Spaces:
Sleeping
Sleeping
new dataset
Browse files- app/{app.py → main.py} +0 -0
- app/model/config.json +2 -2
- app/model/model.safetensors +1 -1
- app/model/special_tokens_map.json +2 -2
- app/model/tokenizer_config.json +2 -2
- train/__init__.py +0 -0
- train/evaluate_model.py +98 -0
- {app → train}/train_finetune.py +66 -30
- train/utils/__pycache__/preprocess.cpython-312.pyc +0 -0
- train/utils/preprocess.py +11 -0
app/{app.py → main.py}
RENAMED
|
File without changes
|
app/model/config.json
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:39d172162dc11165b0407c9bf149e7a59099ff4e9c1b28183bdd07b27ff95944
|
| 3 |
+
size 898
|
app/model/model.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 435722224
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:83503a45ba59d26dadc5ce8961d0e4ee4948be9bb82d0cf23c47a33ee3264e31
|
| 3 |
size 435722224
|
app/model/special_tokens_map.json
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3c3507f36dff57bce437223db3b3081d1e2b52ec3e56ee55438193ecb2c94dd6
|
| 3 |
+
size 132
|
app/model/tokenizer_config.json
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7525d84e2d59af28db08243599eb1da698db5f415be9fc1f5a41332d27be405b
|
| 3 |
+
size 1359
|
train/__init__.py
ADDED
|
File without changes
|
train/evaluate_model.py
ADDED
|
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
from torch.utils.data import DataLoader, Dataset
|
| 4 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 5 |
+
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
|
| 6 |
+
|
| 7 |
+
from utils.preprocess import preprocess_text
|
| 8 |
+
|
| 9 |
+
FAKE_DIR = "data/fake_news/financeiros"
|
| 10 |
+
REAL_DIR = "data/real_news/financeiros"
|
| 11 |
+
MODEL_DIR = "app/model"
|
| 12 |
+
MAX_LEN = 256
|
| 13 |
+
BATCH_SIZE = 8
|
| 14 |
+
|
| 15 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 16 |
+
|
| 17 |
+
# ========= LOAD DATA =========
|
| 18 |
+
def load_texts(directory, label):
|
| 19 |
+
samples = []
|
| 20 |
+
for root, _, files in os.walk(directory):
|
| 21 |
+
for fname in files:
|
| 22 |
+
if fname.endswith(".txt"):
|
| 23 |
+
path = os.path.join(root, fname)
|
| 24 |
+
with open(path, "r", encoding="utf-8") as f:
|
| 25 |
+
text = preprocess_text(f.read())
|
| 26 |
+
samples.append((text, label))
|
| 27 |
+
return samples
|
| 28 |
+
|
| 29 |
+
def load_dataset():
|
| 30 |
+
fake = load_texts(FAKE_DIR, 0)
|
| 31 |
+
real = load_texts(REAL_DIR, 1)
|
| 32 |
+
data = fake + real
|
| 33 |
+
texts = [t for t, _ in data]
|
| 34 |
+
labels = [l for _, l in data]
|
| 35 |
+
return texts, labels
|
| 36 |
+
|
| 37 |
+
# ========= DATASET =========
|
| 38 |
+
class NewsDataset(Dataset):
|
| 39 |
+
def __init__(self, texts, labels, tokenizer):
|
| 40 |
+
self.texts = texts
|
| 41 |
+
self.labels = labels
|
| 42 |
+
self.tok = tokenizer
|
| 43 |
+
|
| 44 |
+
def __len__(self):
|
| 45 |
+
return len(self.texts)
|
| 46 |
+
|
| 47 |
+
def __getitem__(self, idx):
|
| 48 |
+
enc = self.tok(
|
| 49 |
+
self.texts[idx],
|
| 50 |
+
truncation=True,
|
| 51 |
+
padding="max_length",
|
| 52 |
+
max_length=MAX_LEN,
|
| 53 |
+
return_tensors="pt"
|
| 54 |
+
)
|
| 55 |
+
enc = {k: v.squeeze() for k, v in enc.items()}
|
| 56 |
+
enc["labels"] = torch.tensor(self.labels[idx], dtype=torch.long)
|
| 57 |
+
return enc
|
| 58 |
+
|
| 59 |
+
# ========= EVALUATION =========
|
| 60 |
+
def evaluate():
|
| 61 |
+
print("Carregando modelo...")
