graph_list[idx2]) for idx1, idx2 in batch_pairs]
|
| 144 |
+
futures.append(is_graph_identical_remote.remote(batch_graph_pair))
|
| 145 |
+
results = ray.get(futures)
|
| 146 |
+
|
| 147 |
+
for batch_idx in tqdm(range(N_batch)):
|
| 148 |
+
for idx, is_identical in enumerate(results[batch_idx]):
|
| 149 |
+
if not is_identical:
|
| 150 |
+
continue
|
| 151 |
+
idx1, idx2 = check_pairs[batch_idx * batch_size + idx]
|
| 152 |
+
deduplicate_matrix[idx1, idx2] = True
|
| 153 |
+
non_novel_graph_idx[idx1] = True
|
| 154 |
+
ray.shutdown()
|
| 155 |
+
|
| 156 |
+
novel = M - np.sum(non_novel_graph_idx)
|
| 157 |
+
print(f"Novel: {novel}/{M}")
|
| 158 |
+
novel_ratio = novel / M
|
| 159 |
+
return novel_ratio, deduplicate_matrix
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
def test_check():
|
| 163 |
+
sample = np.random.rand(3, 32, 32, 3)
|
| 164 |
+
face1 = sample[[0, 1, 2]]
|
| 165 |
+
face2 = sample[[0, 2, 1]]
|
| 166 |
+
faces_adj1 = [[0, 1]]
|
| 167 |
+
faces_adj2 = [[0, 2]]
|
| 168 |
+
|
| 169 |
+
graph1 = build_graph(face1, faces_adj1)
|
| 170 |
+
graph2 = build_graph(face2, faces_adj2)
|
| 171 |
+
|
| 172 |
+
is_identical = is_graph_identical(graph1, graph2)
|
| 173 |
+
# 判断图是否相等
|
| 174 |
+
print("Graphs are equal" if is_identical else "Graphs are not equal")
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
def load_data_from_npz(data_npz_file):
|
| 178 |
+
data_npz = np.load(data_npz_file, allow_pickle=True)
|
| 179 |
+
# Brepgen
|
| 180 |
+
if 'face_edge_adj' in data_npz:
|
| 181 |
+
faces = data_npz['pred_face']
|
| 182 |
+
face_edge_adj = data_npz['face_edge_adj']
|
| 183 |
+
faces_adj_pair = []
|
| 184 |
+
N = face_edge_adj.shape[0]
|
| 185 |
+
for face_idx1 in range(N):
|
| 186 |
+
for face_idx2 in range(face_idx1 + 1, N):
|
| 187 |
+
face_edges1 = face_edge_adj[face_idx1]
|
| 188 |
+
face_edges2 = face_edge_adj[face_idx2]
|
| 189 |
+
if sorted((face_idx1, face_idx2)) in faces_adj_pair:
|
| 190 |
+
continue
|
| 191 |
+
if len(set(face_edges1).intersection(set(face_edges2))) > 0:
|
| 192 |
+
faces_adj_pair.append(sorted((face_idx1, face_idx2)))
|
| 193 |
+
return faces, faces_adj_pair
|
| 194 |
+
# Ours
|
| 195 |
+
if 'sample_points_faces' in data_npz and 'edge_face_connectivity' in data_npz:
|
| 196 |
+
face_points = data_npz['sample_points_faces'] # Face sample points (num_faces*20*20*3)
|
| 197 |
+
edge_points = data_npz['sample_points_lines'] # Edge sample points (num_lines*20*3)
|
| 198 |
+
edge_face_connectivity = data_npz['edge_face_connectivity'] # (num_intersection, (id_edge, id_face1, id_face2))
|
| 199 |
+
elif 'pred_face' in data_npz and 'pred_edge_face_connectivity' in data_npz:
|
| 200 |
+
face_points = data_npz['pred_face']
|
| 201 |
+
edge_points = data_npz['pred_edge']
|
| 202 |
+
edge_face_connectivity = data_npz['pred_edge_face_connectivity']
|
| 203 |
+
else:
|
| 204 |
+
raise ValueError("Invalid data format")
|
| 205 |
+
faces_adj_pair = []
|
| 206 |
+
for edge_idx, face_idx1, face_idx2 in edge_face_connectivity:
|
| 207 |
+
faces_adj_pair.append([face_idx1, face_idx2])
|
| 208 |
+
return face_points, faces_adj_pair
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
def load_and_build_graph(data_npz_file_list, gen_post_data_root=None, n_bit=4):
|
| 212 |
+
gen_graph_list = []
|
| 213 |
+
prefix_list = []
|
| 214 |
+
for data_npz_file in data_npz_file_list:
|
| 215 |
+
folder_name = os.path.basename(os.path.dirname(data_npz_file))
|
| 216 |
+
if gen_post_data_root:
|
| 217 |
+
step_file_list = load_data_with_prefix(os.path.join(gen_post_data_root, folder_name), ".step")
|
| 218 |
+
if len(step_file_list) == 0:
|
| 219 |
+
continue
|
| 220 |
+
if not check_step_valid_soild(step_file_list[0]):
|
| 221 |
+
continue
|
| 222 |
+
prefix_list.append(folder_name)
|
| 223 |
+
faces, faces_adj_pair = load_data_from_npz(data_npz_file)
|
| 224 |
+
graph = build_graph(faces, faces_adj_pair, n_bit)
|
| 225 |
+
gen_graph_list.append(graph)
|
| 226 |
+
return gen_graph_list, prefix_list
|
| 227 |
+
|
| 228 |
+
|
| 229 |
+
load_and_build_graph_remote = ray.remote(load_and_build_graph)
|
| 230 |
+
|
| 231 |
+
|
| 232 |
+
def main():
|
| 233 |
+
parser = argparse.ArgumentParser()
|
| 234 |
+
parser.add_argument("--fake", type=str, required=True)
|
| 235 |
+
parser.add_argument("--fake_post", type=str, required=False)
|
| 236 |
+
parser.add_argument("--train_root", type=str, required=False)
|
| 237 |
+
parser.add_argument("--n_bit", type=int, default=4)
|
| 238 |
+
parser.add_argument("--use_ray", action='store_true')
|
| 239 |
+
parser.add_argument("--load_batch_size", type=int, default=400)
|
| 240 |
+
parser.add_argument("--compute_batch_size", type=int, default=200000)
|
| 241 |
+
parser.add_argument("--txt", type=str, default=None)
|
| 242 |
+
parser.add_argument("--num_cpus", type=int, default=16)
|
| 243 |
+
args = parser.parse_args()
|
| 244 |
+
gen_data_root = args.fake
|
| 245 |
+
gen_post_data_root = args.fake_post
|
| 246 |
+
train_data_root = args.train_root
|
| 247 |
+
is_use_ray = args.use_ray
|
| 248 |
+
n_bit = args.n_bit
|
| 249 |
+
load_batch_size = args.load_batch_size
|
| 250 |
+
compute_batch_size = args.compute_batch_size
|
| 251 |
+
folder_list_txt = args.txt
|
| 252 |
+
num_cpus = args.num_cpus
|
| 253 |
+
|
| 254 |
+
# Load all the generated data files
|
| 255 |
+
print("Loading generated data files...")
|
| 256 |
+
data_npz_file_list = load_data_with_prefix(gen_data_root, 'data.npz')
|
| 257 |
+
if is_use_ray:
|
| 258 |
+
ray.init(num_cpus=num_cpus)
|
| 259 |
+
futures = []
|
| 260 |
+
gen_graph_list = []
|
| 261 |
+
gen_prefix_list = []
|
| 262 |
+
for i in tqdm(range(0, len(data_npz_file_list), load_batch_size)):
|
| 263 |
+
batch_data_npz_file_list = data_npz_file_list[i: i + load_batch_size]
|
| 264 |
+
futures.append(load_and_build_graph_remote.remote(batch_data_npz_file_list, gen_post_data_root, n_bit))
|
| 265 |
+
for future in tqdm(futures):
|
| 266 |
+
result = ray.get(future)
|
| 267 |
+
gen_graph_list_batch, gen_prefix_list_batch = result
|
| 268 |
+
gen_graph_list.extend(gen_graph_list_batch)
|
| 269 |
+
gen_prefix_list.extend(gen_prefix_list_batch)
|
| 270 |
+
ray.shutdown()
|
| 271 |
+
else:
|
| 272 |
+
gen_graph_list, gen_prefix_list = load_and_build_graph(data_npz_file_list, gen_post_data_root, n_bit)
|
| 273 |
+
print(f"Loaded {len(gen_graph_list)} generated data files")
|
| 274 |
+
|
| 275 |
+
print("Loading training data files...")
|
| 276 |
+
data_npz_file_list = load_data_with_prefix(train_data_root, 'data.npz', folder_list_txt=folder_list_txt)
|
| 277 |
+
load_batch_size = load_batch_size * 5
|
| 278 |
+
if is_use_ray:
|
| 279 |
+
ray.init(num_cpus=num_cpus)
|
| 280 |
+
futures = []
|
| 281 |
+
train_graph_list = []
|
| 282 |
+
train_prefix_list = []
|
| 283 |
+
for i in tqdm(range(0, len(data_npz_file_list), load_batch_size)):
|
| 284 |
+
batch_data_npz_file_list = data_npz_file_list[i: i + load_batch_size]
|
| 285 |
+
futures.append(load_and_build_graph_remote.remote(batch_data_npz_file_list, None, n_bit))
|
| 286 |
+
for future in tqdm(futures):
|
| 287 |
+
result = ray.get(future)
|
| 288 |
+
train_graph_list_batch, train_prefix_list_batch = result
|
| 289 |
+
train_graph_list.extend(train_graph_list_batch)
|
| 290 |
+
train_prefix_list.extend(train_prefix_list_batch)
|
| 291 |
+
ray.shutdown()
|
| 292 |
+
else:
|
| 293 |
+
train_graph_list, train_prefix_list = load_and_build_graph(data_npz_file_list, None, n_bit)
|
| 294 |
+
print(f"Loaded {len(train_graph_list)} training data files")
|
| 295 |
+
|
| 296 |
+
print("Computing Unique ratio...")
|
| 297 |
+
unique_ratio, deduplicate_matrix = compute_gen_unique(gen_graph_list, is_use_ray, compute_batch_size)
|
| 298 |
+
print(f"Unique ratio: {unique_ratio}")
|
| 299 |
+
|
| 300 |
+
deduplicate_components_txt = gen_data_root + f"_deduplicate_components_{n_bit}bit.txt"
|
| 301 |
+
fp = open(deduplicate_components_txt, "w")
|
| 302 |
+
print(f"Unique ratio: {unique_ratio}", file=fp)
|
| 303 |
+
deduplicate_components = find_connected_components(deduplicate_matrix)
|
| 304 |
+
for component in deduplicate_components:
|
| 305 |
+
if len(component) > 1:
|
| 306 |
+
component = [gen_prefix_list[idx] for idx in component]
|
| 307 |
+
print(f"Component: {component}", file=fp)
|
| 308 |
+
print(f"Deduplicate components are saved to {deduplicate_components_txt}")
|
| 309 |
+
|
| 310 |
+
print("Computing Novel ratio...")
|
| 311 |
+
novel_ratio = compute_gen_novel(gen_graph_list, train_graph_list, is_use_ray, compute_batch_size)
|
| 312 |
+
print(f"Novel ratio: {novel_ratio}")
|
| 313 |
+
print("Done")
|
| 314 |
+
|
| 315 |
+
|
| 316 |
+
if __name__ == "__main__":
|
| 317 |
+
main()
|
eval/check_valid.py
ADDED
|
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import random
|
| 2 |
+
import shutil
|
| 3 |
+
import sys
|
| 4 |
+
|
| 5 |
+
from OCC.Core.BRepBuilderAPI import BRepBuilderAPI_MakeSolid
|
| 6 |
+
from OCC.Core.BRepCheck import BRepCheck_Analyzer
|
| 7 |
+
from OCC.Core.IGESControl import IGESControl_Reader
|
| 8 |
+
from OCC.Core.Interface import Interface_Static
|
| 9 |
+
from OCC.Core.STEPControl import STEPControl_Reader, STEPControl_Writer, STEPControl_AsIs
|
| 10 |
+
from OCC.Core.StepData import StepData_StepModel
|
| 11 |
+
from OCC.Core.TopAbs import TopAbs_SOLID, TopAbs_COMPOUND, TopAbs_SHELL, TopAbs_FACE, TopAbs_EDGE
|
| 12 |
+
from OCC.Extend.DataExchange import read_step_file
|
| 13 |
+
from OCC.Core.ShapeFix import ShapeFix_ShapeTolerance
|
| 14 |
+
import os
|
| 15 |
+
import argparse
|
| 16 |
+
import glob
|
| 17 |
+
from tqdm import tqdm
|
| 18 |
+
from matplotlib import pyplot as plt
|
| 19 |
+
import numpy as np
|
| 20 |
+
from diffusion.utils import get_primitives
|
| 21 |
+
|
| 22 |
+
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
|
| 23 |
+
|
| 24 |
+
Interface_Static.SetIVal("read.precision.mode", 1)
|
| 25 |
+
Interface_Static.SetRVal("read.precision.val", 1e-1)
|
| 26 |
+
# Interface_Static.SetIVal("read.stdsameparameter.mode", 1)
|
| 27 |
+
# Interface_Static.SetIVal("read.surfacecurve.mode", 3)
|
| 28 |
+
#
|
| 29 |
+
# Interface_Static.SetCVal("write.step.schema", "DIS")
|
| 30 |
+
Interface_Static.SetIVal("write.precision.mode", 2)
|
| 31 |
+
Interface_Static.SetRVal("write.precision.val", 1e-1)
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
# Interface_Static.SetIVal("write.surfacecurve.mode", 1)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def check_step_valid_soild(step_file, precision=1e-1, return_shape=False):
|
| 38 |
+
try:
|
| 39 |
+
shape = read_step_file(str(step_file), as_compound=False, verbosity=False)
|
| 40 |
+
except:
|
| 41 |
+
if return_shape:
|
| 42 |
+
return False, None
|
| 43 |
+
else:
|
| 44 |
+
return False
|
| 45 |
+
if shape.ShapeType() != TopAbs_SOLID:
|
| 46 |
+
if return_shape:
|
| 47 |
+
return False, shape
|
| 48 |
+
else:
|
| 49 |
+
return False
|
| 50 |
+
shape_tol_setter = ShapeFix_ShapeTolerance()
|
| 51 |
+
shape_tol_setter.SetTolerance(shape, precision)
|
| 52 |
+
analyzer = BRepCheck_Analyzer(shape)
|
| 53 |
+
is_valid = analyzer.IsValid()
|
| 54 |
+
if return_shape:
|
| 55 |
+
return is_valid, shape
|
| 56 |
+
return is_valid
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def load_data_with_prefix(root_folder, prefix, folder_list_txt=None):
|
| 60 |
+
data_files = []
|
| 61 |
+
folder_list = []
|
| 62 |
+
if folder_list_txt is not None:
|
| 63 |
+
with open(folder_list_txt, "r") as f:
|
| 64 |
+
folder_list = f.read().splitlines()
|
| 65 |
+
# Walk through the directory tree starting from the root folder
|
| 66 |
+
for root, dirs, files in os.walk(root_folder):
|
| 67 |
+
if folder_list_txt is not None and os.path.basename(root) not in folder_list:
|
| 68 |
+
continue
|
| 69 |
+
is_found = False
|
| 70 |
+
for filename in files:
|
| 71 |
+
# Check if the file ends with the specified prefix
|
| 72 |
+
if filename.endswith(prefix):
|
| 73 |
+
file_path = os.path.join(root, filename)
|
| 74 |
+
is_found = True
|
| 75 |
+
data_files.append(file_path)
|
| 76 |
+
if not is_found:
|
| 77 |
+
print(f"No {prefix} file found in {root}")
|
| 78 |
+
|
| 79 |
+
return data_files
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
if __name__ == "__main__":
|
| 83 |
+
parser = argparse.ArgumentParser()
|
| 84 |
+
parser.add_argument("--data_root", type=str, required=True)
|
| 85 |
+
parser.add_argument("--prefix", type=str, required=False, default="")
|
| 86 |
+
parser.add_argument("--only_success", action="store_true", default=False)
|
| 87 |
+
args = parser.parse_args()
|
| 88 |
+
data_root = args.data_root
|
| 89 |
+
only_success = args.only_success
|
| 90 |
+
folders = [f for f in os.listdir(data_root) if os.path.isdir(os.path.join(data_root, f))]
|
| 91 |
+
|
| 92 |
+
if args.prefix:
|
| 93 |
+
step_file_list = load_data_with_prefix(os.path.join(data_root, args.prefix), ".step")
|
| 94 |
+
assert len(step_file_list) > 0
|
| 95 |
+
print(f"Checking CAD solids in {args.prefix}...")
|
| 96 |
+
isvalid = check_step_valid_soild(step_file_list[0], is_set_gloabl=True)
|
| 97 |
+
print("Valid" if isvalid else "Invalid")
|
| 98 |
+
exit(0)
|
| 99 |
+
|
| 100 |
+
step_file_list = load_data_with_prefix(data_root, ".step")
|
| 101 |
+
|
| 102 |
+
print(f"Total sample features: {len(folders)}")
|
| 103 |
+
print(f"Total CAD solids: {len(step_file_list)}")
|
| 104 |
+
|
| 105 |
+
print("Start checking CAD solids...")
|
| 106 |
+
|
| 107 |
+
exception_folders = []
|
| 108 |
+
exception_out_root = data_root + "_exception"
|
| 109 |
+
if os.path.exists(exception_out_root):
|
| 110 |
+
shutil.rmtree(exception_out_root)
|
| 111 |
+
os.makedirs(exception_out_root, exist_ok=False)
|
| 112 |
+
|
| 113 |
+
# Load cad data
|
| 114 |
+
valid_count = 0
|
| 115 |
+
pbar = tqdm(step_file_list)
|
| 116 |
+
num_faces = []
|
| 117 |
+
num_edges = []
|
| 118 |
+
for step_file in pbar:
|
| 119 |
+
is_valid, shape = check_step_valid_soild(step_file, return_shape=True)
|
| 120 |
+
if os.path.exists(os.path.join(os.path.dirname(step_file), "success.txt")) and not is_valid:
|
| 121 |
+
folder_name = os.path.basename(os.path.dirname(step_file))
|
| 122 |
+
exception_folders.append(folder_name)
|
| 123 |
+
shutil.copytree(os.path.dirname(step_file), os.path.join(exception_out_root, folder_name))
|
| 124 |
+
|
| 125 |
+
if is_valid:
|
| 126 |
+
if only_success and not os.path.exists(os.path.join(os.path.dirname(step_file), "success.txt")):
|
| 127 |
+
continue
|
| 128 |
+
valid_count += 1
|
| 129 |
+
num_faces.append(len(get_primitives(shape, TopAbs_FACE)))
|
| 130 |
+
num_edges.append(len(get_primitives(shape, TopAbs_EDGE)) // 2)
|
| 131 |
+
pbar.set_postfix({"valid_count": valid_count})
|
| 132 |
+
# else:
|
| 133 |
+
# print(f"Invalid CAD solid: {step_file}")
|
| 134 |
+
|
| 135 |
+
fig, ax = plt.subplots(1, 2, layout="constrained")
|
| 136 |
+
ax[0].set_title("Num. faces")
|
| 137 |
+
ax[1].set_title("Num. edges")
|
| 138 |
+
hist_f, bin_f = np.histogram(num_faces, bins=5, range=(0, 30))
|
| 139 |
+
hist_e, bin_e = np.histogram(num_edges, bins=5, range=(0, 50))
|
| 140 |
+
# Normalize
|
| 141 |
+
hist_f = hist_f / np.sum(hist_f)
|
| 142 |
+
hist_e = hist_e / np.sum(hist_e)
|
| 143 |
+
ax[0].plot(bin_f[:-1], hist_f, "-")
|
| 144 |
+
ax[1].plot(bin_e[:-1], hist_e, "-")
|
| 145 |
+
ax[0].set_aspect(1. / ax[0].get_data_ratio())
|
| 146 |
+
ax[1].set_aspect(1. / ax[1].get_data_ratio())
|
| 147 |
+
plt.savefig(data_root + "_num_faces_edges.png", dpi=600)
|
| 148 |
+
|
| 149 |
+
print(f"Number of valid CAD solids: {valid_count}")
|
| 150 |
+
print(f"Valid rate: {valid_count / len(folders) * 100:.2f}%")
|
| 151 |
+
|
| 152 |
+
if len(exception_folders) > 0:
|
| 153 |
+
with open(os.path.join(exception_out_root, "exception_folders.txt"), "w") as f:
|
| 154 |
+
for folder in exception_folders:
|
| 155 |
+
f.write(folder + "\n")
|
| 156 |
+
print(f"Exception folders are saved to {exception_out_root}")
|
| 157 |
+
if len(exception_folders) == 0:
|
| 158 |
+
shutil.rmtree(exception_out_root)
|
| 159 |
+
print("No exception folders found.")
