Commit
Β·
5ac001d
1
Parent(s):
4f2c694
Added Community AI Module: Toxicity Check and Smart Tagging
Browse files- api/main.py +86 -36
- core/community_brain.py +114 -0
api/main.py
CHANGED
|
@@ -30,6 +30,7 @@ from core.utils import get_supabase_client, extract_colors_from_url
|
|
| 30 |
from core.document_parser import parse_pdf_from_url
|
| 31 |
from core.creative_chat import CreativeDirector
|
| 32 |
from core.matcher import load_embedding_model
|
|
|
|
| 33 |
|
| 34 |
try:
|
| 35 |
from core.rag.store import VectorStore
|
|
@@ -67,6 +68,7 @@ _likes_predictor = None
|
|
| 67 |
_comments_predictor = None
|
| 68 |
_revenue_forecaster = None
|
| 69 |
_performance_scorer = None
|
|
|
|
| 70 |
|
| 71 |
def to_snake(name: str) -> str:
|
| 72 |
return re.sub(r'(?<!^)(?=[A-Z])', '_', name).lower()
|
|
@@ -150,6 +152,28 @@ class ForecastRequest(BaseModel):
|
|
| 150 |
budget: float; category: str; follower_count: int; engagement_rate: float
|
| 151 |
config: Optional[Dict[str, str]] = None
|
| 152 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 153 |
# ==========================================================
|
| 154 |
# π― FIX 2: NOW DEFINE ForecastResponse
|
| 155 |
# PerformanceForecast and PayoutForecast are already defined above.
|
|
@@ -203,10 +227,10 @@ app = FastAPI(title="Reachify AI Service (Deploy-Ready)", version="11.0.0")
|
|
| 203 |
@app.on_event("startup")
|
| 204 |
def startup_event():
|
| 205 |
# Make sure we can modify the global variables
|
| 206 |
-
global _llm_instance, _creative_director, _support_agent, _ai_strategist,
|
| 207 |
-
_budget_predictor, _influencer_matcher, _performance_predictor,
|
| 208 |
-
_earnings_optimizer, _earnings_encoder, _likes_predictor,
|
| 209 |
-
_revenue_forecaster, _performance_scorer
|
| 210 |
|
| 211 |
# --- STEP 1: DOWNLOAD AND LOAD THE LLM MODEL ---
|
| 212 |
print("--- π AI Service Starting Up... ---")
|
|
@@ -243,10 +267,17 @@ def startup_event():
|
|
| 243 |
if VectorStore:
|
| 244 |
_vector_store = VectorStore()
|
| 245 |
print(" - RAG Engine Ready.")
|
|
|
|
| 246 |
_ai_strategist = AIStrategist(llm_instance=_llm_instance, store=_vector_store)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 247 |
_support_agent = SupportAgent(llm_instance=_llm_instance, embedding_path=EMBEDDING_MODEL_PATH, db_path=DB_PATH)
|
| 248 |
|
| 249 |
-
print(" - β
Core AI components (Director, Strategist, Agent) are online.")
|
| 250 |
|
| 251 |
except Exception as e:
|
| 252 |
print(f" - β FAILED to initialize core AI components: {e}")
|
|
@@ -282,6 +313,7 @@ def startup_event():
|
|
| 282 |
|
| 283 |
print("\n--- β
AI Service startup sequence finished! ---")
|
| 284 |
|
|
|
|
| 285 |
@app.get("/")
|
| 286 |
def health_check():
|
| 287 |
if _llm_instance:
|
|
@@ -723,65 +755,44 @@ def analyze_content_quality(request: ContentQualityRequest):
|
|
| 723 |
|
| 724 |
caption = request.caption
|
| 725 |
|
| 726 |
-
# This is a very structured prompt that asks the LLM to act as a specialist
|
| 727 |
-
# and return a JSON object, which is easier and more reliable to parse.
|
| 728 |
prompt = f"""
|
| 729 |
[SYSTEM]
|
| 730 |
-
You are a social media expert. Analyze the following caption
|
| 731 |
-
For each criterion, provide a score from 1 (poor) to 10 (excellent).