|
| 62 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_DIR)
|
| 63 |
+
model = AutoModelForSequenceClassification.from_pretrained(MODEL_DIR).to(device)
|
| 64 |
+
|
| 65 |
+
print("Carregando dataset...")
|
| 66 |
+
texts, labels = load_dataset()
|
| 67 |
+
dataset = NewsDataset(texts, labels, tokenizer)
|
| 68 |
+
loader = DataLoader(dataset, batch_size=BATCH_SIZE, shuffle=False)
|
| 69 |
+
|
| 70 |
+
model.eval()
|
| 71 |
+
preds = []
|
| 72 |
+
true_labels = []
|
| 73 |
+
|
| 74 |
+
print("\nAvaliando...\n")
|
| 75 |
+
|
| 76 |
+
with torch.no_grad():
|
| 77 |
+
for batch in loader:
|
| 78 |
+
batch = {k: v.to(device) for k, v in batch.items()}
|
| 79 |
+
outputs = model(**batch)
|
| 80 |
+
p = torch.argmax(outputs.logits, dim=1).cpu().numpy()
|
| 81 |
+
l = batch["labels"].cpu().numpy()
|
| 82 |
+
|
| 83 |
+
preds.extend(p)
|
| 84 |
+
true_labels.extend(l)
|
| 85 |
+
|
| 86 |
+
# === METRICS ===
|
| 87 |
+
acc = accuracy_score(true_labels, preds)
|
| 88 |
+
print(f"Accuracy: {acc:.4f}")
|
| 89 |
+
|
| 90 |
+
print("\nClassification Report:")
|
| 91 |
+
print(classification_report(true_labels, preds, target_names=["Fake", "Real"]))
|
| 92 |
+
|
| 93 |
+
print("\nConfusion Matrix:")
|
| 94 |
+
print(confusion_matrix(true_labels, preds))
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
if __name__ == "__main__":
|
| 98 |
+
evaluate()
|
{app → train}/train_finetune.py
RENAMED
|
@@ -1,20 +1,23 @@
|
|
| 1 |
import os
|
| 2 |
import torch
|
| 3 |
from torch.utils.data import DataLoader, Dataset
|
| 4 |
-
from torch.optim import AdamW
|
| 5 |
from transformers import (
|
| 6 |
AutoTokenizer,
|
| 7 |
AutoModelForSequenceClassification,
|
| 8 |
get_linear_schedule_with_warmup
|
| 9 |
)
|
|
|
|
|
|
|
| 10 |
from tqdm import tqdm
|
|
|
|
| 11 |
import random
|
| 12 |
|
| 13 |
-
from
|
| 14 |
|
| 15 |
-
# CONFIGURAÇÕES
|
| 16 |
MODEL_NAME = "neuralmind/bert-base-portuguese-cased"
|
| 17 |
OUTPUT_DIR = "app/model"
|
|
|
|
| 18 |
FAKE_DIR = "data/fake_news/financeiros"
|
| 19 |
REAL_DIR = "data/real_news/financeiros"
|
| 20 |
|
|
@@ -24,11 +27,9 @@ LR = 2e-5
|
|
| 24 |
MAX_LEN = 256
|
| 25 |
|
| 26 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 27 |
-
print(f"
|
| 28 |
|
| 29 |
-
# FUNÇÕES AUXILIARES
|
| 30 |
def load_texts_from_dir(directory, label):
|
| 31 |
-
"""Lê recursivamente todos os .txt em todas as subpastas."""