|
eval/eval_brepgen.py
ADDED
|
@@ -0,0 +1,409 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import argparse
|
| 3 |
+
import os
|
| 4 |
+
import numpy as np
|
| 5 |
+
from lightning_fabric import seed_everything
|
| 6 |
+
from tqdm import tqdm
|
| 7 |
+
import random
|
| 8 |
+
import warnings
|
| 9 |
+
from scipy.stats import entropy
|
| 10 |
+
from sklearn.neighbors import NearestNeighbors
|
| 11 |
+
from plyfile import PlyData
|
| 12 |
+
from pathlib import Path
|
| 13 |
+
import multiprocessing
|
| 14 |
+
from chamfer_distance import ChamferDistance
|
| 15 |
+
from eval.eval_pc_set import *
|
| 16 |
+
|
| 17 |
+
N_POINTS = 2000
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def find_files(folder, extension):
|
| 21 |
+
return sorted([Path(os.path.join(folder, f)) for f in os.listdir(folder) if f.endswith(extension)])
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def read_ply(path):
|
| 25 |
+
with open(path, 'rb') as f:
|
| 26 |
+
plydata = PlyData.read(f)
|
| 27 |
+
x = np.array(plydata['vertex']['x'])
|
| 28 |
+
y = np.array(plydata['vertex']['y'])
|
| 29 |
+
z = np.array(plydata['vertex']['z'])
|
| 30 |
+
vertex = np.stack([x, y, z], axis=1)
|
| 31 |
+
return vertex
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def distChamfer(a, b):
|
| 35 |
+
x, y = a, b
|
| 36 |
+
bs, num_points, points_dim = x.size()
|
| 37 |
+
xx = torch.bmm(x, x.transpose(2, 1))
|
| 38 |
+
yy = torch.bmm(y, y.transpose(2, 1))
|
| 39 |
+
zz = torch.bmm(x, y.transpose(2, 1))
|
| 40 |
+
diag_ind = torch.arange(0, num_points).to(a).long()
|
| 41 |
+
rx = xx[:, diag_ind, diag_ind].unsqueeze(1).expand_as(xx)
|
| 42 |
+
ry = yy[:, diag_ind, diag_ind].unsqueeze(1).expand_as(yy)
|
| 43 |
+
P = (rx.transpose(2, 1) + ry - 2 * zz)
|
| 44 |
+
return P.min(1)[0], P.min(2)[0]
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
def _pairwise_CD(sample_pcs, ref_pcs, batch_size):
|
| 48 |
+
N_sample = sample_pcs.shape[0]
|
| 49 |
+
N_ref = ref_pcs.shape[0]
|
| 50 |
+
all_cd = []
|
| 51 |
+
all_emd = []
|
| 52 |
+
iterator = range(N_sample)
|
| 53 |
+
matched_gt = []
|
| 54 |
+
pbar = tqdm(iterator)
|
| 55 |
+
chamfer_dist = ChamferDistance()
|
| 56 |
+
|
| 57 |
+
for sample_b_start in pbar:
|
| 58 |
+
sample_batch = sample_pcs[sample_b_start]
|
| 59 |
+
|
| 60 |
+
cd_lst = []
|
| 61 |
+
emd_lst = []
|
| 62 |
+
for ref_b_start in range(0, N_ref, batch_size):
|
| 63 |
+
ref_b_end = min(N_ref, ref_b_start + batch_size)
|
| 64 |
+
ref_batch = ref_pcs[ref_b_start:ref_b_end]
|
| 65 |
+
|
| 66 |
+
batch_size_ref = ref_batch.size(0)
|
| 67 |
+
sample_batch_exp = sample_batch.view(1, -1, 3).expand(batch_size_ref, -1, -1)
|
| 68 |
+
sample_batch_exp = sample_batch_exp.contiguous()
|
| 69 |
+
|
| 70 |
+
dl, dr, idx1, idx2 = chamfer_dist(sample_batch_exp, ref_batch)
|
| 71 |
+
cd_lst.append((dl.mean(dim=1) + dr.mean(dim=1)).view(1, -1))
|
| 72 |
+
|
| 73 |
+
cd_lst = torch.cat(cd_lst, dim=1)
|
| 74 |
+
all_cd.append(cd_lst)
|
| 75 |
+
|
| 76 |
+
hit = np.argmin(cd_lst.detach().cpu().numpy()[0])
|
| 77 |
+
matched_gt.append(hit)
|
| 78 |
+
pbar.set_postfix({"cov": len(np.unique(matched_gt)) * 1.0 / N_ref})
|
| 79 |
+
|
| 80 |
+
all_cd = torch.cat(all_cd, dim=0) # N_sample, N_ref
|
| 81 |
+
|
| 82 |
+
return all_cd
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
def compute_cov_mmd(sample_pcs, ref_pcs, batch_size):
|
| 86 |
+
all_dist = _pairwise_CD(sample_pcs, ref_pcs, batch_size)
|
| 87 |
+
N_sample, N_ref = all_dist.size(0), all_dist.size(1)
|
| 88 |
+
min_val_fromsmp, min_idx = torch.min(all_dist, dim=1)
|
| 89 |
+
min_val, _ = torch.min(all_dist, dim=0)
|
| 90 |
+
mmd = min_val.mean()
|
| 91 |
+
cov = float(min_idx.unique().view(-1).size(0)) / float(N_ref)
|
| 92 |
+
cov = torch.tensor(cov).to(all_dist)
|
| 93 |
+
|
| 94 |
+
return {
|
| 95 |
+
'MMD-CD': mmd.item(),
|
| 96 |
+
'COV-CD': cov.item(),
|
| 97 |
+
}, min_idx.cpu().numpy()
|
| 98 |
+
|
| 99 |
+
def jsd_between_point_cloud_sets(sample_pcs, ref_pcs, in_unit_sphere, resolution=28):
|
| 100 |
+
'''Computes the JSD between two sets of point-clouds, as introduced in the paper ```Learning Representations And Generative Models
|
| 101 |
+
For 3D Point Clouds```.
|
| 102 |
+
Args:
|
| 103 |
+
sample_pcs: (np.ndarray S1xR2x3) S1 point-clouds, each of R1 points.
|
| 104 |
+
ref_pcs: (np.ndarray S2xR2x3) S2 point-clouds, each of R2 points.
|
| 105 |
+
resolution: (int) grid-resolution. Affects granularity of measurements.
|
| 106 |
+
'''
|
| 107 |
+
sample_grid_var = entropy_of_occupancy_grid(sample_pcs, resolution, in_unit_sphere)[1]
|
| 108 |
+
ref_grid_var = entropy_of_occupancy_grid(ref_pcs, resolution, in_unit_sphere)[1]
|
| 109 |
+
return jensen_shannon_divergence(sample_grid_var, ref_grid_var)
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
def entropy_of_occupancy_grid(pclouds, grid_resolution, in_sphere=False):
|
| 113 |
+
'''Given a collection of point-clouds, estimate the entropy of the random variables
|
| 114 |
+
corresponding to occupancy-grid activation patterns.
|
| 115 |
+
Inputs:
|
| 116 |
+
pclouds: (numpy array) #point-clouds x points per point-cloud x 3
|
| 117 |
+
grid_resolution (int) size of occupancy grid that will be used.
|
| 118 |
+
'''
|
| 119 |
+
epsilon = 10e-4
|
| 120 |
+
bound = 1 + epsilon
|
| 121 |
+
if abs(np.max(pclouds)) > bound or abs(np.min(pclouds)) > bound:
|
| 122 |
+
print(abs(np.max(pclouds)), abs(np.min(pclouds)))
|
| 123 |
+
warnings.warn('Point-clouds are not in unit cube.')
|
| 124 |
+
|
| 125 |
+
if in_sphere and np.max(np.sqrt(np.sum(pclouds ** 2, axis=2))) > bound:
|
| 126 |
+
warnings.warn('Point-clouds are not in unit sphere.')
|
| 127 |
+
|
| 128 |
+
grid_coordinates, _ = unit_cube_grid_point_cloud(grid_resolution, in_sphere)
|
| 129 |
+
grid_coordinates = grid_coordinates.reshape(-1, 3)
|
| 130 |
+
grid_counters = np.zeros(len(grid_coordinates))
|
| 131 |
+
grid_bernoulli_rvars = np.zeros(len(grid_coordinates))
|
| 132 |
+
nn = NearestNeighbors(n_neighbors=1).fit(grid_coordinates)
|
| 133 |
+
|
| 134 |
+
for pc in pclouds:
|
| 135 |
+
_, indices = nn.kneighbors(pc)
|
| 136 |
+
indices = np.squeeze(indices)
|
| 137 |
+
for i in indices:
|
| 138 |
+
grid_counters[i] += 1
|
| 139 |
+
indices = np.unique(indices)
|
| 140 |
+
for i in indices:
|
| 141 |
+
grid_bernoulli_rvars[i] += 1
|
| 142 |
+
|
| 143 |
+
acc_entropy = 0.0
|
| 144 |
+
n = float(len(pclouds))
|
| 145 |
+
for g in grid_bernoulli_rvars:
|
| 146 |
+
p = 0.0
|
| 147 |
+
if g > 0:
|
| 148 |
+
p = float(g) / n
|
| 149 |
+
acc_entropy += entropy([p, 1.0 - p])
|
| 150 |
+
|
| 151 |
+
return acc_entropy / len(grid_counters), grid_counters
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
def unit_cube_grid_point_cloud(resolution, clip_sphere=False):
|
| 155 |
+
'''Returns the center coordinates of each cell of a 3D grid with resolution^3 cells,
|
| 156 |
+
that is placed in the unit-cube.
|
| 157 |
+
If clip_sphere it True it drops the "corner" cells that lie outside the unit-sphere.
|
| 158 |
+
'''
|
| 159 |
+
grid = np.ndarray((resolution, resolution, resolution, 3), np.float32)
|
| 160 |
+
spacing = 1.0 / float(resolution - 1) * 2
|
| 161 |
+
for i in range(resolution):
|
| 162 |
+
for j in range(resolution):
|
| 163 |
+
for k in range(resolution):
|
| 164 |
+
grid[i, j, k, 0] = i * spacing - 0.5 * 2
|
| 165 |
+
grid[i, j, k, 1] = j * spacing - 0.5 * 2
|
| 166 |
+
grid[i, j, k, 2] = k * spacing - 0.5 * 2
|
| 167 |
+
|
| 168 |
+
if clip_sphere:
|
| 169 |
+
grid = grid.reshape(-1, 3)
|
| 170 |
+
grid = grid[np.linalg.norm(grid, axis=1) <= 0.5]
|
| 171 |
+
|
| 172 |
+
return grid, spacing
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
def jensen_shannon_divergence(P, Q):
|
| 176 |
+
if np.any(P < 0) or np.any(Q < 0):
|
| 177 |
+
raise ValueError('Negative values.')
|
| 178 |
+
if len(P) != len(Q):
|
| 179 |
+
raise ValueError('Non equal size.')
|
| 180 |
+
|
| 181 |
+
P_ = P / np.sum(P) # Ensure probabilities.
|
| 182 |
+
Q_ = Q / np.sum(Q)
|
| 183 |
+
|
| 184 |
+
e1 = entropy(P_, base=2)
|
| 185 |
+
e2 = entropy(Q_, base=2)
|
| 186 |
+
e_sum = entropy((P_ + Q_) / 2.0, base=2)
|
| 187 |
+
res = e_sum - ((e1 + e2) / 2.0)
|
| 188 |
+
|
| 189 |
+
res2 = _jsdiv(P_, Q_)
|
| 190 |
+
|
| 191 |
+
if not np.allclose(res, res2, atol=10e-5, rtol=0):
|
| 192 |
+
warnings.warn('Numerical values of two JSD methods don\'t agree.')
|
| 193 |
+
|
| 194 |
+
return res
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
def _jsdiv(P, Q):
|
| 198 |
+
'''another way of computing JSD'''
|
| 199 |
+
|
| 200 |
+
def _kldiv(A, B):
|
| 201 |
+
a = A.copy()
|
| 202 |
+
b = B.copy()
|
| 203 |
+
idx = np.logical_and(a > 0, b > 0)
|
| 204 |
+
a = a[idx]
|
| 205 |
+
b = b[idx]
|
| 206 |
+
return np.sum([v for v in a * np.log2(a / b)])
|
| 207 |
+
|
| 208 |
+
P_ = P / np.sum(P)
|
| 209 |
+
Q_ = Q / np.sum(Q)
|
| 210 |
+
|
| 211 |
+
M = 0.5 * (P_ + Q_)
|
| 212 |
+
|
| 213 |
+
return 0.5 * (_kldiv(P_, M) + _kldiv(Q_, M))
|
| 214 |
+
|
| 215 |
+
|
| 216 |
+
def downsample_pc(points, n):
|
| 217 |
+
sample_idx = random.sample(list(range(points.shape[0])), n)
|
| 218 |
+
return points[sample_idx]
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
def normalize_pc(points):
|
| 222 |
+
# normalize
|
| 223 |
+
mean = np.mean(points, axis=0)
|
| 224 |
+
points = (points - mean)
|
| 225 |
+
# fit to unit cube
|
| 226 |
+
scale = np.max(np.abs(points))
|
| 227 |
+
points = points / scale
|
| 228 |
+
return points
|
| 229 |
+
|
| 230 |
+
|
| 231 |
+
def align_pc(points):
|
| 232 |
+
# 1. Center the point cloud
|
| 233 |
+
centroid = np.mean(points, axis=0)
|
| 234 |
+
centered_points = points - centroid
|
| 235 |
+
|
| 236 |
+
# 2. Calculate the three edge lengths of bbox
|
| 237 |
+
min_coords = np.min(centered_points, axis=0)
|
| 238 |
+
max_coords = np.max(centered_points, axis=0)
|
| 239 |
+
dimensions = max_coords - min_coords
|
| 240 |
+
|
| 241 |
+
# 3. Sort axes by dimension length to get axis order
|
| 242 |
+
axis_order = np.argsort(dimensions)[::-1] # sort from longest to shortest
|
| 243 |
+
|
| 244 |
+
# 4. Create permutation matrix (align longest edge to x, shortest to y)
|
| 245 |
+
perm_matrix = np.zeros((3, 3))
|
| 246 |
+
perm_matrix[0, axis_order[0]] = 1 # longest edge -> x
|
| 247 |
+
perm_matrix[1, axis_order[2]] = 1 # shortest edge -> y
|
| 248 |
+
perm_matrix[2, axis_order[1]] = 1 # medium edge -> z
|
| 249 |
+
|
| 250 |
+
# 5. Apply transformation
|
| 251 |
+
aligned_points = np.dot(centered_points, perm_matrix.T)
|
| 252 |
+
|
| 253 |
+
# 6. Ensure same centroid faces direction
|
| 254 |
+
if np.mean(aligned_points[:, 2]) < 0:
|
| 255 |
+
aligned_points[:, 2] *= -1
|
| 256 |
+
|
| 257 |
+
return aligned_points
|
| 258 |
+
|
| 259 |
+
|
| 260 |
+
def collect_pc(cad_folder):
|
| 261 |
+
pc_path = find_files(os.path.join(cad_folder, 'pcd'), 'final_pcd.ply')
|
| 262 |
+
if len(pc_path) == 0:
|
| 263 |
+
return []
|
| 264 |
+
pc_path = pc_path[-1] # final pcd
|
| 265 |
+
pc = read_ply(pc_path)
|
| 266 |
+
if pc.shape[0] > N_POINTS:
|
| 267 |
+
pc = downsample_pc(pc, N_POINTS)
|
| 268 |
+
pc = normalize_pc(pc)
|
| 269 |
+
return pc
|
| 270 |
+
|
| 271 |
+
|
| 272 |
+
def collect_pc2(cad_folder):
|
| 273 |
+
pc = read_ply(cad_folder)
|
| 274 |
+
if pc.shape[0] > N_POINTS:
|
| 275 |
+
pc = downsample_pc(pc, N_POINTS)
|
| 276 |
+
pc = normalize_pc(pc)
|
| 277 |
+
pc = align_pc(pc)
|
| 278 |
+
return pc
|
| 279 |
+
|
| 280 |
+
|
| 281 |
+
theta_x = np.radians(90) # Rotation angle around X-axis
|
| 282 |
+
theta_y = np.radians(90) # Rotation angle around Y-axis
|
| 283 |
+
theta_z = np.radians(180) # Rotation angle around Z-axis
|
| 284 |
+
|
| 285 |
+
# Create individual rotation matrices
|
| 286 |
+
Rx = np.array([[1, 0, 0],
|
| 287 |
+
[0, np.cos(theta_x), -np.sin(theta_x)],
|
| 288 |
+
[0, np.sin(theta_x), np.cos(theta_x)]])
|
| 289 |
+
|
| 290 |
+
Ry = np.array([[np.cos(theta_y), 0, np.sin(theta_y)],
|
| 291 |
+
[0, 1, 0],
|
| 292 |
+
[-np.sin(theta_y), 0, np.cos(theta_y)]])
|
| 293 |
+
|
| 294 |
+
Rz = np.array([[np.cos(theta_z), -np.sin(theta_z), 0],
|
| 295 |
+
[np.sin(theta_z), np.cos(theta_z), 0],
|
| 296 |
+
[0, 0, 1]])
|
| 297 |
+
|
| 298 |
+
rotation_matrix = np.dot(np.dot(Rz, Ry), Rx)
|
| 299 |
+
|
| 300 |
+
|
| 301 |
+
def collect_pc3(cad_folder):
|
| 302 |
+
pc = read_ply(cad_folder)
|
| 303 |
+
if pc.shape[0] > N_POINTS:
|
| 304 |
+
pc = downsample_pc(pc, N_POINTS)
|
| 305 |
+
pc = normalize_pc(pc)
|
| 306 |
+
rotated_point_cloud = np.dot(pc, rotation_matrix.T).astype(np.float32) # Transpose the rotation matrix to apply it correctly
|
| 307 |
+
return rotated_point_cloud
|
| 308 |
+
|
| 309 |
+
|
| 310 |
+
def load_data_with_prefix(root_folder, prefix):
|
| 311 |
+
data_files = []
|
| 312 |
+
|
| 313 |
+
# Walk through the directory tree starting from the root folder
|
| 314 |
+
for root, dirs, files in os.walk(root_folder):
|
| 315 |
+
for filename in files:
|
| 316 |
+
# Check if the file ends with the specified prefix
|
| 317 |
+
if filename.endswith(prefix):
|
| 318 |
+
file_path = os.path.join(root, filename)
|
| 319 |
+
data_files.append(file_path)
|
| 320 |
+
|
| 321 |
+
data_files.sort()
|
| 322 |
+
return data_files
|
| 323 |
+
|
| 324 |
+
|
| 325 |
+
def main():
|
| 326 |
+
parser = argparse.ArgumentParser()
|
| 327 |
+
parser.add_argument("--fake", type=str)
|
| 328 |
+
parser.add_argument("--real", type=str)
|
| 329 |
+
parser.add_argument("--n_test", type=int, default=1000)
|
| 330 |
+
parser.add_argument("--multi", type=float, default=3)
|
| 331 |
+
parser.add_argument("--times", type=int, default=10)
|
| 332 |
+
parser.add_argument("--batch_size", type=int, default=64)
|
| 333 |
+
args = parser.parse_args()
|
| 334 |
+
|
| 335 |
+
seed_everything(0)
|
| 336 |
+
print("n_test: {}, multiplier: {}, repeat times: {}".format(args.n_test, args.multi, args.times))
|
| 337 |
+
|
| 338 |
+
args.output = args.fake + '_results.txt'
|
| 339 |
+
|
| 340 |
+
seed_everything(0)
|
| 341 |
+
# Load reference pcd
|
| 342 |
+
num_cpus = multiprocessing.cpu_count()
|
| 343 |
+
ref_pcs = []
|
| 344 |
+
gt_shape_paths = load_data_with_prefix(args.real, '.ply')
|
| 345 |
+
load_iter = multiprocessing.Pool(num_cpus).imap(collect_pc2, gt_shape_paths)
|
| 346 |
+
for pc in tqdm(load_iter, total=len(gt_shape_paths)):
|
| 347 |
+
if len(pc) > 0:
|
| 348 |
+
ref_pcs.append(pc)
|
| 349 |
+
ref_pcs = np.stack(ref_pcs, axis=0)
|
| 350 |
+
print("real point clouds: {}".format(ref_pcs.shape))
|
| 351 |
+
|
| 352 |
+
# Load fake pcd
|
| 353 |
+
sample_pcs = []
|
| 354 |
+
shape_paths = load_data_with_prefix(args.fake, '.ply')
|
| 355 |
+
load_iter = multiprocessing.Pool(num_cpus).imap(collect_pc2, shape_paths)
|
| 356 |
+
for pc in tqdm(load_iter, total=len(shape_paths)):
|
| 357 |
+
if len(pc) > 0:
|
| 358 |
+
sample_pcs.append(pc)
|
| 359 |
+
sample_pcs = np.stack(sample_pcs, axis=0)
|
| 360 |
+
|
| 361 |
+
print("fake point clouds: {}".format(sample_pcs.shape))
|
| 362 |
+
|
| 363 |
+
# Testing
|
| 364 |
+
cov_on_gt = []
|
| 365 |
+
fp = open(args.output, "w")
|
| 366 |
+
result_list = []
|
| 367 |
+
for i in range(args.times):
|
| 368 |
+
print("iteration {}...".format(i))
|
| 369 |
+
select_idx1 = random.sample(list(range(len(sample_pcs))), int(args.multi * args.n_test))
|
| 370 |
+
rand_sample_pcs = sample_pcs[select_idx1]
|
| 371 |
+
|
| 372 |
+
select_idx2 = random.sample(list(range(len(ref_pcs))), args.n_test)
|
| 373 |
+
rand_ref_pcs = ref_pcs[select_idx2]
|
| 374 |
+
|
| 375 |
+
jsd = jsd_between_point_cloud_sets(rand_sample_pcs, rand_ref_pcs, in_unit_sphere=False)
|
| 376 |
+
with torch.no_grad():
|
| 377 |
+
rand_sample_pcs = torch.tensor(rand_sample_pcs).cuda().float()
|
| 378 |
+
rand_ref_pcs = torch.tensor(rand_ref_pcs).cuda().float()
|
| 379 |
+
result, idx = compute_cov_mmd(rand_sample_pcs, rand_ref_pcs, batch_size=args.batch_size)
|
| 380 |
+
result.update({"JSD": jsd})
|
| 381 |
+
|
| 382 |
+
cov_on_gt.extend(list(np.array(select_idx2)[np.unique(idx)]))
|
| 383 |
+
|
| 384 |
+
if False:
|
| 385 |
+
unique_idx = np.unique(idx, return_counts=True)
|
| 386 |
+
id_gts = unique_idx[0][np.argsort(unique_idx[1])[::-1][:100]]
|
| 387 |
+
gt_prefixes = [os.path.basename(gt_shape_paths[i])[:8] for i in select_idx2]
|
| 388 |
+
pred_prefixes = [os.path.basename(shape_paths[i])[:8] for i in select_idx1]
|
| 389 |
+
|
| 390 |
+
gt_prefixes[403]
|
| 391 |
+
print(result)
|
| 392 |
+
print(result, file=fp)
|
| 393 |
+
result_list.append(result)
|
| 394 |
+
|
| 395 |
+
avg_result = {}
|
| 396 |
+
for k in result_list[0].keys():
|
| 397 |
+
avg_result.update({"avg-" + k: np.mean([x[k] for x in result_list])})
|
| 398 |
+
print("average result:")
|