|
| 732 |
-
Also, provide a final overall score (average of the four scores) and short, actionable feedback.
|
| 733 |
-
Respond ONLY with a valid JSON object in the following format:
|
| 734 |
-
{{
|
| 735 |
-
"overall_score": <float>,
|
| 736 |
-
"scores": {{
|
| 737 |
-
"readability": <int>,
|
| 738 |
-
"engagement": <int>,
|
| 739 |
-
"call_to_action": <int>,
|
| 740 |
-
"hashtag_strategy": <int>
|
| 741 |
-
}},
|
| 742 |
-
"feedback": "<string>"
|
| 743 |
-
}}
|
| 744 |
|
| 745 |
[CAPTION TO ANALYZE]
|
| 746 |
"{caption}"
|
| 747 |
|
| 748 |
[YOUR JSON RESPONSE]
|
| 749 |
"""
|
| 750 |
-
|
| 751 |
try:
|
| 752 |
print("--- Sending caption to LLM for quality analysis...")
|
| 753 |
response = _llm_instance(prompt, max_tokens=512, temperature=0.2, stop=["[SYSTEM]", "\n\n"], echo=False)
|
| 754 |
|
| 755 |
-
# Extract the JSON part of the response
|
| 756 |
json_text = response['choices'][0]['text'].strip()
|
| 757 |
-
|
| 758 |
-
# Find the start and end of the JSON object
|
| 759 |
start_index = json_text.find('{')
|
| 760 |
end_index = json_text.rfind('}') + 1
|
|
|
|
| 761 |
if start_index == -1 or end_index == 0:
|
| 762 |
raise ValueError("LLM did not return a valid JSON object.")
|
| 763 |
|
| 764 |
clean_json_text = json_text[start_index:end_index]
|
| 765 |
-
|
| 766 |
import json
|
|
|
|
|
|
|
| 767 |
analysis_result = json.loads(clean_json_text)
|
| 768 |
|
| 769 |
final_result = {
|
| 770 |
-
"overall_score":
|
| 771 |
-
"feedback":
|
| 772 |
-
"scores":
|
| 773 |
}
|
| 774 |
|
| 775 |
print("--- Successfully received and parsed JSON response from LLM.")
|
| 776 |
return ContentQualityResponse(**final_result)
|
| 777 |
|
| 778 |
-
except (json.JSONDecodeError, KeyError, ValueError) as e:
|
| 779 |
-
print(f"π¨ ERROR parsing LLM response: {e}. Raw response was: {json_text}")
|
| 780 |
-
raise HTTPException(status_code=500, detail="Failed to parse the analysis from the AI model. The model may have returned an unexpected format.")
|
| 781 |
except Exception as e:
|
| 782 |
-
print(f"π¨
|
| 783 |
-
|
| 784 |
-
raise HTTPException(status_code=500, detail=str(e))
|
| 785 |
|
| 786 |
@app.post("/rank/campaigns-for-influencer", response_model=RankCampaignsResponse, summary="Ranks a list of campaigns for one influencer")
|
| 787 |
async def rank_campaigns_for_influencer_route(request: RankCampaignsRequest):
|
|
@@ -1663,4 +1674,43 @@ def create_campaign_from_prompt_endpoint(payload: DirectPromptPayload):
|
|
| 1663 |
)
|
| 1664 |
return {"response": response_text}
|
| 1665 |
except Exception as e:
|
| 1666 |
-
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
from core.document_parser import parse_pdf_from_url
|
| 31 |
from core.creative_chat import CreativeDirector
|
| 32 |
from core.matcher import load_embedding_model
|
| 33 |
+
from core.community_brain import CommunityBrain
|
| 34 |
|
| 35 |
try:
|
| 36 |
from core.rag.store import VectorStore
|
|
|
|
| 68 |
_comments_predictor = None
|
| 69 |
_revenue_forecaster = None
|
| 70 |
_performance_scorer = None
|
| 71 |
+
_community_brain: Optional[CommunityBrain] = None
|
| 72 |
|