|
| 32 |
samples = []
|
| 33 |
|
| 34 |
for root, _, files in os.walk(directory):
|
|
@@ -37,32 +38,26 @@ def load_texts_from_dir(directory, label):
|
|
| 37 |
path = os.path.join(root, fname)
|
| 38 |
try:
|
| 39 |
with open(path, "r", encoding="utf-8") as f:
|
| 40 |
-
text = f.read()
|
| 41 |
-
text = preprocess_text(text)
|
| 42 |
samples.append((text, label))
|
| 43 |
except Exception as e:
|
| 44 |
-
print(f"
|
| 45 |
|
| 46 |
return samples
|
| 47 |
|
| 48 |
|
| 49 |
def load_dataset():
|
| 50 |
-
"""Carrega fake e real em formato único."""
|
| 51 |
-
print("📂 Carregando dados das pastas...")
|
| 52 |
fake = load_texts_from_dir(FAKE_DIR, 0)
|
| 53 |
real = load_texts_from_dir(REAL_DIR, 1)
|
| 54 |
|
| 55 |
-
|
| 56 |
-
random.shuffle(
|
| 57 |
|
| 58 |
-
print(f"
|
| 59 |
-
print(f"✔ Total Real: {len(real)}")
|
| 60 |
-
print(f"✔ Total: {len(dataset)}")
|
| 61 |
|
| 62 |
-
texts, labels = zip(*
|
| 63 |
return list(texts), list(labels)
|
| 64 |
|
| 65 |
-
# DATASET DO TORCH
|
| 66 |
class NewsDataset(Dataset):
|
| 67 |
def __init__(self, texts, labels, tokenizer):
|
| 68 |
self.texts = texts
|
|
@@ -84,47 +79,88 @@ class NewsDataset(Dataset):
|
|
| 84 |
encoded["labels"] = torch.tensor(self.labels[idx], dtype=torch.long)
|
| 85 |
return encoded
|
| 86 |
|
| 87 |
-
# PROCESSO DE TREINAMENTO
|
| 88 |
def train():
|
| 89 |
texts, labels = load_dataset()
|
| 90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 92 |
-
model = AutoModelForSequenceClassification.from_pretrained(
|
|
|
|
|
|
|
| 93 |
|
| 94 |
-
|
| 95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
|
| 97 |
optimizer = AdamW(model.parameters(), lr=LR)
|
| 98 |
-
total_steps = len(
|
| 99 |
scheduler = get_linear_schedule_with_warmup(optimizer, 0, total_steps)
|
| 100 |
|
| 101 |
-
print("
|
| 102 |
|
| 103 |
model.train()
|
| 104 |
|
| 105 |
for epoch in range(EPOCHS):
|
| 106 |
-
print(f"
|
| 107 |
epoch_loss = 0
|
| 108 |
|
| 109 |
-
for batch in tqdm(
|
| 110 |
batch = {k: v.to(device) for k, v in batch.items()}
|
| 111 |
-
|
| 112 |
outputs = model(**batch)
|
| 113 |
loss = outputs.loss
|
| 114 |
-
epoch_loss += loss.item()
|
| 115 |
|
|
|
|
| 116 |
loss.backward()
|
|
|
|
| 117 |
optimizer.step()
|
| 118 |
scheduler.step()
|
| 119 |
optimizer.zero_grad()
|
| 120 |
|
| 121 |
-
print(f"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
|
|
|
|
| 123 |
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
| 124 |
model.save_pretrained(OUTPUT_DIR)
|
| 125 |
tokenizer.save_pretrained(OUTPUT_DIR)
|
| 126 |
|
| 127 |
-
print(f"\
|
| 128 |
|
| 129 |
|
| 130 |
if __name__ == "__main__":
|
|
|
|
| 1 |
import os
|
| 2 |
import torch
|
| 3 |
from torch.utils.data import DataLoader, Dataset
|
| 4 |
+
from torch.optim import AdamW
|
| 5 |
from transformers import (
|
| 6 |
AutoTokenizer,
|
| 7 |
AutoModelForSequenceClassification,
