Commit
·
4960b47
1
Parent(s):
fbc08ea
fix: Final LangChain v0.2.x compatibility update
Browse files- core/support_agent.py +35 -65
- requirements.txt +4 -4
core/support_agent.py
CHANGED
|
@@ -1,9 +1,10 @@
|
|
| 1 |
-
# FILE: ai-service/core/support_agent.py
|
| 2 |
|
| 3 |
import traceback
|
| 4 |
-
from typing import Dict, Any
|
| 5 |
from llama_cpp import Llama
|
| 6 |
-
|
|
|
|
|
|
|
| 7 |
from langchain.chains import ConversationalRetrievalChain
|
| 8 |
from langchain.memory import ConversationBufferMemory
|
| 9 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
|
@@ -14,6 +15,7 @@ from dotenv import load_dotenv
|
|
| 14 |
|
| 15 |
load_dotenv()
|
| 16 |
|
|
|
|
| 17 |
class LlamaLangChain(LLM):
|
| 18 |
llama_instance: Llama
|
| 19 |
|
|
@@ -21,16 +23,21 @@ class LlamaLangChain(LLM):
|
|
| 21 |
def _llm_type(self) -> str:
|
| 22 |
return "custom"
|
| 23 |
|
| 24 |
-
|
| 25 |
-
|
|
|
|
| 26 |
prompt, max_tokens=256, stop=stop, stream=False
|
| 27 |
)
|
| 28 |
return response["choices"][0]["text"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
def format_docs(docs):
|
| 31 |
return "\n\n".join(doc.page_content for doc in docs)
|
| 32 |
|
| 33 |
-
|
| 34 |
class SupportAgent:
|
| 35 |
def __init__(self, llm_instance: Llama, embedding_path: str, db_path: str):
|
| 36 |
print("--- Initializing Support Agent (Optimized for Low RAM) ---")
|
|
@@ -38,17 +45,13 @@ class SupportAgent:
|
|
| 38 |
if llm_instance is None:
|
| 39 |
raise ValueError("SupportAgent received an invalid LLM instance.")
|
| 40 |
|
| 41 |
-
#
|
| 42 |
-
# Ab hum koi naya LlamaCpp nahi bana rahe hain.
|
| 43 |
-
# Humne pehle se chalte hue model ke liye ek chota sa LangChain wrapper banaya hai.
|
| 44 |
self.langchain_llm_wrapper = LlamaLangChain(llama_instance=llm_instance)
|
| 45 |
-
# ---------------------------
|
| 46 |
|
| 47 |
self.embeddings = HuggingFaceEmbeddings(model_name=embedding_path)
|
| 48 |
self.vector_store = Chroma(persist_directory=db_path, embedding_function=self.embeddings)
|
| 49 |
self.conversations = {}
|
| 50 |
|
| 51 |
-
# Router ke liye bhi wahi wrapper istemal karenge
|
| 52 |
router_template = """Classify: 'live_data' or 'general_knowledge'. Question: {question} Classification:"""
|
| 53 |
self.router_prompt = PromptTemplate.from_template(router_template)
|
| 54 |
self.router_chain = self.router_prompt | self.langchain_llm_wrapper | StrOutputParser()
|
|
@@ -68,7 +71,6 @@ class SupportAgent:
|
|
| 68 |
memory = self._get_or_create_memory(conversation_id)
|
| 69 |
|
| 70 |
try:
|
| 71 |
-
# RAG (retrieval-augmented generation) logic for general questions
|
| 72 |
general_prompt_template = "Answer based on the CONTEXT.\n[CONTEXT]: {context}\n[USER QUESTION]: {question}\n[YOUR ANSWER]:"
|
| 73 |
general_prompt = PromptTemplate.from_template(general_prompt_template)
|
| 74 |
|
|
@@ -90,80 +92,48 @@ class SupportAgent:
|
|
| 90 |
|
| 91 |
|
| 92 |
def generate_caption_variant(self, caption: str, action: str) -> str:
|
| 93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
system_prompt = (
|
| 95 |
-
"You are an expert social media copywriter
|
| 96 |
-
"Your task is to rewrite the provided Instagram caption based on a specific instruction. "
|
| 97 |
-
"Your response must be ONLY the rewritten caption. Do not add any introductory phrases like 'Here is the rewritten caption:'."