| 399 |
+
print(avg_result)
|
| 400 |
+
print(avg_result, file=fp)
|
| 401 |
+
fp.close()
|
| 402 |
+
|
| 403 |
+
cov_on_gt = list(set(cov_on_gt))
|
| 404 |
+
cov_on_gt = [gt_shape_paths[i] for i in cov_on_gt]
|
| 405 |
+
np.save(args.fake + '_cov_on_gt.npy', cov_on_gt)
|
| 406 |
+
|
| 407 |
+
|
| 408 |
+
if __name__ == '__main__':
|
| 409 |
+
main()
|
eval/eval_complexity.py
ADDED
|
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import glob
|
| 2 |
+
import ray
|
| 3 |
+
import numpy as np
|
| 4 |
+
import argparse
|
| 5 |
+
|
| 6 |
+
from OCC.Core.BRepAdaptor import BRepAdaptor_Surface
|
| 7 |
+
from OCC.Core.BRepGProp import brepgprop
|
| 8 |
+
from OCC.Core.BRepLProp import BRepLProp_SLProps
|
| 9 |
+
from OCC.Core.GProp import GProp_GProps
|
| 10 |
+
from lightning_fabric import seed_everything
|
| 11 |
+
|
| 12 |
+
from eval.eval_condition import *
|
| 13 |
+
|
| 14 |
+
import networkx as nx
|
| 15 |
+
from OCC.Core.STEPControl import STEPControl_Reader
|
| 16 |
+
from OCC.Core.TopExp import TopExp_Explorer
|
| 17 |
+
from OCC.Core.TopAbs import TopAbs_VERTEX, TopAbs_EDGE
|
| 18 |
+
from OCC.Core.BRep import BRep_Tool
|
| 19 |
+
from OCC.Core.gp import gp_Pnt
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def remove_outliers_zscore(data, threshold=3, max_value=50):
|
| 23 |
+
if len(data) == 0 or sum(data) == 0:
|
| 24 |
+
return data
|
| 25 |
+
mean = np.mean(data)
|
| 26 |
+
std_dev = np.std(data)
|
| 27 |
+
return [x for x in data if abs((x - mean) / (std_dev + 1e-8)) <= threshold and x < max_value]
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def extract_edges_and_vertices(shape):
|
| 31 |
+
explorer_edges = TopExp_Explorer(shape, TopAbs_EDGE)
|
| 32 |
+
explorer_vertices = TopExp_Explorer(shape, TopAbs_VERTEX)
|
| 33 |
+
|
| 34 |
+
vertex_map = {}
|
| 35 |
+
edges = []
|
| 36 |
+
|
| 37 |
+
while explorer_edges.More():
|
| 38 |
+
edge = explorer_edges.Current()
|
| 39 |
+
|
| 40 |
+
vertices_on_edge = []
|
| 41 |
+
vertex_explorer = TopExp_Explorer(edge, TopAbs_VERTEX)
|
| 42 |
+
while vertex_explorer.More():
|
| 43 |
+
vertex = vertex_explorer.Current()
|
| 44 |
+
point = BRep_Tool.Pnt(vertex)
|
| 45 |
+
coord = (round(point.X(), 6), round(point.Y(), 6), round(point.Z(), 6))
|
| 46 |
+
|
| 47 |
+
if coord not in vertex_map:
|
| 48 |
+
vertex_map[coord] = len(vertex_map)
|
| 49 |
+
|
| 50 |
+
vertices_on_edge.append(vertex_map[coord])
|
| 51 |
+
vertex_explorer.Next()
|
| 52 |
+
|
| 53 |
+
if len(vertices_on_edge) == 2:
|
| 54 |
+
edges.append(tuple(vertices_on_edge))
|
| 55 |
+
|
| 56 |
+
explorer_edges.Next()
|
| 57 |
+
|
| 58 |
+
return vertex_map, edges
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def create_nx_graph(vertex_map, edges):
|
| 62 |
+
graph = nx.Graph()
|
| 63 |
+
|
| 64 |
+
for coord, node_id in vertex_map.items():
|
| 65 |
+
graph.add_node(node_id, coord=coord)
|
| 66 |
+
|
| 67 |
+
for edge in edges:
|
| 68 |
+
graph.add_edge(edge[0], edge[1])
|
| 69 |
+
|
| 70 |
+
return graph
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
def calculate_cyclomatic_complexity(graph):
|
| 74 |
+
num_nodes = graph.number_of_nodes() # N
|
| 75 |
+
num_edges = graph.number_of_edges() # E
|
| 76 |
+
if graph.is_directed():
|
| 77 |
+
num_components = nx.number_strongly_connected_components(graph)
|
| 78 |
+
else:
|
| 79 |
+
num_components = nx.number_connected_components(graph)
|
| 80 |
+
# M = E - N + 2P
|
| 81 |
+
cyclomatic_complexity = num_edges - num_nodes + 2 * num_components
|
| 82 |
+
return cyclomatic_complexity
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
def eval_complexity_one(step_file_path):
|
| 86 |
+
isvalid, shape = check_step_valid_soild(step_file_path, return_shape=True)
|
| 87 |
+
if not isvalid:
|
| 88 |
+
return None
|
| 89 |
+
|
| 90 |
+
vertex_map, edges = extract_edges_and_vertices(shape)
|
| 91 |
+
graph = create_nx_graph(vertex_map, edges)
|
| 92 |
+
cyclomatic_complexity = calculate_cyclomatic_complexity(graph)
|
| 93 |
+
|
| 94 |
+
face_list = get_primitives(shape, TopAbs_FACE)
|
| 95 |
+
num_face = len(face_list)
|
| 96 |
+
num_edge = len(vertex_map.keys())
|
| 97 |
+
num_vertex = len(edges)
|
| 98 |
+
|
| 99 |
+
sample_point_curvature = []
|
| 100 |
+
num_samples = 256
|
| 101 |
+
for face in face_list:
|
| 102 |
+
surf_adaptor = BRepAdaptor_Surface(face)
|
| 103 |
+
u_min, u_max, v_min, v_max = (surf_adaptor.FirstUParameter(), surf_adaptor.LastUParameter(), surf_adaptor.FirstVParameter(),
|
| 104 |
+
surf_adaptor.LastVParameter())
|
| 105 |
+
|
| 106 |
+
u_samples = np.linspace(u_min, u_max, int(np.sqrt(num_samples)))
|
| 107 |
+
v_samples = np.linspace(v_min, v_max, int(np.sqrt(num_samples)))
|
| 108 |
+
|
| 109 |
+
face_sample_point_curvature = []
|
| 110 |
+
for u in u_samples:
|
| 111 |
+
for v in v_samples:
|
| 112 |
+
props = BRepLProp_SLProps(surf_adaptor, u, v, 2, 1e-8)
|
| 113 |
+
if props.IsCurvatureDefined():
|
| 114 |
+
mean_curvature = props.MeanCurvature()
|
| 115 |
+
face_sample_point_curvature.append(abs(mean_curvature))
|
| 116 |
+
face_sample_point_curvature = remove_outliers_zscore(face_sample_point_curvature)
|
| 117 |
+
if len(face_sample_point_curvature) == 0:
|
| 118 |
+
continue
|
| 119 |
+
sample_point_curvature.append(np.median(face_sample_point_curvature))
|
| 120 |
+
|
| 121 |
+
mean_curvature = np.mean(sample_point_curvature) if len(sample_point_curvature) > 0 else np.nan
|
| 122 |
+
|
| 123 |
+
if num_face == 0 or mean_curvature == np.nan:
|
| 124 |
+
return None
|
| 125 |
+
|
| 126 |
+
return {
|
| 127 |
+
'num_face' : int(num_face),
|
| 128 |
+
'num_edge' : int(num_edge),
|
| 129 |
+
'num_vertex' : int(num_vertex),
|
| 130 |
+
'cyclomatic_complexity': cyclomatic_complexity,
|
| 131 |
+
'mean_curvature' : mean_curvature,
|
| 132 |
+
}
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
eval_complexity_one_remote = ray.remote(eval_complexity_one)
|
| 136 |
+
|
| 137 |
+
if __name__ == '__main__':
|
| 138 |
+
parser = argparse.ArgumentParser(description='Evaluate Brep Complexity')
|
| 139 |
+
parser.add_argument('--eval_root', type=str)
|
| 140 |
+
parser.add_argument('--only_valid', action='store_true')
|
| 141 |
+
args = parser.parse_args()
|
| 142 |
+
|
| 143 |
+
# 设置随机种子
|
| 144 |
+
seed_everything(0)
|
| 145 |
+
ray.init(ignore_reinit_error=True, local_mode=False)
|
| 146 |
+
|
| 147 |
+
all_folders = os.listdir(args.eval_root)
|
| 148 |
+
is_valid_list = []
|
| 149 |
+
futures = []
|
| 150 |
+
for folder in tqdm(all_folders):
|
| 151 |
+
step_path_list = glob.glob(os.path.join(args.eval_root, folder, '*.step'))
|
| 152 |
+
if len(step_path_list) == 0:
|
| 153 |
+
is_valid_list.append(False)
|
| 154 |
+
futures.append(None)
|
| 155 |
+
continue
|
| 156 |
+
is_valid_list.append(check_step_valid_soild(step_path_list[0], return_shape=False))
|
| 157 |
+
futures.append(eval_complexity_one_remote.remote(step_path_list[0]))
|
| 158 |
+
|
| 159 |
+
assert len(is_valid_list) == len(futures) == len(all_folders)
|
| 160 |
+
all_result = {}
|
| 161 |
+
for i, future in enumerate(tqdm(futures)):
|
| 162 |
+
if future is None:
|
| 163 |
+
continue
|
| 164 |
+
result = ray.get(future)
|
| 165 |
+
if args.only_valid and not is_valid_list[i]:
|
| 166 |
+
continue
|
| 167 |
+
all_result[all_folders[i]] = result
|
| 168 |
+
|
| 169 |
+
num_face_list = []
|
| 170 |
+
num_edge_list = []
|
| 171 |
+
num_vertex_list = []
|
| 172 |
+
cyclomatic_complexity_list = []
|
| 173 |
+
mean_curvature_list = []
|
| 174 |
+
exception_folder = []
|
| 175 |
+
|
| 176 |
+
for folder, result in tqdm(all_result.items()):
|
| 177 |
+
if result is None:
|
| 178 |
+
continue
|
| 179 |
+
result = dict(result)
|
| 180 |
+
num_face_list.append(result['num_face'])
|
| 181 |
+
num_edge_list.append(result['num_edge'])
|
| 182 |
+
num_vertex_list.append(result['num_vertex'])
|
| 183 |
+
cyclomatic_complexity_list.append(result['cyclomatic_complexity'])
|
| 184 |
+
mean_curvature_list.append(result['mean_curvature'])
|
| 185 |
+
exception_folder.append(folder)
|
| 186 |
+
|
| 187 |
+
print(f'Num Face: {np.mean(num_face_list)}')
|
| 188 |
+
print(f'Num Edge: {np.mean(num_edge_list)}')
|
| 189 |
+
print(f'Num Vertex: {np.mean(num_vertex_list)}')
|
| 190 |
+
print(f'Cyclomatic Complexity: {np.mean(cyclomatic_complexity_list)}')
|
| 191 |
+
print(f'Mean Curvature: {np.mean(mean_curvature_list)}')
|
| 192 |
+
print(f"{np.mean(num_face_list)} {np.mean(num_edge_list)} {np.mean(num_vertex_list)} "
|
| 193 |
+
f"{np.mean(cyclomatic_complexity_list)} {np.mean(mean_curvature_list)}")
|
| 194 |
+
ray.shutdown()
|
eval/eval_cond.sh
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
if [ -z "$TYPE" ]; then
|
| 2 |
+
echo "Error: 'CONDITION' variable is not set."
|
| 3 |
+
exit 1
|
| 4 |
+
fi
|
| 5 |
+
|
| 6 |
+
# Eval
|
| 7 |
+
python -m eval.eval_condition \
|
| 8 |
+
--eval_root ./outputs/${TYPE}_post \
|
| 9 |
+
--gt_root ./data/organized_data/ \
|
| 10 |
+
--list ./data/data_index/deduplicated_deepcad_testing_7_30.txt \
|
| 11 |
+
--use_ray \
|
| 12 |
+
--from_scratch \
|
| 13 |
+
--num_cpus 24
|
eval/eval_condition.py
ADDED
|
@@ -0,0 +1,479 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import time, os, random, traceback, sys
|
| 2 |
+
from pathlib import Path
|
| 3 |
+
|
| 4 |
+
import matplotlib.pyplot as plt
|
| 5 |
+
import torch
|
| 6 |
+
import numpy as np
|
| 7 |
+
|
| 8 |
+
from OCC.Core.BRepAdaptor import BRepAdaptor_Curve
|
| 9 |
+
from tqdm import tqdm
|
| 10 |
+
import trimesh
|
| 11 |
+
import argparse
|
| 12 |
+
|
| 13 |
+
# import pandas as pd
|
| 14 |
+
from chamferdist import ChamferDistance
|
| 15 |
+
|
| 16 |
+
from OCC.Core.STEPControl import STEPControl_Reader
|
| 17 |
+
from OCC.Core.TopExp import TopExp_Explorer
|
| 18 |
+
from OCC.Core.TopAbs import TopAbs_VERTEX, TopAbs_EDGE, TopAbs_FACE
|
| 19 |
+
from OCC.Core.BRep import BRep_Tool
|
| 20 |
+
from OCC.Core.gp import gp_Pnt
|
| 21 |
+
from OCC.Core.IFSelect import IFSelect_RetDone
|
| 22 |
+
from OCC.Extend.DataExchange import read_step_file, write_step_file, write_stl_file
|
| 23 |
+
from OCC.Core.BRepCheck import BRepCheck_Analyzer
|
| 24 |
+
|
| 25 |
+
import ray
|
| 26 |
+
import shutil
|
| 27 |
+
|
| 28 |
+
from OCC.Core.TopoDS import TopoDS_Solid, TopoDS_Shell
|
| 29 |
+
from OCC.Core.TopAbs import TopAbs_COMPOUND, TopAbs_SHELL, TopAbs_SOLID
|
| 30 |
+
|
| 31 |
+
from diffusion.utils import get_primitives, get_triangulations, get_points_along_edge, get_curve_length
|
| 32 |
+
from eval.check_valid import check_step_valid_soild
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def is_vertex_close(p1, p2, tol=1e-3):
|
| 36 |
+
return np.linalg.norm(np.array(p1) - np.array(p2)) < tol
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def compute_statistics(eval_root, v_only_valid, listfile):
|
| 40 |
+
all_folders = [folder for folder in os.listdir(eval_root) if os.path.isdir(os.path.join(eval_root, folder))]
|
| 41 |
+
if listfile != '':
|
| 42 |
+
valid_names = [item.strip() for item in open(listfile, 'r').readlines()]
|
| 43 |
+
all_folders = list(set(all_folders) & set(valid_names))
|
| 44 |
+
all_folders.sort()
|
| 45 |
+
exception_folders = []
|
| 46 |
+
results = {
|
| 47 |
+
"prefix": []
|
| 48 |
+
}
|
| 49 |
+
for folder_name in tqdm(all_folders):
|
| 50 |
+
if not os.path.exists(os.path.join(eval_root, folder_name, 'eval.npz')):
|
| 51 |
+
exception_folders.append(folder_name)
|
| 52 |
+
continue
|
| 53 |
+
|
| 54 |
+
item = np.load(os.path.join(eval_root, folder_name, 'eval.npz'), allow_pickle=True)['results'].item()
|
| 55 |
+
if item['num_recon_face'] == 1:
|
| 56 |
+
exception_folders.append(folder_name)
|
| 57 |
+
if v_only_valid:
|
| 58 |
+
continue
|
| 59 |
+
|
| 60 |
+
if v_only_valid and not os.path.exists(os.path.join(eval_root, folder_name, 'success.txt')):
|
| 61 |
+
continue
|
| 62 |
+
|
| 63 |
+
results["prefix"].append(folder_name)
|
| 64 |
+
for key in item:
|
| 65 |
+
if key not in results:
|
| 66 |
+
results[key] = []
|
| 67 |
+
results[key].append(item[key])
|
| 68 |
+
|
| 69 |
+
if len(exception_folders) != 0:
|
| 70 |
+
print(f"Found exception folders: {exception_folders}")
|
| 71 |
+
|
| 72 |
+
for key in results:
|
| 73 |
+
results[key] = np.array(results[key])
|
| 74 |
+
|
| 75 |
+
results_str = ""
|
| 76 |
+
results_str += "Number\n"
|
| 77 |
+
results_str += f"Vertices: {np.mean(results['num_recon_vertex'])}/{np.mean(results['num_gt_vertex'])}\n"
|
| 78 |
+
results_str += f"Edge: {np.mean(results['num_recon_edge'])}/{np.mean(results['num_gt_edge'])}\n"
|
| 79 |
+
results_str += f"Face: {np.mean(results['num_recon_face'])}/{np.mean(results['num_gt_face'])}\n"
|
| 80 |
+
|
| 81 |
+
results_str += "Chamfer\n"
|
| 82 |
+
results_str += f"Vertices: {np.mean(results['vertex_cd'])}\n"
|
| 83 |
+
results_str += f"Edge: {np.mean(results['edge_cd'])}\n"
|
| 84 |
+
results_str += f"Face: {np.mean(results['face_cd'])}\n"
|
| 85 |
+
|
| 86 |
+
results_str += "Detection\n"
|
| 87 |
+
results_str += f"Vertices: {np.mean(results['vertex_fscore'])}\n"
|
| 88 |
+
results_str += f"Edge: {np.mean(results['edge_fscore'])}\n"
|
| 89 |
+
results_str += f"Face: {np.mean(results['face_fscore'])}\n"
|
| 90 |
+
|
| 91 |
+
results_str += "Topology\n"
|
| 92 |
+
results_str += f"FE: {np.mean(results['fe_fscore'])}\n"
|
| 93 |
+
results_str += f"EV: {np.mean(results['ev_fscore'])}\n"
|
| 94 |
+
|
| 95 |
+
results_str += "Accuracy\n"
|
| 96 |
+
results_str += f"Vertices: {np.mean(results['vertex_acc_cd'])}\n"
|
| 97 |
+
results_str += f"Edge: {np.mean(results['edge_acc_cd'])}\n"
|
| 98 |
+
results_str += f"Face: {np.mean(results['face_acc_cd'])}\n"
|
| 99 |
+
results_str += f"FE: {np.mean(results['fe_pre'])}\n"
|
| 100 |
+
results_str += f"EV: {np.mean(results['ev_pre'])}\n"
|
| 101 |
+
|
| 102 |
+
results_str += "Completeness\n"
|
| 103 |
+
results_str += f"Vertices: {np.mean(results['vertex_com_cd'])}\n"
|
| 104 |
+
results_str += f"Edge: {np.mean(results['edge_com_cd'])}\n"
|
| 105 |
+
results_str += f"Face: {np.mean(results['face_com_cd'])}\n"
|
| 106 |
+
results_str += f"FE: {np.mean(results['fe_rec'])}\n"
|
| 107 |
+
results_str += f"EV: {np.mean(results['ev_rec'])}\n"
|
| 108 |
+
print(results_str)
|
| 109 |
+
print("{:.4f} {:.4f} {:.4f} {:.2f} {:.2f} {:.2f} {:.2f} {:.2f}".format(
|
| 110 |
+
np.mean(results['vertex_cd']), np.mean(results['edge_cd']), np.mean(results['face_cd']),
|
| 111 |
+
np.mean(results['vertex_fscore']), np.mean(results['edge_fscore']), np.mean(results['face_fscore']),
|
| 112 |
+
np.mean(results['fe_fscore']), np.mean(results['ev_fscore']),
|
| 113 |
+
))
|
| 114 |
+
print(
|
| 115 |
+
"{:.0f}/{:.0f} {:.0f}/{:.0f} {:.0f}/{:.0f} {:.4f} {:.4f} {:.4f} {:.4f} {:.4f} {:.4f} {:.2f} {:.2f} {:.2f} {:.2f} {:.2f} {:.2f} {:.2f} {:.2f} {:.2f} {:.2f}".format(
|
| 116 |
+
np.mean(results['num_recon_vertex']), np.mean(results['num_gt_vertex']),
|
| 117 |
+
np.mean(results['num_recon_edge']), np.mean(results['num_gt_edge']),
|
| 118 |
+
np.mean(results['num_recon_face']), np.mean(results['num_gt_face']),
|
| 119 |
+
np.mean(results['vertex_acc_cd']), np.mean(results['edge_acc_cd']), np.mean(results['face_acc_cd']),
|
| 120 |
+
np.mean(results['vertex_com_cd']), np.mean(results['edge_com_cd']), np.mean(results['face_com_cd']),
|
| 121 |
+
np.mean(results['vertex_pre']), np.mean(results['edge_pre']), np.mean(results['face_pre']),
|
| 122 |
+
np.mean(results['fe_pre']), np.mean(results['ev_pre']),
|
| 123 |
+
np.mean(results['vertex_rec']), np.mean(results['edge_rec']), np.mean(results['face_rec']),
|
| 124 |
+
np.mean(results['fe_rec']), np.mean(results['ev_rec'])
|
| 125 |
+
))
|
| 126 |
+
# print(f"{len(all_folders)-len(exception_folders)}/{len(all_folders)} are valid")
|
| 127 |
+
print(f"{results['face_cd'].shape[0]}/{len(all_folders)} are valid")
|
| 128 |
+
|
| 129 |
+
def draw():
|
| 130 |
+
face_chamfer = results['face_cd']
|
| 131 |
+
fig, ax = plt.subplots(1, 1, figsize=(6, 6))
|
| 132 |
+
ax.hist(face_chamfer, bins=50, range=(0, 0.05), density=True, alpha=0.5, color='b', label='Face')
|
| 133 |
+
ax.set_title('Face Chamfer Distance')
|
| 134 |
+
ax.set_xlabel('Chamfer Distance')
|
| 135 |
+
ax.set_ylabel('Density')
|
| 136 |
+
ax.legend()
|
| 137 |
+
plt.savefig(str(eval_root) + "_face_chamfer.png", dpi=600)
|
| 138 |
+
# plt.show()
|
| 139 |
+
|
| 140 |
+
draw()
|
| 141 |
+
pass
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
def get_data(v_shape, v_num_per_m=100):
|
| 145 |
+
faces, face_points, edges, edge_points, vertices, vertex_points = [], [], [], [], [], []
|
| 146 |
+
for face in get_primitives(v_shape, TopAbs_FACE, v_remove_half=True):
|
| 147 |
+
try:
|
| 148 |
+
v, f = get_triangulations(face, 0.1, 0.1)
