Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,11 +4,15 @@ import torch
|
|
| 4 |
from PIL import Image
|
| 5 |
from diffusers import DiffusionPipeline
|
| 6 |
import random
|
|
|
|
| 7 |
|
| 8 |
torch.backends.cudnn.deterministic = True
|
| 9 |
torch.backends.cudnn.benchmark = False
|
| 10 |
torch.backends.cuda.matmul.allow_tf32 = True
|
| 11 |
|
|
|
|
|
|
|
|
|
|
| 12 |
base_model = "black-forest-labs/FLUX.1-dev"
|
| 13 |
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
|
| 14 |
|
|
@@ -21,7 +25,18 @@ pipe.to("cuda")
|
|
| 21 |
MAX_SEED = 2**32-1
|
| 22 |
|
| 23 |
@spaces.GPU()
|
| 24 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
if randomize_seed:
|
| 26 |
seed = random.randint(0, MAX_SEED)
|
| 27 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
|
@@ -33,7 +48,7 @@ def run_lora(prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora
|
|
| 33 |
progress(i / steps * 100, f"Processing step {i} of {steps}...")
|
| 34 |
|
| 35 |
image = pipe(
|
| 36 |
-
prompt=f"{
|
| 37 |
num_inference_steps=steps,
|
| 38 |
guidance_scale=cfg_scale,
|
| 39 |
width=width,
|
|
@@ -75,8 +90,8 @@ with gr.Blocks(css=css) as app:
|
|
| 75 |
with gr.Column(scale=3):
|
| 76 |
with gr.Group(elem_classes="parameter-box"):
|
| 77 |
prompt = gr.TextArea(
|
| 78 |
-
label="โ๏ธ Your Prompt",
|
| 79 |
-
placeholder="
|
| 80 |
lines=5
|
| 81 |
)
|
| 82 |
|
|
@@ -156,7 +171,7 @@ with gr.Blocks(css=css) as app:
|
|
| 156 |
)
|
| 157 |
|
| 158 |
generate_button.click(
|
| 159 |
-
|
| 160 |
inputs=[prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale],
|
| 161 |
outputs=[result, seed]
|
| 162 |
)
|
|
|
|
| 4 |
from PIL import Image
|
| 5 |
from diffusers import DiffusionPipeline
|
| 6 |
import random
|
| 7 |
+
from transformers import pipeline
|
| 8 |
|
| 9 |
torch.backends.cudnn.deterministic = True
|
| 10 |
torch.backends.cudnn.benchmark = False
|
| 11 |
torch.backends.cuda.matmul.allow_tf32 = True
|
| 12 |
|
| 13 |
+
# ๋ฒ์ญ ๋ชจ๋ธ ์ด๊ธฐํ
|
| 14 |
+
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
|
| 15 |
+
|
| 16 |
base_model = "black-forest-labs/FLUX.1-dev"
|
| 17 |
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
|
| 18 |
|
|
|
|
| 25 |
MAX_SEED = 2**32-1
|
| 26 |
|
| 27 |
@spaces.GPU()
|
| 28 |
+
def translate_and_generate(prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
|
| 29 |
+
# ํ๊ธ ๊ฐ์ง ๋ฐ ๋ฒ์ญ
|
| 30 |
+
def contains_korean(text):
|
| 31 |
+
return any(ord('๊ฐ') <= ord(char) <= ord('ํฃ') for char in text)
|
| 32 |
+
|
| 33 |
+
if contains_korean(prompt):
|
| 34 |
+
# ํ๊ธ์ ์์ด๋ก ๋ฒ์ญ
|
| 35 |
+
translated = translator(prompt)[0]['translation_text']
|
| 36 |
+
actual_prompt = translated
|
| 37 |
+
else:
|
| 38 |
+
actual_prompt = prompt
|
| 39 |
+
|
| 40 |
if randomize_seed:
|
| 41 |
seed = random.randint(0, MAX_SEED)
|
| 42 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
|
|
|
| 48 |
progress(i / steps * 100, f"Processing step {i} of {steps}...")
|
| 49 |
|
| 50 |
image = pipe(
|
| 51 |
+
prompt=f"{actual_prompt} {trigger_word}",
|
| 52 |
num_inference_steps=steps,
|
| 53 |
guidance_scale=cfg_scale,
|
| 54 |
width=width,
|
|
|
|
| 90 |
with gr.Column(scale=3):
|
| 91 |
with gr.Group(elem_classes="parameter-box"):
|
| 92 |
prompt = gr.TextArea(
|
| 93 |
+
label="โ๏ธ Your Prompt (ํ๊ธ ๋๋ ์์ด)",
|
| 94 |
+
placeholder="์ด๋ฏธ์ง๋ฅผ ์ค๋ช
ํ์ธ์... (ํ๊ธ ์
๋ ฅ์ ์๋์ผ๋ก ์์ด๋ก ๋ฒ์ญ๋ฉ๋๋ค)",
|
| 95 |
lines=5
|
| 96 |
)
|
| 97 |
|
|
|
|
| 171 |
)
|
| 172 |
|
| 173 |
generate_button.click(
|
| 174 |
+
translate_and_generate,
|
| 175 |
inputs=[prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale],
|
| 176 |
outputs=[result, seed]
|
| 177 |
)
|