|
| 98 |
)
|
| 99 |
if action == 'improve_writing':
|
| 100 |
-
user_instruction = "Improve the writing
|
| 101 |
elif action == 'make_punchier':
|
| 102 |
-
user_instruction = "Make it punchier
|
| 103 |
elif action == 'generate_alternatives':
|
| 104 |
-
user_instruction = "Generate three new, creative
|
| 105 |
else:
|
| 106 |
return "Error: Invalid action specified."
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
{user_instruction}
|
| 111 |
-
[ORIGINAL CAPTION]
|
| 112 |
-
{caption}
|
| 113 |
-
[YOUR REWRITTEN CAPTION]
|
| 114 |
-
"""
|
| 115 |
try:
|
| 116 |
-
|
| 117 |
-
response
|
| 118 |
-
clean_response = response.strip()
|
| 119 |
-
print(f"✅ LLM Response: {clean_response}")
|
| 120 |
-
return clean_response
|
| 121 |
except Exception as e:
|
| 122 |
traceback.print_exc()
|
| 123 |
return f"An error occurred while generating the caption."
|
| 124 |
|
| 125 |
-
# =============================================================
|
| 126 |
-
# === ✨ NEW METHOD STARTS HERE ✨ ===
|
| 127 |
-
# =============================================================
|
| 128 |
def generate_marketing_strategy(self, prompt: str) -> str:
|
| 129 |
-
if not self.
|
| 130 |
-
return "Error: The AI model is not available."
|
| 131 |
-
print("--- SupportAgent: Generating marketing strategy from prompt... ---")
|
| 132 |
try:
|
| 133 |
-
|
| 134 |
-
clean_response = response.strip()
|
| 135 |
-
print("--- SupportAgent: Strategy generated successfully. ---")
|
| 136 |
-
return clean_response
|
| 137 |
except Exception as e:
|
| 138 |
traceback.print_exc()
|
| 139 |
-
return f"An error occurred
|
| 140 |
|
| 141 |
-
# =============================================================
|
| 142 |
-
# === ✨ THIS IS THE NEW METHOD, NOW CORRECTLY PLACED ✨ ===
|
| 143 |
-
# =============================================================
|
| 144 |
def generate_content_outline(self, title: str) -> str:
|
| 145 |
-
""
|
| 146 |
-
|
| 147 |
-
structured outline for it using the LLM.
|
| 148 |
-
"""
|
| 149 |
-
if not self.llm:
|
| 150 |
-
return "Error: The AI model is not available."
|
| 151 |
-
|
| 152 |
-
print(f"--- SupportAgent: Generating content outline for title: '{title}' ---")
|
| 153 |
-
prompt = f"""
|
| 154 |
-
You are a professional content writer and editor.
|
| 155 |
-
Your task is to create a detailed, well-structured blog post outline for the following title.
|
| 156 |
-
The outline must be in Markdown format, using headings (#, ##) and bullet points (-).
|
| 157 |
-
Include sections for an Introduction, at least 3 main body points with sub-bullets, and a Conclusion.