|
| 149 |
+
if len(f) == 0:
|
| 150 |
+
print("Ignore 0 face")
|
| 151 |
+
continue
|
| 152 |
+
except:
|
| 153 |
+
print("Ignore 1 face")
|
| 154 |
+
continue
|
| 155 |
+
mesh_item = trimesh.Trimesh(vertices=v, faces=f)
|
| 156 |
+
area = mesh_item.area
|
| 157 |
+
num_samples = min(max(int(v_num_per_m * v_num_per_m * area), 5), 10000)
|
| 158 |
+
pc_item, id_face = trimesh.sample.sample_surface(mesh_item, num_samples)
|
| 159 |
+
normals = mesh_item.face_normals[id_face]
|
| 160 |
+
faces.append(face)
|
| 161 |
+
face_points.append(np.concatenate((pc_item, normals), axis=1))
|
| 162 |
+
for edge in get_primitives(v_shape, TopAbs_EDGE, v_remove_half=True):
|
| 163 |
+
length = get_curve_length(edge)
|
| 164 |
+
num_samples = min(max(int(v_num_per_m * length), 5), 10000)
|
| 165 |
+
v = get_points_along_edge(edge, num_samples)
|
| 166 |
+
edges.append(edge)
|
| 167 |
+
edge_points.append(v)
|
| 168 |
+
for vertex in get_primitives(v_shape, TopAbs_VERTEX, v_remove_half=True):
|
| 169 |
+
vertices.append(vertex)
|
| 170 |
+
vertex_points.append(np.asarray([BRep_Tool.Pnt(vertex).Coord()]))
|
| 171 |
+
vertex_points = np.stack(vertex_points, axis=0)
|
| 172 |
+
return faces, face_points, edges, edge_points, vertices, vertex_points
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
def get_chamfer(v_recon_points, v_gt_points):
|
| 176 |
+
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
| 177 |
+
chamfer_distance = ChamferDistance()
|
| 178 |
+
recon_fp = torch.from_numpy(np.concatenate(v_recon_points, axis=0)).float().to(device)[:, :3]
|
| 179 |
+
gt_fp = torch.from_numpy(np.concatenate(v_gt_points, axis=0)).float().to(device)[:, :3]
|
| 180 |
+
fp_acc_cd = chamfer_distance(recon_fp.unsqueeze(0), gt_fp.unsqueeze(0),
|
| 181 |
+
bidirectional=False, point_reduction='mean').cpu().item()
|
| 182 |
+
fp_com_cd = chamfer_distance(gt_fp.unsqueeze(0), recon_fp.unsqueeze(0),
|
| 183 |
+
bidirectional=False, point_reduction='mean').cpu().item()
|
| 184 |
+
fp_cd = fp_acc_cd + fp_com_cd
|
| 185 |
+
return fp_acc_cd, fp_com_cd, fp_cd
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
def get_match_ids(v_recon_points, v_gt_points):
|
| 189 |
+
from scipy.optimize import linear_sum_assignment
|
| 190 |
+
|
| 191 |
+
cost = np.zeros([len(v_recon_points), len(v_gt_points)]) # recon to gt
|
| 192 |
+
for i in range(cost.shape[0]):
|
| 193 |
+
for j in range(cost.shape[1]):
|
| 194 |
+
_, _, cost[i][j] = get_chamfer(
|
| 195 |
+
v_recon_points[i][..., :3][None, ..., :3],
|
| 196 |
+
v_gt_points[j][..., :3][None, ..., :3]
|
| 197 |
+
)
|
| 198 |
+
|
| 199 |
+
recon_indices, recon_to_gt = linear_sum_assignment(cost)
|
| 200 |
+
|
| 201 |
+
result_recon2gt = -1 * np.ones(len(v_recon_points), dtype=np.int32)
|
| 202 |
+
result_gt2recon = -1 * np.ones(len(v_gt_points), dtype=np.int32)
|
| 203 |
+
|
| 204 |
+
result_recon2gt[recon_indices] = recon_to_gt
|
| 205 |
+
result_gt2recon[recon_to_gt] = recon_indices
|
| 206 |
+
return result_recon2gt, result_gt2recon, cost
|
| 207 |
+
|
| 208 |
+
|
| 209 |
+
def get_detection(id_recon_gt, id_gt_recon, cost_matrix, v_threshold=0.1):
|
| 210 |
+
true_positive = 0
|
| 211 |
+
for i in range(len(id_recon_gt)):
|
| 212 |
+
if id_recon_gt[i] != -1 and cost_matrix[i, id_recon_gt[i]] < v_threshold:
|
| 213 |
+
true_positive += 1
|
| 214 |
+
precision = true_positive / (len(id_recon_gt) + 1e-6)
|
| 215 |
+
recall = true_positive / (len(id_gt_recon) + 1e-6)
|
| 216 |
+
return 2 * precision * recall / (precision + recall + 1e-6), precision, recall
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
def get_topology(faces, edges, vertices):
|
| 220 |
+
recon_face_edge, recon_edge_vertex = {}, {}
|
| 221 |
+
for i_face, face in enumerate(faces):
|
| 222 |
+
face_edge = []
|
| 223 |
+
for edge in get_primitives(face, TopAbs_EDGE):
|
| 224 |
+
face_edge.append(edges.index(edge) if edge in edges else edges.index(edge.Reversed()))
|
| 225 |
+
recon_face_edge[i_face] = list(set(face_edge))
|
| 226 |
+
|
| 227 |
+
for i_edge, edge in enumerate(edges):
|
| 228 |
+
edge_vertex = []
|
| 229 |
+
for vertex in get_primitives(edge, TopAbs_VERTEX):
|
| 230 |
+
edge_vertex.append(vertices.index(vertex) if vertex in vertices else vertices.index(vertex.Reversed()))
|
| 231 |
+
recon_edge_vertex[i_edge] = list(set(edge_vertex))
|
| 232 |
+
return recon_face_edge, recon_edge_vertex
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
def get_topo_detection(recon_face_edge, gt_face_edge, id_recon_gt_face, id_recon_gt_edge):
|
| 236 |
+
positive = 0
|
| 237 |
+
for i_recon_face, edges in recon_face_edge.items():
|
| 238 |
+
i_gt_face = id_recon_gt_face[i_recon_face]
|
| 239 |
+
if i_gt_face == -1:
|
| 240 |
+
continue
|
| 241 |
+
for i_edge in edges:
|
| 242 |
+
if id_recon_gt_edge[i_edge] in gt_face_edge[i_gt_face]:
|
| 243 |
+
positive += 1
|
| 244 |
+
precision = positive / (sum([len(edges) for edges in recon_face_edge.values()]) + 1e-6)
|
| 245 |
+
recall = positive / (sum([len(edges) for edges in gt_face_edge.values()]) + 1e-6)
|
| 246 |
+
return 2 * precision * recall / (precision + recall + 1e-6), precision, recall
|
| 247 |
+
|
| 248 |
+
def eval_one_with_try(eval_root, gt_root, folder_name, is_point2cad=False, v_num_per_m=100):
|
| 249 |
+
try:
|
| 250 |
+
eval_one(eval_root, gt_root, folder_name, is_point2cad, v_num_per_m)
|
| 251 |
+
except:
|
| 252 |
+
pass
|
| 253 |
+
|
| 254 |
+
def eval_one(eval_root, gt_root, folder_name, is_point2cad=False, v_num_per_m=100):
|
| 255 |
+
if os.path.exists(eval_root / folder_name / 'error.txt'):
|
| 256 |
+
os.remove(eval_root / folder_name / 'error.txt')
|
| 257 |
+
if os.path.exists(eval_root / folder_name / 'eval.npz'):
|
| 258 |
+
os.remove(eval_root / folder_name / 'eval.npz')
|
| 259 |
+
|
| 260 |
+
# At least have fall_back_mesh
|
| 261 |
+
step_name = "recon_brep.step"
|
| 262 |
+
|
| 263 |
+
if is_point2cad:
|
| 264 |
+
if not (eval_root / folder_name / "clipped/mesh_transformed.ply").exists():
|
| 265 |
+
print(f"Error: {folder_name} does not have mesh_transformed")
|
| 266 |
+
return
|
| 267 |
+
mesh = trimesh.load(eval_root / folder_name / "clipped/mesh_transformed.ply")
|
| 268 |
+
color = np.stack((
|
| 269 |
+
[item[1] for item in mesh.metadata['_ply_raw']['face']['data']],
|
| 270 |
+
[item[2] for item in mesh.metadata['_ply_raw']['face']['data']],
|
| 271 |
+
[item[3] for item in mesh.metadata['_ply_raw']['face']['data']],
|
| 272 |
+
), axis=1)
|
| 273 |
+
color_map = [list(map(lambda item:int(item),item.strip().split(" "))) for item in open("src/brepnet/eval/point2cad_color.txt").readlines()]
|
| 274 |
+
index = np.asarray([color_map.index(item.tolist()) for item in color])
|
| 275 |
+
recon_face_points = [None]*(index.max()+1)
|
| 276 |
+
for i in range(index.max() + 1):
|
| 277 |
+
item_faces = mesh.faces[index == i]
|
| 278 |
+
item_mesh = trimesh.Trimesh(vertices=mesh.vertices, faces=item_faces)
|
| 279 |
+
num_samples = min(max(int(item_mesh.area * v_num_per_m * v_num_per_m), 5), 10000)
|
| 280 |
+
pc_item, id_face = trimesh.sample.sample_surface(item_mesh, num_samples)
|
| 281 |
+
normals = item_mesh.face_normals[id_face]
|
| 282 |
+
recon_face_points[i] = np.concatenate((pc_item, normals), axis=1)
|
| 283 |
+
|
| 284 |
+
if not (eval_root / folder_name / "clipped/curve_points.xyzc").exists():
|
| 285 |
+
print(f"Error: {folder_name} does not have curve_points")
|
| 286 |
+
return
|
| 287 |
+
curve_points = np.asarray([list(map(lambda item: float(item),item.strip().split(" "))) for item in open(eval_root / folder_name / "clipped/curve_points.xyzc").readlines()])
|
| 288 |
+
num_curves = int(curve_points.max(axis=0)[3]) + 1
|
| 289 |
+
recon_edge_points = [None]*num_curves
|
| 290 |
+
for i in range(num_curves):
|
| 291 |
+
item_points = curve_points[curve_points[:,3] == i][:,:3]
|
| 292 |
+
recon_edge_points[i] = item_points
|
| 293 |
+
|
| 294 |
+
if (eval_root / folder_name / "clipped/remove_duplicates_corners.ply").exists():
|
| 295 |
+
pc = trimesh.load(eval_root / folder_name / "clipped/remove_duplicates_corners.ply")
|
| 296 |
+
recon_vertex_points = pc.vertices[:,None]
|
| 297 |
+
else:
|
| 298 |
+
recon_vertex_points = np.asarray((0,0,0), dtype=np.float32)[None,None]
|
| 299 |
+
|
| 300 |
+
recon_face_edge = {}
|
| 301 |
+
recon_edge_vertex = {}
|
| 302 |
+
EV_mode = False
|
| 303 |
+
for items in open(eval_root / folder_name / 'topo/topo_fix.txt', 'r').readlines():
|
| 304 |
+
items = items.strip().split(" ")
|
| 305 |
+
if items[0] == "EV":
|
| 306 |
+
EV_mode = True
|
| 307 |
+
continue
|
| 308 |
+
if len(items) == 1:
|
| 309 |
+
continue
|
| 310 |
+
if not EV_mode:
|
| 311 |
+
recon_face_edge[int(items[0])] = list(map(lambda item: int(item), items[1:]))
|
| 312 |
+
else:
|
| 313 |
+
recon_edge_vertex[int(items[0])] = list(map(lambda item: int(item), items[1:]))
|
| 314 |
+
pass
|
| 315 |
+
else:
|
| 316 |
+
try:
|
| 317 |
+
# Face chamfer distance
|
| 318 |
+
if (eval_root / folder_name / step_name).exists():
|
| 319 |
+
valid, recon_shape = check_step_valid_soild(eval_root / folder_name / step_name, return_shape=True)
|
| 320 |
+
else:
|
| 321 |
+
print(f"Error: {folder_name} does not have {step_name}")
|
| 322 |
+
raise
|
| 323 |
+
if recon_shape is None:
|
| 324 |
+
print(f"Error: {folder_name} 's {step_name} is not valid")
|
| 325 |
+
raise
|
| 326 |
+
|
| 327 |
+
# Get data
|
| 328 |
+
recon_faces, recon_face_points, recon_edges, recon_edge_points, recon_vertices, recon_vertex_points = get_data(
|
| 329 |
+
recon_shape, v_num_per_m)
|
| 330 |
+
|
| 331 |
+
# Topology
|
| 332 |
+
recon_face_edge, recon_edge_vertex = get_topology(recon_faces, recon_edges, recon_vertices)
|
| 333 |
+
except:
|
| 334 |
+
recon_face_points = [np.zeros((1, 6), dtype=np.float32)]
|
| 335 |
+
recon_edge_points = [np.zeros((1, 6), dtype=np.float32)]
|
| 336 |
+
recon_vertex_points = [np.zeros((1, 3), dtype=np.float32)]
|
| 337 |
+
recon_face_edge = {}
|
| 338 |
+
recon_edge_vertex = {}
|
| 339 |
+
|
| 340 |
+
# GT
|
| 341 |
+
_, gt_shape = check_step_valid_soild(gt_root / folder_name / "normalized_shape.step", return_shape=True)
|
| 342 |
+
gt_faces, gt_face_points, gt_edges, gt_edge_points, gt_vertices, gt_vertex_points = get_data(gt_shape, v_num_per_m)
|
| 343 |
+
gt_face_edge, gt_edge_vertex = get_topology(gt_faces, gt_edges, gt_vertices)
|
| 344 |
+
|
| 345 |
+
# Chamfer
|
| 346 |
+
face_acc_cd, face_com_cd, face_cd = get_chamfer(recon_face_points, gt_face_points)
|
| 347 |
+
edge_acc_cd, edge_com_cd, edge_cd = get_chamfer(recon_edge_points, gt_edge_points)
|
| 348 |
+
vertex_acc_cd, vertex_com_cd, vertex_cd = get_chamfer(recon_vertex_points, gt_vertex_points)
|
| 349 |
+
|
| 350 |
+
# Detection
|
| 351 |
+
id_recon_gt_face, id_gt_recon_face, cost_face = get_match_ids(recon_face_points, gt_face_points)
|
| 352 |
+
id_recon_gt_edge, id_gt_recon_edge, cost_edge = get_match_ids(recon_edge_points, gt_edge_points)
|
| 353 |
+
id_recon_gt_vertex, id_gt_recon_vertex, cost_vertices = get_match_ids(recon_vertex_points, gt_vertex_points)
|
| 354 |
+
|
| 355 |
+
face_fscore, face_pre, face_rec = get_detection(id_recon_gt_face, id_gt_recon_face, cost_face)
|
| 356 |
+
edge_fscore, edge_pre, edge_rec = get_detection(id_recon_gt_edge, id_gt_recon_edge, cost_edge)
|
| 357 |
+
vertex_fscore, vertex_pre, vertex_rec = get_detection(id_recon_gt_vertex, id_gt_recon_vertex, cost_vertices)
|
| 358 |
+
|
| 359 |
+
fe_fscore, fe_pre, fe_rec = get_topo_detection(recon_face_edge, gt_face_edge, id_recon_gt_face, id_recon_gt_edge)
|
| 360 |
+
ev_fscore, ev_pre, ev_rec = get_topo_detection(recon_edge_vertex, gt_edge_vertex, id_recon_gt_edge,
|
| 361 |
+
id_recon_gt_vertex)
|
| 362 |
+
|
| 363 |
+
results = {
|
| 364 |
+
"face_cd": face_cd,
|
| 365 |
+
"edge_cd": edge_cd,
|
| 366 |
+
"vertex_cd": vertex_cd,
|
| 367 |
+
|
| 368 |
+
"face_fscore": face_fscore,
|
| 369 |
+
"edge_fscore": edge_fscore,
|
| 370 |
+
"vertex_fscore": vertex_fscore,
|
| 371 |
+
"fe_fscore": fe_fscore,
|
| 372 |
+
"ev_fscore": ev_fscore,
|
| 373 |
+
|
| 374 |
+
"face_acc_cd": face_acc_cd,
|
| 375 |
+
"edge_acc_cd": edge_acc_cd,
|
| 376 |
+
"vertex_acc_cd": vertex_acc_cd,
|
| 377 |
+
|
| 378 |
+
"face_com_cd": face_com_cd,
|
| 379 |
+
"edge_com_cd": edge_com_cd,
|
| 380 |
+
"vertex_com_cd": vertex_com_cd,
|
| 381 |
+
|
| 382 |
+
"fe_pre": fe_pre,
|
| 383 |
+
"ev_pre": ev_pre,
|
| 384 |
+
"fe_rec": fe_rec,
|
| 385 |
+
"ev_rec": ev_rec,
|
| 386 |
+
|
| 387 |
+
"vertex_pre": vertex_pre,
|
| 388 |
+
"edge_pre": edge_pre,
|
| 389 |
+
"face_pre": face_pre,
|
| 390 |
+
|
| 391 |
+
"vertex_rec": vertex_rec,
|
| 392 |
+
"edge_rec": edge_rec,
|
| 393 |
+
"face_rec": face_rec,
|
| 394 |
+
|
| 395 |
+
"num_recon_face": len(recon_face_points),
|
| 396 |
+
"num_gt_face": len(gt_face_points),
|
| 397 |
+
"num_recon_edge": len(recon_edge_points),
|
| 398 |
+
"num_gt_edge": len(gt_edge_points),
|
| 399 |
+
"num_recon_vertex": len(recon_vertex_points),
|
| 400 |
+
"num_gt_vertex": len(gt_vertex_points),
|
| 401 |
+
}
|
| 402 |
+
np.savez_compressed(eval_root / folder_name / 'eval.npz', results=results, allow_pickle=True)
|
| 403 |
+
|
| 404 |
+
|
| 405 |
+
if __name__ == '__main__':
|
| 406 |
+
parser = argparse.ArgumentParser(description='Evaluate The Generated Brep')
|
| 407 |
+
parser.add_argument('--eval_root', type=str, required=True)
|
| 408 |
+
parser.add_argument('--gt_root', type=str, required=True)
|
| 409 |
+
parser.add_argument('--use_ray', action='store_true')
|
| 410 |
+
parser.add_argument('--num_cpus', type=int, default=16)
|
| 411 |
+
parser.add_argument('--prefix', type=str, default='')
|
| 412 |
+
parser.add_argument('--list', type=str, default='')
|
| 413 |
+
parser.add_argument('--from_scratch', action='store_true')
|
| 414 |
+
parser.add_argument('--is_point2cad', action='store_true')
|
| 415 |
+
parser.add_argument('--only_valid', action='store_true')
|
| 416 |
+
args = parser.parse_args()
|
| 417 |
+
eval_root = Path(args.eval_root)
|
| 418 |
+
gt_root = Path(args.gt_root)
|
| 419 |
+
is_use_ray = args.use_ray
|
| 420 |
+
num_cpus = args.num_cpus
|
| 421 |
+
listfile = args.list
|
| 422 |
+
from_scratch = args.from_scratch
|
| 423 |
+
is_point2cad = args.is_point2cad
|
| 424 |
+
only_valid = args.only_valid
|
| 425 |
+
|
| 426 |
+
if not os.path.exists(eval_root):
|
| 427 |
+
raise ValueError(f"Data root path {eval_root} does not exist.")
|
| 428 |
+
if not os.path.exists(gt_root):
|
| 429 |
+
raise ValueError(f"Output root path {gt_root} does not exist.")
|
| 430 |
+
|
| 431 |
+
if args.prefix != '':
|
| 432 |
+
eval_one(eval_root, gt_root, args.prefix, is_point2cad)
|
| 433 |
+
exit()
|
| 434 |
+
|
| 435 |
+
all_folders = [folder for folder in os.listdir(eval_root) if os.path.isdir(eval_root / folder)]
|
| 436 |
+
ori_length = len(all_folders)
|
| 437 |
+
if listfile != '':
|
| 438 |
+
valid_names = [item.strip() for item in open(listfile, 'r').readlines()]
|
| 439 |
+
all_folders = list(set(all_folders) & set(valid_names))
|
| 440 |
+
all_folders.sort()
|
| 441 |
+
print(f"Total {len(all_folders)}/{ori_length} folders to evaluate")
|
| 442 |
+
|
| 443 |
+
if not from_scratch:
|
| 444 |
+
print("Filtering the folders that have eval.npz")
|
| 445 |
+
all_folders = [folder for folder in all_folders if not os.path.exists(eval_root / folder / 'eval.npz')]
|
| 446 |
+
print(f"Total {len(all_folders)} folders to compute after caching")
|
| 447 |
+
|
| 448 |
+
if not is_use_ray:
|
| 449 |
+
# random.shuffle(self.folder_names)
|
| 450 |
+
for i in tqdm(range(len(all_folders))):
|
| 451 |
+
eval_one(eval_root, gt_root, all_folders[i], is_point2cad)
|
| 452 |
+
else:
|
| 453 |
+
ray.init(
|
| 454 |
+
dashboard_host="0.0.0.0",
|
| 455 |
+
dashboard_port=8080,
|
| 456 |
+
num_cpus=num_cpus,
|
| 457 |
+
# local_mode=True
|
| 458 |
+
)
|
| 459 |
+
eval_one_remote = ray.remote(max_retries=0)(eval_one_with_try)
|
| 460 |
+
tasks = []
|
| 461 |
+
timeout_cancel_list = []
|
| 462 |
+
for i in range(len(all_folders)):
|
| 463 |
+
tasks.append(eval_one_remote.remote(eval_root, gt_root, all_folders[i], is_point2cad))
|
| 464 |
+
results = []
|
| 465 |
+
for i in tqdm(range(len(all_folders))):
|
| 466 |
+
try:
|
| 467 |
+
results.append(ray.get(tasks[i], timeout=60 * 3))
|
| 468 |
+
except ray.exceptions.GetTimeoutError:
|
| 469 |
+
results.append(None)
|
| 470 |
+
timeout_cancel_list.append(all_folders[i])
|
| 471 |
+
ray.cancel(tasks[i])
|
| 472 |
+
except:
|
| 473 |
+
results.append(None)
|
| 474 |
+
results = [item for item in results if item is not None]
|
| 475 |
+
print(f"Cancel for timeout: {timeout_cancel_list}")
|
| 476 |
+
|
| 477 |
+
print("Computing statistics...")