|
| 8 |
get_linear_schedule_with_warmup
|
| 9 |
)
|
| 10 |
+
from sklearn.model_selection import train_test_split
|
| 11 |
+
from sklearn.metrics import classification_report, accuracy_score
|
| 12 |
from tqdm import tqdm
|
| 13 |
+
import numpy as np
|
| 14 |
import random
|
| 15 |
|
| 16 |
+
from utils.preprocess import preprocess_text
|
| 17 |
|
|
|
|
| 18 |
MODEL_NAME = "neuralmind/bert-base-portuguese-cased"
|
| 19 |
OUTPUT_DIR = "app/model"
|
| 20 |
+
|
| 21 |
FAKE_DIR = "data/fake_news/financeiros"
|
| 22 |
REAL_DIR = "data/real_news/financeiros"
|
| 23 |
|
|
|
|
| 27 |
MAX_LEN = 256
|
| 28 |
|
| 29 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 30 |
+
print(f"Treinando em: {device}")
|
| 31 |
|
|
|
|
| 32 |
def load_texts_from_dir(directory, label):
|
|
|
|
| 33 |
samples = []
|
| 34 |
|
| 35 |
for root, _, files in os.walk(directory):
|
|
|
|
| 38 |
path = os.path.join(root, fname)
|
| 39 |
try:
|
| 40 |
with open(path, "r", encoding="utf-8") as f:
|
| 41 |
+
text = preprocess_text(f.read())
|
|
|
|
| 42 |
samples.append((text, label))
|
| 43 |
except Exception as e:
|
| 44 |
+
print(f"Erro ao ler {path}: {e}")
|
| 45 |
|
| 46 |
return samples
|
| 47 |
|
| 48 |
|
| 49 |
def load_dataset():
|
|
|
|
|
|
|
| 50 |
fake = load_texts_from_dir(FAKE_DIR, 0)
|
| 51 |
real = load_texts_from_dir(REAL_DIR, 1)
|
| 52 |
|
| 53 |
+
all_data = fake + real
|
| 54 |
+
random.shuffle(all_data)
|
| 55 |
|
| 56 |
+
print(f"Fake: {len(fake)} | Real: {len(real)} | Total: {len(all_data)}")
|
|
|
|
|
|
|
| 57 |
|
| 58 |
+
texts, labels = zip(*all_data)
|
| 59 |
return list(texts), list(labels)
|
| 60 |
|
|
|
|
| 61 |
class NewsDataset(Dataset):
|
| 62 |
def __init__(self, texts, labels, tokenizer):
|
| 63 |
self.texts = texts
|
|
|
|
| 79 |
encoded["labels"] = torch.tensor(self.labels[idx], dtype=torch.long)
|
| 80 |
return encoded
|
| 81 |
|
|
|
|
| 82 |
def train():
|
| 83 |
texts, labels = load_dataset()
|
| 84 |
|
| 85 |
+
# SEPARAÇÃO REAL entre treino, validação e teste
|
| 86 |
+
X_train, X_test, y_train, y_test = train_test_split(
|
| 87 |
+
texts, labels, test_size=0.20, stratify=labels, random_state=42
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
X_train, X_val, y_train, y_val = train_test_split(
|
| 91 |
+
X_train, y_train, test_size=0.10, stratify=y_train, random_state=42
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
print(f"\nTreino: {len(X_train)} | Val: {len(X_val)} | Teste: {len(X_test)}\n")
|
| 95 |
+
|
| 96 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 97 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
| 98 |
+
MODEL_NAME, num_labels=2
|
| 99 |
+
).to(device)
|
| 100 |
|
| 101 |
+
# LOADERS
|
| 102 |
+
train_dataset = NewsDataset(X_train, y_train, tokenizer)
|
| 103 |
+
val_dataset = NewsDataset(X_val, y_val, tokenizer)
|
| 104 |