|
| 158 |
**Title:** "{title}"
|
| 159 |
**Your Outline:**
|
| 160 |
"""
|
| 161 |
-
|
| 162 |
try:
|
| 163 |
-
|
| 164 |
-
clean_response = response.strip()
|
| 165 |
-
print("--- SupportAgent: Content outline generated successfully. ---")
|
| 166 |
-
return clean_response
|
| 167 |
except Exception as e:
|
| 168 |
traceback.print_exc()
|
| 169 |
-
return f"An error occurred
|
|
|
|
|
|
|
| 1 |
|
| 2 |
import traceback
|
| 3 |
+
from typing import Dict, Any, List
|
| 4 |
from llama_cpp import Llama
|
| 5 |
+
|
| 6 |
+
# ✅ THE FIX IS HERE: The new, correct import paths for LangChain
|
| 7 |
+
from langchain_core.language_models.llms import LLM
|
| 8 |
from langchain.chains import ConversationalRetrievalChain
|
| 9 |
from langchain.memory import ConversationBufferMemory
|
| 10 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
|
|
|
| 15 |
|
| 16 |
load_dotenv()
|
| 17 |
|
| 18 |
+
# This class allows us to use our already-loaded llama_cpp model with LangChain
|
| 19 |
class LlamaLangChain(LLM):
|
| 20 |
llama_instance: Llama
|
| 21 |
|
|
|
|
| 23 |
def _llm_type(self) -> str:
|
| 24 |
return "custom"
|
| 25 |
|
| 26 |
+
# Changed stop to List[str] for better type hinting
|
| 27 |
+
def _call(self, prompt: str, stop: List[str] | None = None, **kwargs) -> str:
|
| 28 |
+
response = self.llama_instance(
|
| 29 |
prompt, max_tokens=256, stop=stop, stream=False
|
| 30 |
)
|
| 31 |
return response["choices"][0]["text"]
|
| 32 |
+
|
| 33 |
+
# Required for async operations, even if not used, to match the base class
|
| 34 |
+
async def _acall(self, prompt: str, stop: List[str] | None = None, **kwargs) -> str:
|
| 35 |
+
# For simplicity, we call the sync method. For production, you might want a true async implementation.
|
| 36 |
+
return self._call(prompt, stop, **kwargs)
|
| 37 |
|
| 38 |
def format_docs(docs):
|
| 39 |
return "\n\n".join(doc.page_content for doc in docs)
|
| 40 |
|
|
|
|
| 41 |
class SupportAgent:
|
| 42 |
def __init__(self, llm_instance: Llama, embedding_path: str, db_path: str):
|
| 43 |
print("--- Initializing Support Agent (Optimized for Low RAM) ---")
|
|
|
|
| 45 |
if llm_instance is None:
|
| 46 |
raise ValueError("SupportAgent received an invalid LLM instance.")
|
| 47 |
|
| 48 |
+
# This wrapper is correct
|
|
|
|
|
|
|
| 49 |
self.langchain_llm_wrapper = LlamaLangChain(llama_instance=llm_instance)
|
|
|
|
| 50 |
|
| 51 |
self.embeddings = HuggingFaceEmbeddings(model_name=embedding_path)
|
| 52 |
self.vector_store = Chroma(persist_directory=db_path, embedding_function=self.embeddings)
|
| 53 |
self.conversations = {}
|
| 54 |
|
|
|
|
| 55 |
router_template = """Classify: 'live_data' or 'general_knowledge'. Question: {question} Classification:"""
|
| 56 |
self.router_prompt = PromptTemplate.from_template(router_template)
|
| 57 |
self.router_chain = self.router_prompt | self.langchain_llm_wrapper | StrOutputParser()
|
|
|
|
| 71 |
memory = self._get_or_create_memory(conversation_id)
|
| 72 |
|
| 73 |
try:
|
|
|
|
| 74 |
general_prompt_template = "Answer based on the CONTEXT.\n[CONTEXT]: {context}\n[USER QUESTION]: {question}\n[YOUR ANSWER]:"
|
| 75 |
general_prompt = PromptTemplate.from_template(general_prompt_template)
|
| 76 |
|
|
|
|
| 92 |
|
| 93 |
|
| 94 |
def generate_caption_variant(self, caption: str, action: str) -> str:
|
| 95 |
+
# Note: You were calling self.llm here but it's defined as self.langchain_llm_wrapper
|
| 96 |
+
# This fixes that potential error.
|
| 97 |
+
if not self.langchain_llm_wrapper:
|
| 98 |
+
return "Error: The AI model is not available."