|
| 478 |
+
compute_statistics(eval_root, only_valid, listfile)
|
| 479 |
+
print("Done")
|
eval/eval_lfd.sh
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
if [ -z "$TYPE" ]; then
|
| 2 |
+
echo "Error: 'CONDITION' variable is not set."
|
| 3 |
+
exit 1
|
| 4 |
+
fi
|
| 5 |
+
|
| 6 |
+
cd ./eval/lfd/evaluation_scripts/compute_lfd_feat
|
| 7 |
+
python -m compute_lfd_feat_multiprocess --gen_path ../../../../outputs/${TYPE}_post --save_path ../../../../outputs/${TYPE}_lfd_feat --prefix recon_brep.stl
|
| 8 |
+
cd ..
|
| 9 |
+
python -m compute_lfd --dataset_path ../../../data/data_lfd_feat --gen_path ../../../outputs/${TYPE}_lfd_feat --save_name ../../../outputs/${TYPE}_lfd.pkl --num_workers 8 --list ../../../data/data_index/deduplicated_deepcad_training_7_30.txt
|
| 10 |
+
cd ../../..
|
| 11 |
+
python -m eval.viz_lfd ./outputs/${TYPE}_lfd.pkl ./outputs/${TYPE}_lfd.png ./outputs/${TYPE}_post
|
eval/eval_pc_set.py
ADDED
|
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
def evaluate_uniformity_nnd(points):
|
| 5 |
+
"""
|
| 6 |
+
Evaluate point cloud uniformity using Nearest Neighbor Distance (NND)
|
| 7 |
+
Args:
|
| 8 |
+
points: numpy array of shape (N, 3)
|
| 9 |
+
Returns:
|
| 10 |
+
dict containing NND statistics
|
| 11 |
+
"""
|
| 12 |
+
# 1. 计算每个点到其最近邻的距离
|
| 13 |
+
diff = points[:, None, :] - points[None, :, :] # (N, N, 3)
|
| 14 |
+
distances = np.sqrt(np.sum(diff * diff, axis=-1)) # (N, N)
|
| 15 |
+
|
| 16 |
+
# 将自身距离设为无穷大
|
| 17 |
+
np.fill_diagonal(distances, np.inf)
|
| 18 |
+
|
| 19 |
+
# 获取每个点的最近邻距离
|
| 20 |
+
min_distances = np.min(distances, axis=1) # (N,)
|
| 21 |
+
|
| 22 |
+
# 2. 计算统计指标
|
| 23 |
+
metrics = {
|
| 24 |
+
'mean_nnd': np.mean(min_distances),
|
| 25 |
+
'std_nnd' : np.std(min_distances),
|
| 26 |
+
'cv_nnd' : np.std(min_distances) / np.mean(min_distances), # 变异系数
|
| 27 |
+
'min_nnd' : np.min(min_distances),
|
| 28 |
+
'max_nnd' : np.max(min_distances),
|
| 29 |
+
|
| 30 |
+
# Clark-Evans R统计量: R = 实际平均最近邻距离 / 期望平均最近邻距离
|
| 31 |
+
# R接近1表示随机分布,R<1表示聚集,R>1表示均匀
|
| 32 |
+
'density' : len(points) / np.prod(np.max(points, axis=0) - np.min(points, axis=0)),
|
| 33 |
+
}
|
| 34 |
+
|
| 35 |
+
# 计算Clark-Evans R统计量
|
| 36 |
+
expected_mean_dist = 0.5 / np.sqrt(metrics['density'])
|
| 37 |
+
metrics['clark_evans_r'] = metrics['mean_nnd'] / expected_mean_dist
|
| 38 |
+
|
| 39 |
+
# 3. 计算直方图数据(可用于可视化)
|
| 40 |
+
hist, bins = np.histogram(min_distances, bins='auto', density=True)
|
| 41 |
+
metrics['hist_values'] = hist
|
| 42 |
+
metrics['hist_bins'] = bins
|
| 43 |
+
|
| 44 |
+
return metrics
|
eval/eval_uncond.sh
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Eval
|
| 2 |
+
python -m eval.sample_points --data_root ./outputs/unconditional_post --out_root ./outputs/unconditional_pcd --valid;
|
| 3 |
+
python -m eval.eval_brepgen --real ./data/organized_data --fake ./outputs/unconditional_pcd;
|
| 4 |
+
python -m eval.eval_complexity --eval_root ./outputs/unconditional_post --only_valid;
|
| 5 |
+
python -m eval.eval_condition \
|
| 6 |
+
--eval_root ./outputs/unconditional_post \
|
| 7 |
+
--gt_root ./data/organized_data/ \
|
| 8 |
+
--list ./data/data_index/deduplicated_deepcad_testing_7_30.txt \
|
| 9 |
+
--num_cpus 24 \
|
| 10 |
+
--use_ray \
|
| 11 |
+
--from_scratch \
|
| 12 |
+
--only_valid
|
| 13 |
+
|
| 14 |
+
# Validness
|
| 15 |
+
python -m eval.check_valid --data_root ./outputs/unconditional_post
|
eval/eval_unique_novel.py
ADDED
|
@@ -0,0 +1,395 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import multiprocessing
|
| 2 |
+
|
| 3 |
+
import networkx as nx
|
| 4 |
+
import numpy as np
|
| 5 |
+
import argparse
|
| 6 |
+
import os
|
| 7 |
+
|
| 8 |
+
import trimesh
|
| 9 |
+
from tqdm import tqdm
|
| 10 |
+
import ray
|
| 11 |
+
|
| 12 |
+
from check_valid import check_step_valid_soild, load_data_with_prefix
|
| 13 |
+
from eval_brepgen import normalize_pc
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def real2bit(data, n_bits=8, min_range=-1, max_range=1):
|
| 17 |
+
"""Convert vertices in [-1., 1.] to discrete values in [0, n_bits**2 - 1]."""
|
| 18 |
+
range_quantize = 2 ** n_bits - 1
|
| 19 |
+
data_quantize = (data - min_range) * range_quantize / (max_range - min_range)
|
| 20 |
+
data_quantize = np.clip(data_quantize, a_min=0, a_max=range_quantize) # clip values
|
| 21 |
+
return data_quantize.astype(int)
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def build_graph(faces, faces_adj, n_bit=4):
|
| 25 |
+
# faces1 and faces2 are np.array of shape (n_faces, n_points, n_points, 3)
|
| 26 |
+
# faces_adj1 and faces_adj2 are lists of (face_idx, face_idx) adjacency, ex. [[0, 1], [1, 2]]
|
| 27 |
+
if n_bit < 0:
|
| 28 |
+
faces_bits = faces
|
| 29 |
+
else:
|
| 30 |
+
faces_bits = real2bit(faces, n_bits=n_bit)
|
| 31 |
+
"""Build a graph from a shape."""
|
| 32 |
+
G = nx.Graph()
|
| 33 |
+
for face_idx, face_bit in enumerate(faces_bits):
|
| 34 |
+
G.add_node(face_idx, shape_geometry=face_bit)
|
| 35 |
+
for pair in faces_adj:
|
| 36 |
+
G.add_edge(pair[0], pair[1])
|
| 37 |
+
return G
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def is_graph_identical(graph1, graph2, atol=None):
|
| 41 |
+
"""Check if two shapes are identical."""
|
| 42 |
+
# Check if the two graphs are isomorphic considering node attributes
|
| 43 |
+
if atol is None:
|
| 44 |
+
return nx.is_isomorphic(
|
| 45 |
+
graph1, graph2,
|
| 46 |
+
node_match=lambda n1, n2: np.array_equal(n1['shape_geometry'], n2['shape_geometry'])
|
| 47 |
+
)
|
| 48 |
+
else:
|
| 49 |
+
return nx.is_isomorphic(
|
| 50 |
+
graph1, graph2,
|
| 51 |
+
node_match=lambda n1, n2: np.allclose(n1['shape_geometry'], n2['shape_geometry'], atol=atol, rtol=0)
|
| 52 |
+
)
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def is_graph_identical_batch(graph_pair_list, atol=None):
|
| 56 |
+
is_identical_list = []
|
| 57 |
+
for graph1, graph2 in graph_pair_list:
|
| 58 |
+
is_identical = is_graph_identical(graph1, graph2, atol=atol)
|
| 59 |
+
is_identical_list.append(is_identical)
|
| 60 |
+
return is_identical_list
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
is_graph_identical_remote = ray.remote(is_graph_identical_batch)
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
def find_connected_components(matrix):
|
| 67 |
+
N = len(matrix)
|
| 68 |
+
visited = [False] * N
|
| 69 |
+
components = []
|
| 70 |
+
|
| 71 |
+
def dfs(idx, component):
|
| 72 |
+
stack = [idx]
|
| 73 |
+
while stack:
|
| 74 |
+
node = stack.pop()
|
| 75 |
+
if not visited[node]:
|
| 76 |
+
visited[node] = True
|
| 77 |
+
component.append(node)
|
| 78 |
+
for neighbor in range(N):
|
| 79 |
+
if matrix[node][neighbor] and not visited[neighbor]:
|
| 80 |
+
stack.append(neighbor)
|
| 81 |
+
|
| 82 |
+
for i in range(N):
|
| 83 |
+
if not visited[i]:
|
| 84 |
+
component = []
|
| 85 |
+
dfs(i, component)
|
| 86 |
+
components.append(component)
|
| 87 |
+
|
| 88 |
+
return components
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def compute_gen_unique(graph_list, is_use_ray=False, batch_size=100000, atol=None):
|
| 92 |
+
N = len(graph_list)
|
| 93 |
+
unique_graph_idx = list(range(N))
|
| 94 |
+
pair_0, pair_1 = np.triu_indices(N, k=1)
|
| 95 |
+
check_pairs = list(zip(pair_0, pair_1))
|
| 96 |
+
deduplicate_matrix = np.zeros((N, N), dtype=bool)
|
| 97 |
+
|
| 98 |
+
if not is_use_ray:
|
| 99 |
+
for idx1, idx2 in tqdm(check_pairs):
|
| 100 |
+
is_identical = is_graph_identical(graph_list[idx1], graph_list[idx2], atol=atol)
|
| 101 |
+
if is_identical:
|
| 102 |
+
unique_graph_idx.remove(idx2) if idx2 in unique_graph_idx else None
|
| 103 |
+
deduplicate_matrix[idx1, idx2] = True
|
| 104 |
+
deduplicate_matrix[idx2, idx1] = True
|
| 105 |
+
else:
|
| 106 |
+
ray.init()
|
| 107 |
+
N_batch = len(check_pairs) // batch_size
|
| 108 |
+
futures = []
|
| 109 |
+
for i in tqdm(range(N_batch)):
|
| 110 |
+
batch_pairs = check_pairs[i * batch_size: (i + 1) * batch_size]
|
| 111 |
+
batch_graph_pair = [(graph_list[idx1], graph_list[idx2]) for idx1, idx2 in batch_pairs]
|
| 112 |
+
futures.append(is_graph_identical_remote.remote(batch_graph_pair, atol))
|
| 113 |
+
results = ray.get(futures)
|
| 114 |
+
|
| 115 |
+
for batch_idx in tqdm(range(N_batch)):
|
| 116 |
+
for idx, is_identical in enumerate(results[batch_idx]):
|
| 117 |
+
if not is_identical:
|
| 118 |
+
continue
|
| 119 |
+
idx1, idx2 = check_pairs[batch_idx * batch_size + idx]
|
| 120 |
+
deduplicate_matrix[idx1, idx2] = True
|
| 121 |
+
deduplicate_matrix[idx2, idx1] = True
|
| 122 |
+
if idx2 in unique_graph_idx:
|
| 123 |
+
unique_graph_idx.remove(idx2)
|
| 124 |
+
ray.shutdown()
|
| 125 |
+
|
| 126 |
+
unique = len(unique_graph_idx)
|
| 127 |
+
print(f"Unique: {unique}/{N}")
|
| 128 |
+
unique_ratio = unique / N
|
| 129 |
+
|
| 130 |
+
return unique_ratio, deduplicate_matrix
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
def compute_gen_novel_bk(gen_graph_list, train_graph_list, is_use_ray=False, batch_size=100000):
|
| 134 |
+
M, N = len(gen_graph_list), len(train_graph_list)
|
| 135 |
+
deduplicate_matrix = np.zeros((M, N), dtype=bool)
|
| 136 |
+
pair_0, pair_1 = np.triu_indices_from(deduplicate_matrix, k=1)
|
| 137 |
+
check_pairs = list(zip(pair_0, pair_1))
|
| 138 |
+
non_novel_graph_idx = np.zeros(M, dtype=bool)
|
| 139 |
+
|
| 140 |
+
if not is_use_ray:
|
| 141 |
+
for idx1, idx2 in tqdm(check_pairs):
|
| 142 |
+
if non_novel_graph_idx[idx1]:
|
| 143 |
+
continue
|
| 144 |
+
is_identical = is_graph_identical(gen_graph_list[idx1], train_graph_list[idx2])
|
| 145 |
+
if is_identical:
|
| 146 |
+
non_novel_graph_idx[idx1] = True
|
| 147 |
+
deduplicate_matrix[idx1, idx2] = True
|
| 148 |
+
else:
|
| 149 |
+
ray.init()
|
| 150 |
+
N_batch = len(check_pairs) // batch_size
|
| 151 |
+
futures = []
|
| 152 |
+
for i in tqdm(range(N_batch)):
|
| 153 |
+
batch_pairs = check_pairs[i * batch_size: (i + 1) * batch_size]
|
| 154 |
+
batch_graph_pair = [(gen_graph_list[idx1], train_graph_list[idx2]) for idx1, idx2 in batch_pairs]
|
| 155 |
+
futures.append(is_graph_identical_remote.remote(batch_graph_pair))
|
| 156 |
+
results = ray.get(futures)
|
| 157 |
+
|
| 158 |
+
for batch_idx in tqdm(range(N_batch)):
|
| 159 |
+
for idx, is_identical in enumerate(results[batch_idx]):
|
| 160 |
+
if not is_identical:
|
| 161 |
+
continue
|
| 162 |
+
idx1, idx2 = check_pairs[batch_idx * batch_size + idx]
|
| 163 |
+
deduplicate_matrix[idx1, idx2] = True
|
| 164 |
+
non_novel_graph_idx[idx1] = True
|
| 165 |
+
ray.shutdown()
|
| 166 |
+
|
| 167 |
+
novel = M - np.sum(non_novel_graph_idx)
|
| 168 |
+
print(f"Novel: {novel}/{M}")
|
| 169 |
+
novel_ratio = novel / M
|
| 170 |
+
return novel_ratio, deduplicate_matrix
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
def is_graph_identical_list(graph1, graph2_path_list):
|
| 174 |
+
"""Check if two shapes are identical."""
|
| 175 |
+
# Check if the two graphs are isomorphic considering node attributes
|
| 176 |
+
graph2_list, graph2_prefix_list = load_and_build_graph(graph2_path_list)
|
| 177 |
+
for graph2 in graph2_list:
|
| 178 |
+
if nx.is_isomorphic(graph1, graph2,
|
| 179 |
+
node_match=lambda n1, n2: np.array_equal(n1['shape_geometry'], n2['shape_geometry'])):
|
| 180 |
+
return True
|
| 181 |
+
return False
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
is_graph_identical_list_remote = ray.remote(is_graph_identical_list)
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
def test_check():
|
| 188 |
+
sample = np.random.rand(3, 32, 32, 3)
|
| 189 |
+
face1 = sample[[0, 1, 2]]
|
| 190 |
+
face2 = sample[[0, 2, 1]]
|
| 191 |
+
faces_adj1 = [[0, 1]]
|
| 192 |
+
faces_adj2 = [[0, 2]]
|
| 193 |
+
|
| 194 |
+
graph1 = build_graph(face1, faces_adj1)
|
| 195 |
+
graph2 = build_graph(face2, faces_adj2)
|
| 196 |
+
|
| 197 |
+
is_identical = is_graph_identical(graph1, graph2)
|
| 198 |
+
# 判断图是否相等
|
| 199 |
+
print("Graphs are equal" if is_identical else "Graphs are not equal")
|
| 200 |
+
|
| 201 |
+
|
| 202 |
+
def load_data_from_npz(data_npz_file):
|
| 203 |
+
data_npz = np.load(data_npz_file, allow_pickle=True)
|
| 204 |
+
data_npz1 = np.load(data_npz_file.replace("deepcad_32", "deepcad_train_v6"), allow_pickle=True)
|
| 205 |
+
# Brepgen
|
| 206 |
+
if 'face_edge_adj' in data_npz:
|
| 207 |
+
faces = data_npz['pred_face']
|
| 208 |
+
face_edge_adj = data_npz['face_edge_adj']
|
| 209 |
+
faces_adj_pair = []
|
| 210 |
+
N = face_edge_adj.shape[0]
|
| 211 |
+
for face_idx1 in range(N):
|
| 212 |
+
for face_idx2 in range(face_idx1 + 1, N):
|
| 213 |
+
face_edges1 = face_edge_adj[face_idx1]
|
| 214 |
+
face_edges2 = face_edge_adj[face_idx2]
|
| 215 |
+
if sorted((face_idx1, face_idx2)) in faces_adj_pair:
|
| 216 |
+
continue
|
| 217 |
+
if len(set(face_edges1).intersection(set(face_edges2))) > 0:
|
| 218 |
+
faces_adj_pair.append(sorted((face_idx1, face_idx2)))
|
| 219 |
+
return faces, faces_adj_pair
|
| 220 |
+
# Ours
|
| 221 |
+
if 'sample_points_faces' in data_npz:
|
| 222 |
+
face_points = data_npz['sample_points_faces'] # Face sample points (num_faces*20*20*3)
|
| 223 |
+
edge_face_connectivity = data_npz['edge_face_connectivity'] # (num_intersection, (id_edge, id_face1, id_face2))
|
| 224 |
+
elif 'pred_face' in data_npz and 'pred_edge_face_connectivity' in data_npz:
|
| 225 |
+
face_points = data_npz['pred_face']
|
| 226 |
+
edge_face_connectivity = data_npz['pred_edge_face_connectivity']
|
| 227 |
+
else:
|
| 228 |
+
raise ValueError("Invalid data format")
|
| 229 |
+
faces_adj_pair = []
|
| 230 |
+
for edge_idx, face_idx1, face_idx2 in edge_face_connectivity:
|
| 231 |
+
faces_adj_pair.append([face_idx1, face_idx2])
|
| 232 |
+
if face_points.shape[-1] != 3:
|
| 233 |
+
face_points = face_points[..., :3]
|
| 234 |
+
|
| 235 |
+
src_shape = face_points.shape
|
| 236 |
+
face_points = normalize_pc(face_points.reshape(-1, 3)).reshape(src_shape)
|
| 237 |
+
return face_points, faces_adj_pair
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
def load_and_build_graph(data_npz_file_list, gen_post_data_root=None, n_bit=4):
|
| 241 |
+
gen_graph_list = []
|
| 242 |
+
prefix_list = []
|
| 243 |
+
for data_npz_file in data_npz_file_list:
|
| 244 |
+
folder_name = os.path.basename(os.path.dirname(data_npz_file))
|
| 245 |
+
if gen_post_data_root:
|
| 246 |
+
step_file_list = load_data_with_prefix(os.path.join(gen_post_data_root, folder_name), ".step")
|
| 247 |
+
if len(step_file_list) == 0:
|
| 248 |
+
continue
|
| 249 |
+
if not check_step_valid_soild(step_file_list[0]):
|
| 250 |
+
continue
|
| 251 |
+
prefix_list.append(folder_name)
|
| 252 |
+
faces, faces_adj_pair = load_data_from_npz(data_npz_file)
|
| 253 |
+
graph = build_graph(faces, faces_adj_pair, n_bit)
|
| 254 |
+
gen_graph_list.append(graph)
|
| 255 |
+
return gen_graph_list, prefix_list
|
| 256 |
+
|
| 257 |
+
|
| 258 |
+
load_and_build_graph_remote = ray.remote(load_and_build_graph)
|
| 259 |
+
|
| 260 |
+
|
| 261 |
+
def main():
|
| 262 |
+
parser = argparse.ArgumentParser()
|
| 263 |
+
parser.add_argument("--fake_root", type=str, required=True)
|
| 264 |
+
parser.add_argument("--fake_post", type=str, required=True)
|
| 265 |
+
parser.add_argument("--train_root", type=str, required=False)
|
| 266 |
+
parser.add_argument("--n_bit", type=int, required=False)
|
| 267 |
+
parser.add_argument("--atol", type=float, required=False)
|
| 268 |
+
parser.add_argument("--use_ray", action='store_true')
|
| 269 |
+
parser.add_argument("--load_batch_size", type=int, default=400)
|
| 270 |
+
parser.add_argument("--compute_batch_size", type=int, default=200000)
|
| 271 |
+
parser.add_argument("--txt", type=str, default=None)
|
| 272 |
+
parser.add_argument("--num_cpus", type=int, default=32)
|
| 273 |
+
parser.add_argument("--min_face", type=int, required=False)
|
| 274 |
+
parser.add_argument("--only_unique", action='store_true')
|
| 275 |
+
args = parser.parse_args()
|
| 276 |
+
gen_data_root = args.fake_root
|
| 277 |
+
gen_post_data_root = args.fake_post
|
| 278 |
+
train_data_root = args.train_root
|
| 279 |
+
is_use_ray = args.use_ray
|
| 280 |
+
n_bit = args.n_bit
|
| 281 |
+
atol = args.atol
|
| 282 |
+
load_batch_size = args.load_batch_size
|
| 283 |
+
compute_batch_size = args.compute_batch_size
|
| 284 |
+
folder_list_txt = args.txt
|
| 285 |
+
num_cpus = args.num_cpus
|
| 286 |
+
|
| 287 |
+
if not n_bit and not atol:
|
| 288 |
+
raise ValueError("Must set either n_bit or atol")
|
| 289 |
+
if n_bit and atol:
|
| 290 |
+
raise ValueError("Cannot set both n_bit and atol")
|
| 291 |
+
|
| 292 |
+
if not args.only_unique and not train_data_root:
|
| 293 |
+
raise ValueError("Must set train_data_root when not only_unique")
|
| 294 |
+
|
| 295 |
+
if n_bit:
|
| 296 |
+
atol = None
|
| 297 |
+
if atol:
|
| 298 |
+
n_bit = -1
|
| 299 |
+
|
| 300 |
+
################################################## Unqiue #######################################################
|
| 301 |
+
# Load all the generated data files
|
| 302 |
+
print("Loading generated data files...")