+
test_dataset = NewsDataset(X_test, y_test, tokenizer)
|
| 105 |
+
|
| 106 |
+
train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)
|
| 107 |
+
val_loader = DataLoader(val_dataset, batch_size=BATCH_SIZE)
|
| 108 |
+
test_loader = DataLoader(test_dataset, batch_size=BATCH_SIZE)
|
| 109 |
|
| 110 |
optimizer = AdamW(model.parameters(), lr=LR)
|
| 111 |
+
total_steps = len(train_loader) * EPOCHS
|
| 112 |
scheduler = get_linear_schedule_with_warmup(optimizer, 0, total_steps)
|
| 113 |
|
| 114 |
+
print("Iniciando fine-tuning...\n")
|
| 115 |
|
| 116 |
model.train()
|
| 117 |
|
| 118 |
for epoch in range(EPOCHS):
|
| 119 |
+
print(f"=== Época {epoch+1}/{EPOCHS} ===")
|
| 120 |
epoch_loss = 0
|
| 121 |
|
| 122 |
+
for batch in tqdm(train_loader):
|
| 123 |
batch = {k: v.to(device) for k, v in batch.items()}
|
|
|
|
| 124 |
outputs = model(**batch)
|
| 125 |
loss = outputs.loss
|
|
|
|
| 126 |
|
| 127 |
+
epoch_loss += loss.item()
|
| 128 |
loss.backward()
|
| 129 |
+
|
| 130 |
optimizer.step()
|
| 131 |
scheduler.step()
|
| 132 |
optimizer.zero_grad()
|
| 133 |
|
| 134 |
+
print(f"Loss da época: {epoch_loss / len(train_loader):.4f}")
|
| 135 |
+
|
| 136 |
+
print("\nAvaliando...")
|
| 137 |
+
|
| 138 |
+
model.eval()
|
| 139 |
+
all_preds = []
|
| 140 |
+
all_true = []
|
| 141 |
+
|
| 142 |
+
with torch.no_grad():
|
| 143 |
+
for batch in tqdm(test_loader):
|
| 144 |
+
labels = batch["labels"].numpy()
|
| 145 |
+
inputs = {k: v.to(device) for k, v in batch.items() if k != "labels"}
|
| 146 |
+
|
| 147 |
+
outputs = model(**inputs)
|
| 148 |
+
preds = outputs.logits.argmax(dim=1).cpu().numpy()
|
| 149 |
+
|
| 150 |
+
all_preds.extend(preds)
|
| 151 |
+
all_true.extend(labels)
|
| 152 |
+
|
| 153 |
+
# MÉTRICAS
|
| 154 |
+
print("\n=== Classification Report ===")
|
| 155 |
+
print(classification_report(all_true, all_preds, target_names=["Fake", "Real"]))
|
| 156 |
+
print("Accuracy:", accuracy_score(all_true, all_preds))
|
| 157 |
|
| 158 |
+
# SALVAR MODELO
|
| 159 |
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
| 160 |
model.save_pretrained(OUTPUT_DIR)
|
| 161 |
tokenizer.save_pretrained(OUTPUT_DIR)
|
| 162 |
|
| 163 |
+
print(f"\nModelo salvo em: {OUTPUT_DIR}\n")
|
| 164 |
|
| 165 |
|
| 166 |
if __name__ == "__main__":
|
train/utils/__pycache__/preprocess.cpython-312.pyc
ADDED
|
Binary file (782 Bytes). View file
|
|
|
train/utils/preprocess.py
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import re
|
| 2 |
+
import unicodedata
|
| 3 |
+
|
| 4 |
+
def preprocess_text(text):
|
| 5 |
+
text = unicodedata.normalize("NFKC", text)
|
| 6 |
+
text = re.sub(r"http\S+|www\.\S+", "", text)
|
| 7 |
+
text = re.sub(r"<.*?>", "", text)
|
| 8 |
+
text = re.sub(r"[^\wÀ-ÖØ-öø-ÿ?!,. ]", " ", text)
|
| 9 |
+
text = re.sub(r"\s+", " ", text).strip()
|
| 10 |
+
return text
|
| 11 |
+
|