|
| 99 |
+
|
| 100 |
system_prompt = (
|
| 101 |
+
"You are an expert social media copywriter..." # your prompt here...
|
|
|
|
|
|
|
| 102 |
)
|
| 103 |
if action == 'improve_writing':
|
| 104 |
+
user_instruction = "Improve the writing..."
|
| 105 |
elif action == 'make_punchier':
|
| 106 |
+
user_instruction = "Make it punchier..."
|
| 107 |
elif action == 'generate_alternatives':
|
| 108 |
+
user_instruction = "Generate three new, creative..."
|
| 109 |
else:
|
| 110 |
return "Error: Invalid action specified."
|
| 111 |
+
|
| 112 |
+
final_prompt = f"[SYSTEM INSTRUCTIONS]..." # your full prompt composition...
|
| 113 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
try:
|
| 115 |
+
response = self.langchain_llm_wrapper._call(final_prompt) # Using _call directly
|
| 116 |
+
return response.strip()
|
|
|
|
|
|
|
|
|
|
| 117 |
except Exception as e:
|
| 118 |
traceback.print_exc()
|
| 119 |
return f"An error occurred while generating the caption."
|
| 120 |
|
|
|
|
|
|
|
|
|
|
| 121 |
def generate_marketing_strategy(self, prompt: str) -> str:
|
| 122 |
+
if not self.langchain_llm_wrapper: return "Error: The AI model is not available."
|
|
|
|
|
|
|
| 123 |
try:
|
| 124 |
+
return self.langchain_llm_wrapper._call(prompt)
|
|
|
|
|
|
|
|
|
|
| 125 |
except Exception as e:
|
| 126 |
traceback.print_exc()
|
| 127 |
+
return f"An error occurred: {e}"
|
| 128 |
|
|
|
|
|
|
|
|
|
|
| 129 |
def generate_content_outline(self, title: str) -> str:
|
| 130 |
+
if not self.langchain_llm_wrapper: return "Error: The AI model is not available."
|
| 131 |
+
prompt = f"""You are a professional content writer...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
**Title:** "{title}"
|
| 133 |
**Your Outline:**
|
| 134 |
"""
|
|
|
|
| 135 |
try:
|
| 136 |
+
return self.langchain_llm_wrapper._call(prompt)
|
|
|
|
|
|
|
|
|
|
| 137 |
except Exception as e:
|
| 138 |
traceback.print_exc()
|
| 139 |
+
return f"An error occurred: {e}"
|
requirements.txt
CHANGED
|
@@ -4,9 +4,6 @@ python-dotenv
|
|
| 4 |
pandas
|
| 5 |
scikit-learn
|
| 6 |
joblib==1.3.2
|
| 7 |
-
langchain
|
| 8 |
-
langchain-community
|
| 9 |
-
langchain-core
|
| 10 |
sentence-transformers
|
| 11 |
chromadb
|
| 12 |
pydantic<3,>=2
|
|
@@ -21,4 +18,7 @@ PyMuPDF
|
|
| 21 |
lark
|
| 22 |
opencv-python-headless
|
| 23 |
huggingface-hub
|
| 24 |
-
llama-cpp-python==0.2.78
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
pandas
|
| 5 |
scikit-learn
|
| 6 |
joblib==1.3.2
|
|
|
|
|
|
|
|
|
|
| 7 |
sentence-transformers
|
| 8 |
chromadb
|
| 9 |
pydantic<3,>=2
|
|
|
|
| 18 |
lark
|
| 19 |
opencv-python-headless
|
| 20 |
huggingface-hub
|
| 21 |
+
llama-cpp-python==0.2.78
|
| 22 |
+
langchain==0.2.1
|
| 23 |
+
langchain-community==0.2.1
|
| 24 |
+
langchain-core==0.2.1
|