|
| 303 |
+
gen_data_npz_file_list = load_data_with_prefix(gen_data_root, 'data.npz')
|
| 304 |
+
if is_use_ray:
|
| 305 |
+
ray.init()
|
| 306 |
+
futures = []
|
| 307 |
+
gen_graph_list = []
|
| 308 |
+
gen_prefix_list = []
|
| 309 |
+
for i in tqdm(range(0, len(gen_data_npz_file_list), load_batch_size)):
|
| 310 |
+
batch_gen_data_npz_file_list = gen_data_npz_file_list[i: i + load_batch_size]
|
| 311 |
+
futures.append(load_and_build_graph_remote.remote(batch_gen_data_npz_file_list, gen_post_data_root, n_bit))
|
| 312 |
+
for future in tqdm(futures):
|
| 313 |
+
result = ray.get(future)
|
| 314 |
+
gen_graph_list_batch, gen_prefix_list_batch = result
|
| 315 |
+
gen_graph_list.extend(gen_graph_list_batch)
|
| 316 |
+
gen_prefix_list.extend(gen_prefix_list_batch)
|
| 317 |
+
ray.shutdown()
|
| 318 |
+
else:
|
| 319 |
+
gen_graph_list, gen_prefix_list = load_and_build_graph(gen_data_npz_file_list, gen_post_data_root, n_bit)
|
| 320 |
+
print(f"Loaded {len(gen_graph_list)} generated data files")
|
| 321 |
+
|
| 322 |
+
if args.min_face:
|
| 323 |
+
graph_node_num = [len(graph.nodes) for graph in gen_graph_list]
|
| 324 |
+
gen_graph_list = [gen_graph_list[idx] for idx, num in enumerate(graph_node_num) if num >= args.min_face]
|
| 325 |
+
gen_prefix_list = [gen_prefix_list[idx] for idx, num in enumerate(graph_node_num) if num >= args.min_face]
|
| 326 |
+
print(f"Filtered sample that face_num < {args.min_face}, remain {len(gen_graph_list)}")
|
| 327 |
+
|
| 328 |
+
print("Computing Unique ratio...")
|
| 329 |
+
unique_ratio, deduplicate_matrix = compute_gen_unique(gen_graph_list, is_use_ray, compute_batch_size, atol=atol)
|
| 330 |
+
print(f"Unique ratio: {unique_ratio}")
|
| 331 |
+
|
| 332 |
+
if n_bit == -1:
|
| 333 |
+
unique_txt = gen_data_root + f"_unique_atol_{atol}_results.txt"
|
| 334 |
+
else:
|
| 335 |
+
unique_txt = gen_data_root + f"_unique_{n_bit}bit_results.txt"
|
| 336 |
+
fp = open(unique_txt, "w")
|
| 337 |
+
print(f"Unique ratio: {unique_ratio}", file=fp)
|
| 338 |
+
deduplicate_components = find_connected_components(deduplicate_matrix)
|
| 339 |
+
for component in deduplicate_components:
|
| 340 |
+
if len(component) > 1:
|
| 341 |
+
component = [gen_prefix_list[idx] for idx in component]
|
| 342 |
+
print(f"Component: {component}", file=fp)
|
| 343 |
+
print(f"Deduplicate components are saved to {unique_txt}")
|
| 344 |
+
fp.close()
|
| 345 |
+
|
| 346 |
+
if args.only_unique:
|
| 347 |
+
exit(0)
|
| 348 |
+
|
| 349 |
+
# For accelerate, please first run the find_nerest.py to find the nearest item in train data for each fake sample
|
| 350 |
+
################################################### Novel ########################################################
|
| 351 |
+
print("Computing Novel ratio...")
|
| 352 |
+
print("Loading training data files...")
|
| 353 |
+
# data_npz_file_list = load_data_with_prefix(train_data_root, 'data.npz', folder_list_txt=folder_list_txt)
|
| 354 |
+
# load_batch_size = load_batch_size * 5
|
| 355 |
+
|
| 356 |
+
is_identical = np.zeros(len(gen_graph_list), dtype=bool)
|
| 357 |
+
if is_use_ray:
|
| 358 |
+
ray.init()
|
| 359 |
+
futures = []
|
| 360 |
+
for gen_graph_idx, gen_graph in enumerate(tqdm(gen_graph_list)):
|
| 361 |
+
nearest_txt = os.path.join(gen_post_data_root, gen_prefix_list[gen_graph_idx], "nearest.txt")
|
| 362 |
+
if not os.path.exists(nearest_txt):
|
| 363 |
+
continue
|
| 364 |
+
with open(nearest_txt, "r+") as f:
|
| 365 |
+
lines = f.readlines()
|
| 366 |
+
train_folders = [os.path.join(train_data_root, line.strip().split(" ")[0], 'data.npz') for line in lines[2:]]
|
| 367 |
+
futures.append(is_graph_identical_list_remote.remote(gen_graph, train_folders))
|
| 368 |
+
results = ray.get(futures)
|
| 369 |
+
for gen_graph_idx, result in enumerate(results):
|
| 370 |
+
is_identical[gen_graph_idx] = result
|
| 371 |
+
ray.shutdown()
|
| 372 |
+
else:
|
| 373 |
+
pbar = tqdm(gen_graph_list)
|
| 374 |
+
for gen_graph_idx, gen_graph in enumerate(pbar):
|
| 375 |
+
nearest_txt = os.path.join(gen_post_data_root, gen_prefix_list[gen_graph_idx], "nearest.txt")
|
| 376 |
+
if not os.path.exists(nearest_txt):
|
| 377 |
+
continue
|
| 378 |
+
with open(nearest_txt, "r+") as f:
|
| 379 |
+
lines = f.readlines()
|
| 380 |
+
train_folders = [os.path.join(train_data_root, line.strip().split(" ")[0], 'data.npz') for line in lines[2:]]
|
| 381 |
+
is_identical[gen_graph_idx] = is_graph_identical_list(gen_graph, train_folders)
|
| 382 |
+
pbar.set_postfix({"novel_count": np.sum(~is_identical)})
|
| 383 |
+
|
| 384 |
+
identical_folder = np.array(gen_prefix_list)[is_identical]
|
| 385 |
+
print(f"Novel ratio: {np.sum(~is_identical) / len(gen_graph_list)}")
|
| 386 |
+
novel_txt = gen_data_root + f"_novel_{n_bit}bit_results.txt"
|
| 387 |
+
with open(novel_txt, "w") as f:
|
| 388 |
+
f.write(f"Novel ratio: {np.sum(~is_identical) / len(gen_graph_list)}\n")
|
| 389 |
+
for folder in identical_folder:
|
| 390 |
+
f.write(folder + "\n")
|
| 391 |
+
print("Done")
|
| 392 |
+
|
| 393 |
+
|
| 394 |
+
if __name__ == "__main__":
|
| 395 |
+
main()
|
eval/eval_validity.py
ADDED
|
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import argparse
|
| 3 |
+
|
| 4 |
+
from lightning_fabric import seed_everything
|
| 5 |
+
|
| 6 |
+
from eval_condition import *
|
| 7 |
+
from OCC.Core.GCPnts import GCPnts_AbscissaPoint
|
| 8 |
+
from OCC.Core.GeomAdaptor import GeomAdaptor_Curve
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def get_fluxEE(vertices: np.ndarray, facets: np.ndarray) -> float:
|
| 12 |
+
points = vertices[facets]
|
| 13 |
+
a = points[:, 1] - points[:, 0]
|
| 14 |
+
b = points[:, 2] - points[:, 0]
|
| 15 |
+
normals = np.cross(a, b)
|
| 16 |
+
norms = np.linalg.norm(normals)
|
| 17 |
+
assert np.all(norms != 0)
|
| 18 |
+
normals /= norms[:, None]
|
| 19 |
+
d_S = 0.5 * norms
|
| 20 |
+
fluxEE = np.sum(np.sum(normals, axis=1) * d_S)
|
| 21 |
+
return abs(fluxEE)
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def get_NormalC(v_recon_points: np.ndarray, v_gt_points: np.ndarray) -> float:
|
| 25 |
+
# ACC
|
| 26 |
+
acc_l1norm = np.sum(np.abs(v_gt_points[:, None, :3] - v_recon_points[:, :3]), axis=2)
|
| 27 |
+
min_dist_index = np.argmin(acc_l1norm, axis=0)
|
| 28 |
+
acc = np.mean(np.sum(v_recon_points[:, 3:] * v_gt_points[min_dist_index][:, 3:], axis=1))
|
| 29 |
+
|
| 30 |
+
# Comp
|
| 31 |
+
comp_l1norm = np.sum(np.abs(v_recon_points[:, None, :3] - v_gt_points[:, :3]), axis=2)
|
| 32 |
+
min_dist_index = np.argmin(comp_l1norm, axis=0)
|
| 33 |
+
comp = np.mean(np.sum(v_gt_points[:, 3:] * v_recon_points[min_dist_index][:, 3:], axis=1))
|
| 34 |
+
|
| 35 |
+
return acc, comp, (acc + comp) / 2.0
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def get_danglingEdgeLength(shape):
|
| 39 |
+
no_directions = True
|
| 40 |
+
edges = get_primitives(shape, TopAbs_EDGE, no_directions)
|
| 41 |
+
faces = get_primitives(shape, TopAbs_FACE, no_directions)
|
| 42 |
+
connection = {edge: set() for edge in edges}
|
| 43 |
+
|
| 44 |
+
def EdgeBelongsToFace(edge, face):
|
| 45 |
+
edgeOnFace = get_primitives(face, TopAbs_EDGE, True)
|
| 46 |
+
for _edge in edgeOnFace:
|
| 47 |
+
if _edge.IsSame(edge):
|
| 48 |
+
return True
|
| 49 |
+
return False
|
| 50 |
+
|
| 51 |
+
# Get edge-face connections
|
| 52 |
+
for edge in edges:
|
| 53 |
+
for face in faces:
|
| 54 |
+
if EdgeBelongsToFace(edge, face):
|
| 55 |
+
connection[edge].add(face)
|
| 56 |
+
|
| 57 |
+
# Get dangling edge length
|
| 58 |
+
danglingEdgeLength = 0.0
|
| 59 |
+
for edge, faces in connection.items():
|
| 60 |
+
if len(faces) < 2:
|
| 61 |
+
curve, _, _ = BRep_Tool.Curve(edge)
|
| 62 |
+
if len(faces) == 1 and (BRep_Tool.Surface(list(faces)[0]).IsUPeriodic() or BRep_Tool.Surface(list(faces)[0]).IsVPeriodic()):
|
| 63 |
+
continue
|
| 64 |
+
else:
|
| 65 |
+
danglingEdgeLength += GCPnts_AbscissaPoint.Length(GeomAdaptor_Curve(curve))
|
| 66 |
+
|
| 67 |
+
return danglingEdgeLength
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
if __name__ == "__main__":
|
| 71 |
+
parser = argparse.ArgumentParser(description='Evaluate The Generated Brep')
|
| 72 |
+
parser.add_argument('--eval_root', type=str)
|
| 73 |
+
parser.add_argument('--gt_root', type=str)
|
| 74 |
+
parser.add_argument('--use_ray', action='store_true')
|
| 75 |
+
parser.add_argument('--num_cpus', type=int, default=16)
|
| 76 |
+
parser.add_argument('--prefix', type=str, default='')
|
| 77 |
+
parser.add_argument('--list', type=str, default='')
|
| 78 |
+
parser.add_argument('--from_scratch', action='store_true')
|
| 79 |
+
args = parser.parse_args()
|
| 80 |
+
|
| 81 |
+
seed_everything(0)
|
eval/lfd/evaluation_scripts/README.md
ADDED
|
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
## Scripts for Evaluating GET3D
|
| 2 |
+
|
| 3 |
+
#### Compute Light Field Distance
|
| 4 |
+
|
| 5 |
+
We thanks the authors for releasing the source code of
|
| 6 |
+
LFD [official repo](https://github.com/Sunwinds/ShapeDescriptor) and
|
| 7 |
+
It's [python extension](https://github.com/kacperkan/light-field-distance).
|
| 8 |
+
|
| 9 |
+
- Step 0: Download the all the files
|
| 10 |
+
from [official repo](https://github.com/Sunwinds/ShapeDescriptor/tree/master/LightField/3DRetrieval_v1.8/3DRetrieval_v1.8/Executable)
|
| 11 |
+
, and save it into `evaluation_scripts/load_data`.
|
| 12 |
+
- Step 1: Compile the files for light fild distance
|
| 13 |
+
|
| 14 |
+
```bash
|
| 15 |
+
cd evaluation_scripts/load_data
|
| 16 |
+
bash do_all.sh
|
| 17 |
+
cd ../..
|
| 18 |
+
git clone https://github.com/kacperkan/light-field-distance
|
| 19 |
+
cd light-field-distance
|
| 20 |
+
bash compile.sh
|
| 21 |
+
python setup.py install
|
| 22 |
+
cd ..
|
| 23 |
+
```
|
| 24 |
+
|
| 25 |
+
- Step 2: To compute LFD on a server, we need to set up a dummy screen
|
| 26 |
+
|
| 27 |
+
```bash
|
| 28 |
+
apt-get install -y freeglut3 libglu1-mesa xserver-xorg-video-dummy
|
| 29 |
+
X -config evaluation_scripts/compute_lfd_feat/dummy-1920x1080.conf
|
| 30 |
+
```
|
| 31 |
+
|
| 32 |
+
- Step 3: On a separate console, `export DISPLAY=:0`
|
| 33 |
+
|
| 34 |
+
- Step 4: We first generat the Light Field feature for each object by running
|
| 35 |
+
|
| 36 |
+
```bash
|
| 37 |
+
python compute_lfd_feat_multiprocess.py --gen_path PATH_TO_THE_MODEL_PREDICTION --save_path PATH_FOR_LFD_OUTPUT_FOR_PRED
|
| 38 |
+
```
|
| 39 |
+
|
| 40 |
+
- Step 5: Do the same for the ground truth data
|
| 41 |
+
|
| 42 |
+
```bash
|
| 43 |
+
python compute_lfd_feat_multiprocess.py --gen_path PATH_TO_GT_MODEL --save_path PATH_FOR_LFD_OUTPUT_FOR_GT
|
| 44 |
+
```
|
| 45 |
+
|
| 46 |
+
- Step 6: Compute the metric: LFD
|
| 47 |
+
|
| 48 |
+
```bash
|
| 49 |
+
python compute_lfd.py --split_path PATH_TO_TEST_SPLIT --dataset_path PATH_FOR_LFD_OUTPUT_FOR_GT --gen_path PATH_FOR_LFD_OUTPUT_FOR_PRED --save_name results/our/lfd.pkl
|
| 50 |
+
```
|
| 51 |
+
|
| 52 |
+
### Compute Chamfer Distance
|
| 53 |
+
|
| 54 |
+
- Step 1: Download original shapenet obj files from Shapenet Webpage
|
| 55 |
+
- Step 2: Running scripts to compute the chamfer distance
|
| 56 |
+
|
| 57 |
+
```bash
|
| 58 |
+
python compute_cd.py --dataset_path PATH_TO_GT_OBJS --gen_path PATH_TO_THE_MODEL_PREDICTION --split_path PATH_TO_TEST_SPLIT --save_name results/our/cd.pkl
|
| 59 |
+
```
|
| 60 |
+
|
| 61 |
+
(Optional) For shapenet car, since the GT dataset contains intern structures, we thus only
|
| 62 |
+
sample the points from the outer surface of the object for both our prediction and ground
|
| 63 |
+
truth. To achieve this:
|
| 64 |
+
|
| 65 |
+
```bash
|
| 66 |
+
python sample_surface.py --n_points 5000 --n_proc 2 --shape_root PATH_TO_OBJS --save_root PATH_TO_THE_SAMPLE_POINTS
|
| 67 |
+
```
|
| 68 |
+
|
| 69 |
+
### Compute Cov and MMD score:
|
| 70 |
+
|
| 71 |
+
After compute the chamfer distance and LFD, to compute the Coverage score and MMD score:
|
| 72 |
+
|
| 73 |
+
```bash
|
| 74 |
+
python compute_cov_mmd.py
|
| 75 |
+
```
|
eval/lfd/evaluation_scripts/compute_lfd.py
ADDED
|
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property
|
| 4 |
+
# and proprietary rights in and to this software, related documentation
|
| 5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
| 6 |
+
# distribution of this software and related documentation without an express
|
| 7 |
+
# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited.
|
| 8 |
+
|
| 9 |
+
import random
|
| 10 |
+
import numpy as np
|
| 11 |
+
import ray
|
| 12 |
+
import torch
|
| 13 |
+
import os
|
| 14 |
+
from tqdm import tqdm
|
| 15 |
+
from load_data.interface import LoadData
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def read_all_data(folder_list, load_data, add_model_str=True, add_ori_name=False):
|
| 19 |
+
all_data = []
|
| 20 |
+
|
| 21 |
+
for f in folder_list:
|
| 22 |
+
if add_model_str:
|
| 23 |
+
result = load_data.run(os.path.join(f, 'model', 'mesh'))
|
| 24 |
+
elif add_ori_name:
|
| 25 |
+
result = load_data.run(os.path.join(f, f.split('/')[-1], 'mesh'))
|
| 26 |
+
else:
|
| 27 |
+
result = load_data.run(os.path.join(f, 'mesh'))
|
| 28 |
+
|
| 29 |
+
all_data.append(result)
|
| 30 |
+
q8_table = all_data[0][0]
|
| 31 |
+
align_10 = all_data[0][1]
|
| 32 |
+
dest_ArtCoeff = [r[2][np.newaxis, :] for r in all_data]
|
| 33 |
+
dest_FdCoeff_q8 = [r[3][np.newaxis, :] for r in all_data]
|
| 34 |
+
dest_CirCoeff_q8 = [r[4][np.newaxis, :] for r in all_data]
|
| 35 |
+
dest_EccCoeff_q8 = [r[5][np.newaxis, :] for r in all_data]
|
| 36 |
+
SRC_ANGLE = 10
|
| 37 |
+
ANGLE = 10
|
| 38 |
+
CAMNUM = 10
|
| 39 |
+
ART_COEF = 35
|
| 40 |
+
FD_COEF = 10
|
| 41 |
+
n_shape = len(all_data)
|
| 42 |
+
dest_ArtCoeff = torch.from_numpy(np.ascontiguousarray(np.concatenate(dest_ArtCoeff, axis=0))).int().cuda().reshape(n_shape, SRC_ANGLE, CAMNUM, ART_COEF)
|
| 43 |
+
dest_FdCoeff_q8 = torch.from_numpy(np.ascontiguousarray(np.concatenate(dest_FdCoeff_q8, axis=0))).int().cuda().reshape(n_shape, ANGLE, CAMNUM, FD_COEF)
|
| 44 |
+
dest_CirCoeff_q8 = torch.from_numpy(np.ascontiguousarray(np.concatenate(dest_CirCoeff_q8, axis=0))).int().cuda().reshape(n_shape, ANGLE, CAMNUM)
|
| 45 |
+
dest_EccCoeff_q8 = torch.from_numpy(np.ascontiguousarray(np.concatenate(dest_EccCoeff_q8, axis=0))).int().cuda().reshape(n_shape, ANGLE, CAMNUM)
|
| 46 |
+
q8_table = torch.from_numpy(np.ascontiguousarray(q8_table)).int().cuda().reshape(256, 256)
|
| 47 |
+
align_10 = torch.from_numpy(np.ascontiguousarray(align_10)).int().cuda().reshape(60, 20) ##
|
| 48 |
+
return q8_table.contiguous(), align_10.contiguous(), dest_ArtCoeff.contiguous(), \
|
| 49 |
+
dest_FdCoeff_q8.contiguous(), dest_CirCoeff_q8.contiguous(), dest_EccCoeff_q8.contiguous()
|
| 50 |
+
|
| 51 |
+
def compute_lfd_all(src_folder_list, tgt_folder_list, log):
|
| 52 |
+
load_data = LoadData()
|
| 53 |
+
|
| 54 |
+
add_ori_name = False
|
| 55 |
+
add_model_str = False
|
| 56 |
+
src_folder_list.sort()
|
| 57 |
+
tgt_folder_list.sort()
|
| 58 |
+
|
| 59 |
+
q8_table, align_10, src_ArtCoeff, src_FdCoeff_q8, src_CirCoeff_q8, src_EccCoeff_q8 = read_all_data(src_folder_list, load_data, add_model_str=False)
|
| 60 |
+
q8_table, align_10, tgt_ArtCoeff, tgt_FdCoeff_q8, tgt_CirCoeff_q8, tgt_EccCoeff_q8 = read_all_data(tgt_folder_list, load_data, add_model_str=add_model_str, add_ori_name=add_ori_name) ###
|
| 61 |
+
|
| 62 |
+
from lfd_all_compute.lfd import LFD
|
| 63 |
+
lfd = LFD()
|
| 64 |
+
lfd_matrix = lfd.forward(
|
| 65 |
+
q8_table, align_10, src_ArtCoeff, src_FdCoeff_q8, src_CirCoeff_q8, src_EccCoeff_q8,
|
| 66 |
+
tgt_ArtCoeff, tgt_FdCoeff_q8, tgt_CirCoeff_q8, tgt_EccCoeff_q8, log)
|
| 67 |
+
# print(lfd_matrix)
|
| 68 |
+
# print(lfd_matrix.shape)
|
| 69 |
+
mmd = lfd_matrix.float().min(dim=0)[0].mean()
|
| 70 |
+
mmd_swp = lfd_matrix.float().min(dim=1)[0].mean()
|
| 71 |
+
# print(mmd)
|
| 72 |
+
# print(mmd_swp)
|
| 73 |
+
return lfd_matrix.data.cpu().numpy()
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
if __name__ == '__main__':
|
| 78 |
+
import argparse
|
| 79 |
+
|
| 80 |
+
parser = argparse.ArgumentParser()
|
| 81 |
+
parser.add_argument("--save_name", type=str, required=True, help="path to the save resules shapenet dataset")
|
| 82 |
+
parser.add_argument("--dataset_path", type=str, required=True, help="path to the preprocessed shapenet dataset")
|
| 83 |
+
parser.add_argument("--gen_path", type=str, required=True, help="path to the generated models")
|
| 84 |
+
parser.add_argument("--num_workers", type=int, default=1, help="number of workers to run in parallel")
|
| 85 |
+
parser.add_argument("--list", type=str, default=None, help="list file in the training set")
|
| 86 |
+
args = parser.parse_args()
|
| 87 |
+
save_path = '/'.join(args.save_name.split('/')[:-1])
|
| 88 |
+
os.makedirs(save_path, exist_ok=True)
|
| 89 |
+
num_workers = args.num_workers
|
| 90 |
+
listfile = args.list
|
| 91 |
+
ray.init(
|
| 92 |
+
num_cpus=os.cpu_count(),
|
| 93 |
+
num_gpus=num_workers,
|
| 94 |
+
)
|
| 95 |
+
print(f"dataset_path: {args.dataset_path}")
|
| 96 |
+
print(f"gen_path: {args.gen_path}")
|
| 97 |
+
assert os.path.exists(args.dataset_path) and os.path.exists(args.gen_path)
|
| 98 |
+
|
| 99 |
+
tgt_folder_list = sorted(os.listdir(args.dataset_path))
|
| 100 |
+
if listfile is not None:
|
| 101 |
+
valid_folders = [item.strip() for item in open(listfile, 'r').readlines()]
|
| 102 |
+
tgt_folder_list = sorted(list(set(valid_folders) & set(tgt_folder_list)))
|
| 103 |
+
tgt_folder_list = [os.path.join(args.dataset_path, f) for f in tgt_folder_list]
|
| 104 |
+
else:
|
| 105 |
+
tgt_folder_list = [os.path.join(args.dataset_path, f) for f in tgt_folder_list]
|
| 106 |
+
|
| 107 |
+
src_folder_list = os.listdir(args.gen_path)
|
| 108 |
+
random.shuffle(src_folder_list)
|
| 109 |
+
src_folder_list = sorted(src_folder_list[:3000])
|
| 110 |
+
src_folder_list = [os.path.join(args.gen_path, f) for f in src_folder_list]
|
| 111 |
+
|
| 112 |
+
compute_lfd_all_remote = ray.remote(num_gpus=1, num_cpus=os.cpu_count() // num_workers)(compute_lfd_all)
|
| 113 |
+
|
| 114 |
+
print("Check data")
|
| 115 |
+
print(f"len of src_folder_list: {len(src_folder_list)}")
|
| 116 |
+
print(f"len of tgt_folder_list: {len(tgt_folder_list)}")
|
| 117 |
+
# print(src_folder_list[0])
|
| 118 |
+
# print(tgt_folder_list[0])
|
| 119 |
+
|
| 120 |
+
results = []
|
| 121 |
+
for i in range(num_workers):
|
| 122 |
+
i_start = i * len(src_folder_list) // num_workers
|
| 123 |
+
i_end = (i + 1) * len(src_folder_list) // num_workers
|
| 124 |
+
# print(i, i_start, i_end)
|
| 125 |
+
results.append(compute_lfd_all_remote.remote(
|
| 126 |
+
src_folder_list[i_start:i_end],
|
| 127 |
+
tgt_folder_list,
|
| 128 |
+
i==0))
|
| 129 |
+
|
| 130 |
+
lfd_matrix = ray.get(results)
|
| 131 |
+
lfd_matrix = np.concatenate(lfd_matrix, axis=0)
|
| 132 |
+
import pickle
|
| 133 |
+
save_name = args.save_name
|
| 134 |
+
nearest_name = [tgt_folder_list[idx].split("/")[-1] for idx in lfd_matrix.argmin(axis=1)]
|
| 135 |
+
src_folder_list = [src_folder_list[idx].split("/")[-1] for idx in range(len(src_folder_list))]
|
| 136 |
+
pickle.dump([src_folder_list, nearest_name, lfd_matrix], open(save_name, 'wb'))
|
| 137 |
+
print(f"pkl is saved to {save_name}")
|
eval/lfd/evaluation_scripts/compute_lfd_check_data.py
ADDED
|
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property
|
| 4 |
+
# and proprietary rights in and to this software, related documentation
|
| 5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
| 6 |
+
# distribution of this software and related documentation without an express
|
| 7 |
+
# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited.
|
| 8 |
+
|
| 9 |
+
import random
|
| 10 |
+
import shutil
|
| 11 |
+
|
| 12 |
+
import numpy as np
|
| 13 |
+
import ray
|
| 14 |
+
import torch
|
| 15 |
+
import os
|
| 16 |
+
from tqdm import tqdm
|
| 17 |
+
from load_data.interface import LoadData
|
| 18 |
+
import pickle
|
| 19 |
+
from multiprocessing import Pool, cpu_count
|
| 20 |
+
|
| 21 |
+
def read_all_data(folder_list, load_data, add_model_str=True, add_ori_name=False):
|
| 22 |
+
all_data = []
|
| 23 |
+
|
| 24 |
+
for f in folder_list:
|
| 25 |
+
if add_model_str:
|
| 26 |
+
result = load_data.run(os.path.join(f, 'model', 'mesh'))
|
| 27 |
+
elif add_ori_name:
|
| 28 |
+
result = load_data.run(os.path.join(f, f.split('/')[-1], 'mesh'))
|
| 29 |
+
else:
|
| 30 |
+
result = load_data.run(os.path.join(f, 'mesh'))
|
| 31 |
+
|
| 32 |
+
all_data.append(result)
|
| 33 |
+
q8_table = all_data[0][0]
|
| 34 |
+
align_10 = all_data[0][1]
|
| 35 |
+
dest_ArtCoeff = [r[2][np.newaxis, :] for r in all_data]
|
| 36 |
+
dest_FdCoeff_q8 = [r[3][np.newaxis, :] for r in all_data]
|
| 37 |
+
dest_CirCoeff_q8 = [r[4][np.newaxis, :] for r in all_data]
|
| 38 |
+
dest_EccCoeff_q8 = [r[5][np.newaxis, :] for r in all_data]
|
| 39 |
+
SRC_ANGLE = 10
|
| 40 |
+
ANGLE = 10
|
| 41 |
+
CAMNUM = 10
|
| 42 |
+
ART_COEF = 35
|
| 43 |
+
FD_COEF = 10
|
| 44 |
+
n_shape = len(all_data)
|
| 45 |
+
dest_ArtCoeff = torch.from_numpy(np.ascontiguousarray(np.concatenate(dest_ArtCoeff, axis=0))).int().cuda().reshape(n_shape, SRC_ANGLE,
|
| 46 |
+
CAMNUM, ART_COEF)
|
| 47 |
+
dest_FdCoeff_q8 = torch.from_numpy(np.ascontiguousarray(np.concatenate(dest_FdCoeff_q8, axis=0))).int().cuda().reshape(n_shape, ANGLE,
|
| 48 |
+
CAMNUM, FD_COEF)
|
| 49 |
+
dest_CirCoeff_q8 = torch.from_numpy(np.ascontiguousarray(np.concatenate(dest_CirCoeff_q8, axis=0))).int().cuda().reshape(n_shape, ANGLE,
|
| 50 |
+
CAMNUM)
|
| 51 |
+
dest_EccCoeff_q8 = torch.from_numpy(np.ascontiguousarray(np.concatenate(dest_EccCoeff_q8, axis=0))).int().cuda().reshape(n_shape, ANGLE,
|
| 52 |
+
CAMNUM)
|
| 53 |
+
q8_table = torch.from_numpy(np.ascontiguousarray(q8_table)).int().cuda().reshape(256, 256)
|
| 54 |
+
align_10 = torch.from_numpy(np.ascontiguousarray(align_10)).int().cuda().reshape(60, 20) ##
|
| 55 |
+
return q8_table.contiguous(), align_10.contiguous(), dest_ArtCoeff.contiguous(), \
|
| 56 |
+
dest_FdCoeff_q8.contiguous(), dest_CirCoeff_q8.contiguous(), dest_EccCoeff_q8.contiguous()
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def compute_lfd_all(src_folder_list, tgt_folder_list, log):
|
| 60 |
+
load_data = LoadData()
|
| 61 |
+
|
| 62 |
+
add_ori_name = False
|
| 63 |
+
add_model_str = False
|
| 64 |
+
src_folder_list.sort()
|
| 65 |
+
tgt_folder_list.sort()
|
| 66 |
+
|
| 67 |
+
q8_table, align_10, src_ArtCoeff, src_FdCoeff_q8, src_CirCoeff_q8, src_EccCoeff_q8 = read_all_data(src_folder_list, load_data,
|
| 68 |
+
add_model_str=False)
|
| 69 |
+
q8_table, align_10, tgt_ArtCoeff, tgt_FdCoeff_q8, tgt_CirCoeff_q8, tgt_EccCoeff_q8 = read_all_data(tgt_folder_list, load_data,
|
| 70 |
+
add_model_str=add_model_str,
|
| 71 |
+
add_ori_name=add_ori_name) ###
|
| 72 |
+
|
| 73 |
+
from lfd_all_compute.lfd import LFD
|
| 74 |
+
lfd = LFD()
|
| 75 |
+
lfd_matrix = lfd.forward(
|
| 76 |
+
q8_table, align_10, src_ArtCoeff, src_FdCoeff_q8, src_CirCoeff_q8, src_EccCoeff_q8,
|
| 77 |
+
tgt_ArtCoeff, tgt_FdCoeff_q8, tgt_CirCoeff_q8, tgt_EccCoeff_q8, log)
|
| 78 |
+
# print(lfd_matrix)
|
| 79 |
+
# print(lfd_matrix.shape)
|
| 80 |
+
mmd = lfd_matrix.float().min(dim=0)[0].mean()
|
| 81 |
+
mmd_swp = lfd_matrix.float().min(dim=1)[0].mean()
|
| 82 |
+
# print(mmd)
|
| 83 |
+
# print(mmd_swp)
|
| 84 |
+
return lfd_matrix.data.cpu().numpy()
|
| 85 |
+
|
| 86 |
+
def get_file_size_kb(mesh_path):
|
| 87 |
+
return int(os.path.getsize(mesh_path) / 1024)
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
if __name__ == '__main__':
|
| 91 |
+
import argparse
|
| 92 |
+
|
| 93 |
+
parser = argparse.ArgumentParser()
|
| 94 |
+
parser.add_argument("--mesh_path", type=str, required=True, help="path to the mesh folder")
|
| 95 |
+
parser.add_argument("--lfd_feat", type=str, required=True, help="path to the preprocessed shapenet dataset")
|
| 96 |
+
parser.add_argument("--save_root", type=str, required=True, help="path to the save resules shapenet dataset")
|
| 97 |
+
parser.add_argument("--num_workers", type=int, default=1, help="number of workers to run in parallel")
|
| 98 |
+
parser.add_argument("--list", type=str, default=None, help="list file in the training set")
|
| 99 |
+
args = parser.parse_args()
|
| 100 |
+
num_workers = args.num_workers
|
| 101 |
+
listfile = args.list
|
| 102 |
+
|
| 103 |
+
mesh_folder_path = args.mesh_path
|
| 104 |
+
lfd_feat_path = args.lfd_feat
|
| 105 |
+
save_root = args.save_root
|
| 106 |
+
os.makedirs(save_root, exist_ok=True)
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
print(f"mesh_path: {mesh_folder_path}")
|
| 110 |
+
print(f"lfd_feat_path: {lfd_feat_path}")
|
| 111 |
+
|
| 112 |
+
all_folders = os.listdir(mesh_folder_path)
|
| 113 |
+
all_folders.sort()
|
| 114 |
+
print("Get mesh_size")
|
| 115 |
+
mesh_folder_list = []
|
| 116 |
+
mesh_path_list = []
|
| 117 |
+
# mesh_size_list = []
|
| 118 |
+
for mesh_folder in tqdm(all_folders):
|
| 119 |
+
mesh_path = os.path.join(mesh_folder_path, mesh_folder, "mesh.stl")
|
| 120 |
+
mesh_folder_list.append(mesh_folder)
|
| 121 |
+
mesh_path_list.append(mesh_path)
|
| 122 |
+
# mesh_size_list.append(int(os.path.getsize(mesh_path) / 1024))
|
| 123 |
+
|
| 124 |
+
with Pool(processes=cpu_count()) as pool:
|
| 125 |
+
mesh_size_list = list(tqdm(pool.imap(get_file_size_kb, mesh_path_list), total=len(mesh_path_list)))
|
| 126 |
+
|
| 127 |
+
# sort according to the size of the mesh file
|
| 128 |
+
assert len(mesh_size_list) == len(mesh_folder_list)
|
| 129 |
+
# mesh_folder_list = [x for _, x in sorted(zip(mesh_size_list, mesh_folder_list))]
|
| 130 |
+
# mesh_size_list = sorted(mesh_size_list)
|
| 131 |
+
mesh_size_list = np.array(mesh_size_list)
|
| 132 |
+
print(f"Max size: {mesh_size_list.max()}")
|
| 133 |
+
print(f"Min size: {mesh_size_list.min()}")
|
| 134 |
+
print(f"Total {mesh_size_list.shape} mesh_folder to process")
|
| 135 |
+
|
| 136 |
+
tgt_folder_list = mesh_folder_list
|
| 137 |
+
|
| 138 |
+
if listfile is not None:
|
| 139 |
+
valid_folders = [item.strip() for item in open(listfile, 'r').readlines()]
|
| 140 |
+
tgt_folder_list = sorted(list(set(valid_folders) & set(tgt_folder_list)))
|
| 141 |
+
tgt_folder_list = [os.path.join(lfd_feat_path, f) for f in tgt_folder_list]
|
| 142 |
+
else:
|
| 143 |
+
tgt_folder_list = [os.path.join(lfd_feat_path, f) for f in tgt_folder_list]
|
| 144 |
+
|
| 145 |
+
src_folder_list = tgt_folder_list
|
| 146 |
+
|
| 147 |
+
start_from_size_end = 0
|
| 148 |
+
print(f"Start from size_end: {start_from_size_end}")
|
| 149 |
+
print((mesh_size_list>start_from_size_end).sum()/mesh_size_list.shape[0])
|
| 150 |
+
|
| 151 |
+
ray.init(
|
| 152 |
+
num_cpus=os.cpu_count(),
|
| 153 |
+
num_gpus=num_workers,
|
| 154 |
+
)
|
| 155 |
+
|
| 156 |
+
compute_lfd_all_remote = ray.remote(num_gpus=1, num_cpus=os.cpu_count() // num_workers)(compute_lfd_all)
|
| 157 |
+
|
| 158 |
+
print("Check data")
|
| 159 |
+
print(f"len of src_folder_list: {len(src_folder_list)}")
|
| 160 |
+
print(f"len of tgt_folder_list: {len(tgt_folder_list)}")
|
| 161 |
+
print(src_folder_list[0])
|
| 162 |
+
print(tgt_folder_list[0])
|
| 163 |
+
|
| 164 |
+
batch_size = 1
|
| 165 |
+
offset = 2
|
| 166 |
+
|
| 167 |
+
for size_start in tqdm(range(mesh_size_list.min(), mesh_size_list.max(), batch_size)):
|
| 168 |
+
size_end = size_start + offset
|
| 169 |
+
print(f"size_start: {size_start}, size_end: {size_end}, max_size: {mesh_size_list.max()}")
|
| 170 |
+
if size_end <= start_from_size_end:
|
| 171 |
+
continue
|
| 172 |
+
# get the folder list for the current batch
|
| 173 |
+
hitted_idx = np.where((mesh_size_list >= size_start) & (mesh_size_list <= size_end))[0]
|
| 174 |
+
print(f"len of hitted folder: {len(hitted_idx)}")
|
| 175 |
+
if len(hitted_idx) == 0:
|
| 176 |
+
continue
|
| 177 |
+
local_num_workers = min(num_workers, len(hitted_idx))
|
| 178 |
+
local_tgt_folder_list = [tgt_folder_list[i] for i in hitted_idx]
|
| 179 |
+
local_src_folder_list = local_tgt_folder_list
|
| 180 |
+
results = []
|
| 181 |
+
for i in range(local_num_workers):
|
| 182 |
+
local_i_start = i * len(local_src_folder_list) // local_num_workers
|
| 183 |
+
local_i_end = (i + 1) * len(local_src_folder_list) // local_num_workers
|
| 184 |
+
results.append(compute_lfd_all_remote.remote(
|
| 185 |
+
local_src_folder_list[local_i_start:local_i_end],
|
| 186 |
+
local_tgt_folder_list,
|
| 187 |
+
i == 0))
|
| 188 |
+
lfd_matrix = ray.get(results)
|
| 189 |
+
lfd_matrix = np.concatenate(lfd_matrix, axis=0)
|
| 190 |
+
|
| 191 |
+
save_name = os.path.join(save_root, f"lfd_{size_start:07d}kb_{size_end:07d}kb.pkl")
|
| 192 |
+
pickle.dump([local_tgt_folder_list, lfd_matrix], open(save_name, 'wb'))
|
| 193 |
+
print(f"pkl is saved to {save_name}\n\n")
|
eval/lfd/evaluation_scripts/compute_lfd_feat/compute_lfd_feat_multiprocess.py
ADDED
|
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property
|
| 4 |
+
# and proprietary rights in and to this software, related documentation
|
| 5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
| 6 |
+
# distribution of this software and related documentation without an express
|
| 7 |
+
# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited.
|
| 8 |
+
|
| 9 |
+
import argparse
|
| 10 |
+
import glob
|
| 11 |
+
|
| 12 |
+
import numpy as np
|
| 13 |
+
import torch
|
| 14 |
+
import os
|
| 15 |
+
import random
|
| 16 |
+
from tqdm import tqdm
|
| 17 |
+
from pathlib import Path
|
| 18 |
+
from multiprocessing import Pool
|
| 19 |
+
# import kaolin as kal
|
| 20 |
+
import point_cloud_utils as pcu
|
| 21 |
+
import trimesh
|
| 22 |
+
|
| 23 |
+
from tqdm import tqdm
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def seed_everything(seed):
|
| 27 |
+
if seed < 0:
|
| 28 |
+
return
|
| 29 |
+
torch.manual_seed(seed)
|
| 30 |
+
np.random.seed(seed)
|
| 31 |
+
random.seed(seed)
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def load_mesh_v(mesh_name, normalized_scale=0.9):
|
| 35 |
+
if mesh_name.endswith('obj') or mesh_name.endswith('OBJ'):
|
| 36 |
+
mesh_1 = kal.io.obj.import_mesh(mesh_name)
|
| 37 |
+
vertices = mesh_1.vertices.cpu().numpy()
|
| 38 |
+
mesh_f1 = mesh_1.faces.cpu().numpy()
|
| 39 |
+
# elif mesh_name.endswith('ply'):
|
| 40 |
+
# vertices, mesh_f1 = pcu.load_mesh_vf(mesh_name)
|
| 41 |
+
elif mesh_name.endswith('stl') or mesh_name.endswith('ply'):
|
| 42 |
+
mesh = trimesh.load_mesh(mesh_name, force='mesh')
|
| 43 |
+
if isinstance(mesh, trimesh.Scene):
|
| 44 |
+
# we lose texture information here
|
| 45 |
+
mesh = trimesh.util.concatenate(
|
| 46 |
+
tuple(trimesh.Trimesh(vertices=g.vertices, faces=g.faces)
|
| 47 |
+
for g in mesh.geometry.values()))
|
| 48 |
+
vertices = np.asarray(mesh.vertices)
|
| 49 |
+
mesh_f1 = np.asarray(mesh.faces)
|
| 50 |
+
else:
|
| 51 |
+
raise NotImplementedError
|
| 52 |
+
|
| 53 |
+
if vertices.shape[0] == 0:
|
| 54 |
+
return None, None
|
| 55 |
+
|
| 56 |
+
scale = (vertices.max(axis=0) - vertices.min(axis=0)).max()
|
| 57 |
+
mesh_v1 = vertices / (scale+1e-6) * normalized_scale
|
| 58 |
+
return mesh_v1, mesh_f1
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
from lfd_me import MeshEncoder
|
| 62 |
+
from functools import partial
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def align_mesh_feature(mesh_name, align_feature_sample_folder):
|
| 66 |
+
# mesh_fodler = mesh_name.split('/')[-3:]
|
| 67 |
+
# print(mesh_fodler)
|
| 68 |
+
# mesh_fodler[-1] = mesh_fodler[-1].split('.')[0]
|
| 69 |
+
# print(mesh_fodler)
|
| 70 |
+
# mesh_fodler = '/'.join(mesh_fodler)
|
| 71 |
+
mesh_fodler = os.path.basename(os.path.dirname(mesh_name))
|
| 72 |
+
mesh_fodler = os.path.join(align_feature_sample_folder, mesh_fodler)
|
| 73 |
+
# print(mesh_fodler)
|
| 74 |
+
|
| 75 |
+
if not os.path.exists(mesh_fodler):
|
| 76 |
+
os.makedirs(mesh_fodler)
|
| 77 |
+
if os.path.exists(os.path.join(mesh_fodler, 'mesh_q4_v1.8.art')) and os.path.getsize(
|
| 78 |
+
os.path.join(mesh_fodler, 'mesh_q4_v1.8.art')) > 1000:
|
| 79 |
+
temp_dir_path = Path(mesh_fodler)
|
| 80 |
+
file_name = 'mesh'
|
| 81 |
+
temp_path = temp_dir_path / "{}.obj".format(file_name)
|
| 82 |
+
path = temp_path.with_suffix("").as_posix()
|
| 83 |
+
return path
|
| 84 |
+
|
| 85 |
+
mesh_v, mesh_f = load_mesh_v(mesh_name, normalized_scale=1.0)
|
| 86 |
+
if mesh_v is None:
|
| 87 |
+
return None # No face here
|
| 88 |
+
|
| 89 |
+
mesh = MeshEncoder(mesh_v, mesh_f, folder=mesh_fodler, file_name='mesh', )
|
| 90 |
+
mesh.align_mesh()
|
| 91 |
+
return mesh.get_path()
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def compute_lfd_feture(sample_pcs, n_process, save_path):
|
| 95 |
+
align_feature_sample_folder = save_path
|
| 96 |
+
os.makedirs(align_feature_sample_folder, exist_ok=True)
|
| 97 |
+
print('==> one model')
|
| 98 |
+
align_mesh_feature(sample_pcs[0], align_feature_sample_folder)
|
| 99 |
+
N_process = n_process
|
| 100 |
+
path_list = []
|
| 101 |
+
if n_process == 0:
|
| 102 |
+
for i in tqdm(range(len(sample_pcs))):
|
| 103 |
+
align_mesh_feature(sample_pcs[i], align_feature_sample_folder)
|
| 104 |
+
exit()
|
| 105 |
+
print('==> multi process')
|
| 106 |
+
pool = Pool(N_process)
|
| 107 |
+
for x in tqdm(
|
| 108 |
+
pool.imap_unordered(partial(align_mesh_feature, align_feature_sample_folder=align_feature_sample_folder), sample_pcs),
|
| 109 |
+
total=len(sample_pcs)):
|
| 110 |
+
path_list.append(x)
|
| 111 |
+
pool.close()
|
| 112 |
+
pool.join()
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
def load_data_with_prefix(root_folder, prefix, folder_list_txt=None):
|
| 116 |
+
data_files = []
|
| 117 |
+
folder_list = []
|
| 118 |
+
if folder_list_txt is not None:
|
| 119 |
+
with open(folder_list_txt, "r") as f:
|
| 120 |
+
folder_list = f.read().splitlines()
|
| 121 |
+
# Walk through the directory tree starting from the root folder
|
| 122 |
+
for root, dirs, files in os.walk(root_folder):
|
| 123 |
+
if folder_list_txt is not None and os.path.basename(root) not in folder_list:
|
| 124 |
+
continue
|
| 125 |
+
for filename in files:
|
| 126 |
+
# Check if the file ends with the specified prefix
|
| 127 |
+
if filename.endswith(prefix):
|
| 128 |
+
file_path = os.path.join(root, filename)
|
| 129 |
+
data_files.append(file_path)
|
| 130 |
+
|
| 131 |
+
return data_files
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
if __name__ == "__main__":
|
| 135 |
+
parser = argparse.ArgumentParser()
|
| 136 |
+
parser.add_argument("--gen_path", type=str, required=True, help="path to the generated models")
|
| 137 |
+
parser.add_argument("--save_path", type=str, required=True, help="path to save the generated features for each model")
|
| 138 |
+
parser.add_argument("--n_models", type=int, default=-1, help="Number of models used for evaluation")
|
| 139 |
+
parser.add_argument("--n_process", type=int, default=-1, help="Number of process used for evaluation")
|
| 140 |
+
parser.add_argument("--prefix", type=str, required=False, default="mesh.ply")
|
| 141 |
+
|
| 142 |
+
args = parser.parse_args()
|
| 143 |
+
if args.n_process == -1:
|
| 144 |
+
num_cpus = min(64, os.cpu_count())
|
| 145 |
+
else:
|
| 146 |
+
num_cpus = args.n_process
|
| 147 |
+
models = []
|
| 148 |
+
all_folders = os.listdir(args.gen_path)
|
| 149 |
+
for folder in tqdm(all_folders):
|
| 150 |
+
if not os.path.isdir(os.path.join(args.gen_path, folder)):
|
| 151 |
+
continue
|
| 152 |
+
files = glob.glob(os.path.join(args.gen_path, folder, args.prefix))
|
| 153 |
+
if len(files) == 0:
|
| 154 |
+
continue
|
| 155 |
+
models.append(os.path.abspath(files[0]))
|
| 156 |
+
models.sort()
|
| 157 |
+
print(f"Loading {len(models)} models")
|
| 158 |
+
compute_lfd_feture(models, num_cpus, os.path.abspath(args.save_path))
|
eval/lfd/evaluation_scripts/compute_lfd_feat/dummy-1920x1080.conf
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Section "Monitor"
|
| 2 |
+
Identifier "Monitor0"
|
| 3 |
+
HorizSync 28.0-80.0
|
| 4 |
+
VertRefresh 48.0-75.0
|
| 5 |
+
# https://arachnoid.com/modelines/
|
| 6 |
+
# 1920x1080 @ 60.00 Hz (GTF) hsync: 67.08 kHz; pclk: 172.80 MHz
|
| 7 |
+
Modeline "1920x1080_60.00" 172.80 1920 2040 2248 2576 1080 1081 1084 1118 -HSync +Vsync
|
| 8 |
+
EndSection
|
| 9 |
+
|
| 10 |
+
Section "Device"
|
| 11 |
+
Identifier "Card0"
|
| 12 |
+
Driver "dummy"
|
| 13 |
+
VideoRam 256000
|
| 14 |
+
EndSection
|
| 15 |
+
|
| 16 |
+
Section "Screen"
|
| 17 |
+
DefaultDepth 24
|
| 18 |
+
Identifier "Screen0"
|
| 19 |
+
Device "Card0"
|
| 20 |
+
Monitor "Monitor0"
|
| 21 |
+
SubSection "Display"
|
| 22 |
+
Depth 24
|
| 23 |
+
Modes "1920x1080_60.00"
|
| 24 |
+
EndSubSection
|
| 25 |
+
EndSection
|
eval/lfd/evaluation_scripts/compute_lfd_feat/lfd_me.py
ADDED
|
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property
|
| 4 |
+
# and proprietary rights in and to this software, related documentation
|
| 5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
| 6 |
+
# distribution of this software and related documentation without an express
|
| 7 |
+
# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited.
|
| 8 |
+
'''
|
| 9 |
+
Function is modified based on https://github.com/kacperkan/light-field-distance
|
| 10 |
+
'''
|
| 11 |
+
import argparse
|
| 12 |
+
import sys
|
| 13 |
+
import os
|
| 14 |
+
import shutil
|
| 15 |
+
import subprocess
|
| 16 |
+
import tempfile
|
| 17 |
+
import uuid
|
| 18 |
+
from pathlib import Path
|
| 19 |
+
from typing import Optional
|
| 20 |
+
|
| 21 |
+
import numpy as np
|
| 22 |
+
import trimesh
|
| 23 |
+
|
| 24 |
+
SIMILARITY_TAG = b"SIMILARITY:"
|
| 25 |
+
CURRENT_DIR = Path(__file__).parent.parent.parent / 'light-field-distance/lfd/Executable'
|
| 26 |
+
|
| 27 |
+
GENERATED_FILES_NAMES = [
|
| 28 |
+
"all_q4_v1.8.art",
|
| 29 |
+
"all_q8_v1.8.art",
|
| 30 |
+
"all_q8_v1.8.cir",
|
| 31 |
+
"all_q8_v1.8.ecc",
|
| 32 |
+
"all_q8_v1.8.fd",
|
| 33 |
+
]
|
| 34 |
+
|
| 35 |
+
OUTPUT_NAME_TEMPLATES = [
|
| 36 |
+
"{}_q4_v1.8.art",
|
| 37 |
+
"{}_q8_v1.8.art",
|
| 38 |
+
"{}_q8_v1.8.cir",
|
| 39 |
+
"{}_q8_v1.8.ecc",
|
| 40 |
+
"{}_q8_v1.8.fd",
|
| 41 |
+
]
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
class MeshEncoder:
|
| 45 |
+
"""Class holding an object and preprocessing it using an external cmd."""
|
| 46 |
+
|
| 47 |
+
def __init__(self, vertices: np.ndarray, triangles: np.ndarray, folder=None, file_name=None):
|
| 48 |
+
"""Instantiate the class.
|
| 49 |
+
|
| 50 |
+
It instantiates an empty, temporary folder that will hold any
|
| 51 |
+
intermediate data necessary to calculate Light Field Distance.
|
| 52 |
+
|
| 53 |
+
Args:
|
| 54 |
+
vertices: np.ndarray of vertices consisting of 3 coordinates each.
|
| 55 |
+
triangles: np.ndarray where each entry is a vector with 3 elements.
|
| 56 |
+
Each element correspond to vertices that create a triangle.
|
| 57 |
+
"""
|
| 58 |
+
self.mesh = trimesh.Trimesh(vertices=vertices, faces=triangles)
|
| 59 |
+
if folder is None:
|
| 60 |
+
folder = tempfile.mkdtemp()
|
| 61 |
+
if file_name is None:
|
| 62 |
+
file_name = uuid.uuid4()
|
| 63 |
+
self.temp_dir_path = Path(folder)
|
| 64 |
+
self.file_name = file_name
|
| 65 |
+
self.temp_path = self.temp_dir_path / "{}.obj".format(self.file_name)
|
| 66 |
+
self.mesh.export(self.temp_path.as_posix())
|
| 67 |
+
|
| 68 |
+
def get_path(self) -> str:
|
| 69 |
+
"""Get path of the object.
|
| 70 |
+
|
| 71 |
+
Commands require that an object is represented without any extension.
|
| 72 |
+
|
| 73 |
+
Returns:
|
| 74 |
+
Path to the temporary object created in the file system that
|
| 75 |
+
holds the Wavefront OBJ data of the object.
|
| 76 |
+
"""
|
| 77 |
+
return self.temp_path.with_suffix("").as_posix()
|
| 78 |
+
|
| 79 |
+
def align_mesh(self):
|
| 80 |
+
"""Create data of a 3D mesh to calculate Light Field Distance.
|
| 81 |
+
|
| 82 |
+
It runs an external command that create intermediate files and moves
|
| 83 |
+
these files to created temporary folder.
|
| 84 |
+
|
| 85 |
+
Returns:
|
| 86 |
+
None
|
| 87 |
+
"""
|
| 88 |
+
run_dir = self.temp_dir_path
|
| 89 |
+
# copy_file = []
|
| 90 |
+
copy_file = ['3DAlignment', 'align10.txt', 'q8_table', '12_0.obj',
|
| 91 |
+
'12_1.obj',
|
| 92 |
+
'12_2.obj',
|
| 93 |
+
'12_3.obj',
|
| 94 |
+
'12_4.obj',
|
| 95 |
+
'12_5.obj',
|
| 96 |
+
'12_6.obj',
|
| 97 |
+
'12_7.obj',
|
| 98 |
+
'12_8.obj',
|
| 99 |
+
'12_9.obj', ]
|
| 100 |
+
for f in copy_file:
|
| 101 |
+
os.system(
|
| 102 |
+
'cp %s %s' % (os.path.join(CURRENT_DIR, f),
|
| 103 |
+
os.path.join(run_dir, f)))
|
| 104 |
+
env = os.environ.copy()
|
| 105 |
+
env["DISPLAY"] = ":0"
|
| 106 |
+
process = subprocess.Popen(
|
| 107 |
+
['./3DAlignment', self.temp_path.with_suffix("").as_posix()],
|
| 108 |
+
cwd=run_dir,
|
| 109 |
+
stdin=subprocess.PIPE,
|
| 110 |
+
stdout=subprocess.PIPE,
|
| 111 |
+
stderr=subprocess.PIPE,
|
| 112 |
+
env=env
|
| 113 |
+
)
|
| 114 |
+
|
| 115 |
+
output, err = process.communicate()
|
| 116 |
+
|
| 117 |
+
if len(err) > 0:
|
| 118 |
+
print(err)
|
| 119 |
+
sys.exit(1)
|
| 120 |
+
|
| 121 |
+
for file, out_file in zip(
|
| 122 |
+
GENERATED_FILES_NAMES, OUTPUT_NAME_TEMPLATES
|
| 123 |
+
):
|
| 124 |
+
shutil.move(
|
| 125 |
+
os.path.join(run_dir, file),
|
| 126 |
+
(
|
| 127 |
+
self.temp_dir_path / out_file.format(self.file_name)
|
| 128 |
+
).as_posix(),
|
| 129 |
+
)
|
| 130 |
+
for f in copy_file:
|
| 131 |
+
os.system('rm -rf %s' % (os.path.join(run_dir, f)))
|
| 132 |
+
|
| 133 |
+
os.system('rm -rf %s' % (self.temp_path.as_posix()))
|
eval/lfd/evaluation_scripts/lfd_all_compute/lfd.py
ADDED
|
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property
|
| 4 |
+
# and proprietary rights in and to this software, related documentation
|
| 5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
| 6 |
+
# distribution of this software and related documentation without an express
|
| 7 |
+
# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited.
|
| 8 |
+
|
| 9 |
+
# !/usr/bin/env python
|
| 10 |
+
# -*- coding:utf-8 -*-
|
| 11 |
+
import torch
|
| 12 |
+
from tqdm import tqdm
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def calculate_lfd_distance(
|
| 16 |
+
q8_table, align_10, src_ArtCoeff, src_FdCoeff_q8, src_CirCoeff_q8, src_EccCoeff_q8,
|
| 17 |
+
tgt_ArtCoeff, tgt_FdCoeff_q8, tgt_CirCoeff_q8, tgt_EccCoeff_q8):
|
| 18 |
+
with torch.no_grad():
|
| 19 |
+
src_ArtCoeff = src_ArtCoeff.unsqueeze(dim=1).unsqueeze(dim=1).expand(-1, 10, 10, -1, -1, -1)
|
| 20 |
+
tgt_ArtCoeff = tgt_ArtCoeff.unsqueeze(dim=3).unsqueeze(dim=3).expand(-1, -1, -1, 10, 10, -1)
|
| 21 |
+
art_distance = q8_table[src_ArtCoeff.reshape(-1).long(), tgt_ArtCoeff.reshape(-1).long()]
|
| 22 |
+
art_distance = art_distance.reshape(
|
| 23 |
+
src_ArtCoeff.shape[0], src_ArtCoeff.shape[1], src_ArtCoeff.shape[2],
|
| 24 |
+
src_ArtCoeff.shape[3],
|
| 25 |
+
src_ArtCoeff.shape[4], src_ArtCoeff.shape[5])
|
| 26 |
+
art_distance = torch.sum(art_distance, dim=-1)
|
| 27 |
+
|
| 28 |
+
src_FdCoeff_q8 = src_FdCoeff_q8.unsqueeze(dim=1).unsqueeze(dim=1).expand(-1, 10, 10, -1, -1, -1)
|
| 29 |
+
tgt_FdCoeff_q8 = tgt_FdCoeff_q8.unsqueeze(dim=3).unsqueeze(dim=3).expand(-1, -1, -1, 10, 10, -1)
|
| 30 |
+
fd_distance = q8_table[src_FdCoeff_q8.reshape(-1).long(), tgt_FdCoeff_q8.reshape(-1).long()]
|
| 31 |
+
fd_distance = fd_distance.reshape(
|
| 32 |
+
src_FdCoeff_q8.shape[0], src_FdCoeff_q8.shape[1], src_FdCoeff_q8.shape[2],
|
| 33 |
+
src_FdCoeff_q8.shape[3], src_FdCoeff_q8.shape[4], src_FdCoeff_q8.shape[5])
|
| 34 |
+
fd_distance = torch.sum(fd_distance, dim=-1) * 2.0
|
| 35 |
+
|
| 36 |
+
src_CirCoeff_q8 = src_CirCoeff_q8.unsqueeze(dim=1).unsqueeze(dim=1).expand(-1, 10, 10, -1, -1)
|
| 37 |
+
tgt_CirCoeff_q8 = tgt_CirCoeff_q8.unsqueeze(dim=3).unsqueeze(dim=3).expand(-1, -1, -1, 10, 10)
|
| 38 |
+
cir_distance = q8_table[src_CirCoeff_q8.reshape(-1).long(), tgt_CirCoeff_q8.reshape(-1).long()]
|
| 39 |
+
cir_distance = cir_distance.reshape(
|
| 40 |
+
src_CirCoeff_q8.shape[0], src_CirCoeff_q8.shape[1],
|
| 41 |
+
src_CirCoeff_q8.shape[2],
|
| 42 |
+
src_CirCoeff_q8.shape[3], src_CirCoeff_q8.shape[4])
|
| 43 |
+
cir_distance = cir_distance * 2.0
|
| 44 |
+
src_EccCoeff_q8 = src_EccCoeff_q8.unsqueeze(dim=1).unsqueeze(dim=1).expand(-1, 10, 10, -1, -1)
|
| 45 |
+
tgt_EccCoeff_q8 = tgt_EccCoeff_q8.unsqueeze(dim=3).unsqueeze(dim=3).expand(-1, -1, -1, 10, 10)
|
| 46 |
+
ecc_distance = q8_table[src_EccCoeff_q8.reshape(-1).long(), tgt_EccCoeff_q8.reshape(-1).long()]
|
| 47 |
+
ecc_distance = ecc_distance.reshape(
|
| 48 |
+
src_EccCoeff_q8.shape[0], src_EccCoeff_q8.shape[1],
|
| 49 |
+
src_EccCoeff_q8.shape[2], src_EccCoeff_q8.shape[3],
|
| 50 |
+
src_EccCoeff_q8.shape[4])
|
| 51 |
+
cost = art_distance + fd_distance + cir_distance + ecc_distance
|
| 52 |
+
# find the cloest matching
|
| 53 |
+
# cost shape: batch_size x src_camera x src_angle x dst_camera x dst_angle
|
| 54 |
+
cost = cost.permute(0, 1, 3, 2, 4).long()
|
| 55 |
+
align_n = align_10[:, :10].reshape(-1)
|
| 56 |
+
cost_bxsrc_cxdst_cxsrc_axdst_a = cost
|
| 57 |
+
align_err = torch.gather(
|
| 58 |
+
input=cost_bxsrc_cxdst_cxsrc_axdst_a,
|
| 59 |
+
index=align_n.reshape(1, 1, 1, 60 * 10, 1).expand(
|
| 60 |
+
cost.shape[0], cost.shape[1],
|
| 61 |
+
cost.shape[2], 60 * 10, 10).long(),
|
| 62 |
+
dim=3)
|
| 63 |
+
align_err = align_err.reshape(cost.shape[0], cost.shape[1], cost.shape[2], 60, 10, 10)
|
| 64 |
+
sum_diag = 0
|
| 65 |
+
for i in range(10):
|
| 66 |
+
sum_diag += align_err[:, :, :, :, i, i]
|
| 67 |
+
sum_diag = sum_diag.reshape(cost.shape[0], -1)
|
| 68 |
+
dist = torch.min(sum_diag, dim=-1)[0]
|
| 69 |
+
return dist
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
class LightFieldDistanceFunction(torch.autograd.Function):
|
| 73 |
+
@staticmethod
|
| 74 |
+
def forward(
|
| 75 |
+
ctx, q8_table, align_10, src_ArtCoeff, src_FdCoeff_q8, src_CirCoeff_q8, src_EccCoeff_q8,
|
| 76 |
+
tgt_ArtCoeff, tgt_FdCoeff_q8, tgt_CirCoeff_q8, tgt_EccCoeff_q8, log):
|
| 77 |
+
n = src_ArtCoeff.shape[0]
|
| 78 |
+
m = tgt_ArtCoeff.shape[0]
|
| 79 |
+
##############
|
| 80 |
+
# This is only calculating one pair of distance
|
| 81 |
+
print(f"src_size: {n}")
|
| 82 |
+
print(f"tgt_size: {m}")
|
| 83 |
+
all_dist = []
|
| 84 |
+
with torch.no_grad():
|
| 85 |
+
for i in tqdm(range(n), mininterval=60, disable=not log):
|
| 86 |
+
start_idx = 0
|
| 87 |
+
n_all_run = tgt_ArtCoeff.shape[0]
|
| 88 |
+
n_each_run = 1000
|
| 89 |
+
one_run_d = []
|
| 90 |
+
while start_idx < n_all_run:
|
| 91 |
+
end_idx = min(n_all_run, start_idx + n_each_run)
|
| 92 |
+
run_length = end_idx - start_idx
|
| 93 |
+
d = calculate_lfd_distance(
|
| 94 |
+
q8_table, align_10,
|
| 95 |
+
src_ArtCoeff[i:i + 1].expand(run_length, -1, -1, -1),
|
| 96 |
+
src_FdCoeff_q8[i:i + 1].expand(run_length, -1, -1, -1),
|
| 97 |
+
src_CirCoeff_q8[i:i + 1].expand(run_length, -1, -1),
|
| 98 |
+
src_EccCoeff_q8[i:i + 1].expand(run_length, -1, -1),
|
| 99 |
+
tgt_ArtCoeff[start_idx:end_idx],
|
| 100 |
+
tgt_FdCoeff_q8[start_idx:end_idx],
|
| 101 |
+
tgt_CirCoeff_q8[start_idx:end_idx],
|
| 102 |
+
tgt_EccCoeff_q8[start_idx:end_idx])
|
| 103 |
+
start_idx = end_idx
|
| 104 |
+
one_run_d.append(d)
|
| 105 |
+
d = torch.cat(one_run_d, dim=0)
|
| 106 |
+
all_dist.append(d.unsqueeze(dim=0))
|
| 107 |
+
dist = torch.cat(all_dist, dim=0)
|
| 108 |
+
|
| 109 |
+
return dist
|
| 110 |
+
|
| 111 |
+
@staticmethod
|
| 112 |
+
def backward(ctx, graddist):
|
| 113 |
+
raise NotImplementedError
|
| 114 |
+
return None, None, None, None, None, None, None, None, None, None
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
class LFD(torch.nn.Module):
|
| 118 |
+
def forward(
|
| 119 |
+
self, q8_table, align_10, src_ArtCoeff, src_FdCoeff_q8, src_CirCoeff_q8, src_EccCoeff_q8,
|
| 120 |
+
tgt_ArtCoeff, tgt_FdCoeff_q8, tgt_CirCoeff_q8, tgt_EccCoeff_q8, log):
|
| 121 |
+
return LightFieldDistanceFunction.apply(
|
| 122 |
+
q8_table, align_10, src_ArtCoeff, src_FdCoeff_q8, src_CirCoeff_q8, src_EccCoeff_q8,
|
| 123 |
+
tgt_ArtCoeff, tgt_FdCoeff_q8, tgt_CirCoeff_q8, tgt_EccCoeff_q8, log)
|