| 73 |
def to_snake(name: str) -> str:
|
| 74 |
return re.sub(r'(?<!^)(?=[A-Z])', '_', name).lower()
|
|
|
|
| 152 |
budget: float; category: str; follower_count: int; engagement_rate: float
|
| 153 |
config: Optional[Dict[str, str]] = None
|
| 154 |
|
| 155 |
+
|
| 156 |
+
# --- COMMUNITY LAYER MODELS ---
|
| 157 |
+
class ContentCheckRequest(BaseModel):
|
| 158 |
+
text: str
|
| 159 |
+
user_id: Optional[str] = None
|
| 160 |
+
|
| 161 |
+
class TagGenerationRequest(BaseModel):
|
| 162 |
+
content: str
|
| 163 |
+
niche: Optional[str] = "General"
|
| 164 |
+
|
| 165 |
+
class ContentCheckResponse(BaseModel):
|
| 166 |
+
toxicity_score: float
|
| 167 |
+
is_safe: bool
|
| 168 |
+
tags: List[str]
|
| 169 |
+
|
| 170 |
+
class ThreadSummaryRequest(BaseModel):
|
| 171 |
+
comments: List[str]
|
| 172 |
+
class ThreadSummaryResponse(BaseModel):
|
| 173 |
+
summary: str
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
|
| 177 |
# ==========================================================
|
| 178 |
# π― FIX 2: NOW DEFINE ForecastResponse
|
| 179 |
# PerformanceForecast and PayoutForecast are already defined above.
|
|
|
|
| 227 |
@app.on_event("startup")
|
| 228 |
def startup_event():
|
| 229 |
# Make sure we can modify the global variables
|
| 230 |
+
global _llm_instance, _creative_director, _support_agent, _ai_strategist, _community_brain, \
|
| 231 |
+
_vector_store, _budget_predictor, _influencer_matcher, _performance_predictor, \
|
| 232 |
+
_payout_forecaster, _earnings_optimizer, _earnings_encoder, _likes_predictor, \
|
| 233 |
+
_comments_predictor, _revenue_forecaster, _performance_scorer
|
| 234 |
|
| 235 |
# --- STEP 1: DOWNLOAD AND LOAD THE LLM MODEL ---
|
| 236 |
print("--- π AI Service Starting Up... ---")
|
|
|
|
| 267 |
if VectorStore:
|
| 268 |
_vector_store = VectorStore()
|
| 269 |
print(" - RAG Engine Ready.")
|
| 270 |
+
|
| 271 |
_ai_strategist = AIStrategist(llm_instance=_llm_instance, store=_vector_store)
|
| 272 |
+
|
| 273 |
+
# π NEW: COMMUNITY MODULE INJECTION
|
| 274 |
+
from core.community_brain import CommunityBrain # Late import prevents circular issues
|
| 275 |
+
_community_brain = CommunityBrain(llm_instance=_llm_instance)
|
| 276 |
+
print(" - β
Community Brain (Mod/Tags) initialized.")
|
| 277 |
+
|
| 278 |
_support_agent = SupportAgent(llm_instance=_llm_instance, embedding_path=EMBEDDING_MODEL_PATH, db_path=DB_PATH)
|
| 279 |
|
| 280 |
+
print(" - β
Core AI components (Director, Strategist, CommunityBrain, Agent) are online.")
|
| 281 |
|
| 282 |
except Exception as e:
|
| 283 |
print(f" - β FAILED to initialize core AI components: {e}")
|
|
|
|
| 313 |
|
| 314 |
print("\n--- β
AI Service startup sequence finished! ---")
|
| 315 |
|
| 316 |
+
|
| 317 |
@app.get("/")
|
| 318 |
def health_check():
|
| 319 |
if _llm_instance:
|
|
|
|
| 755 |
|
| 756 |
caption = request.caption
|
| 757 |
|
|
|
|
|
|
|
| 758 |
prompt = f"""
|
| 759 |
[SYSTEM]
|
| 760 |
+
You are a social media expert. Analyze the following caption... Respond ONLY with a valid JSON object.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 761 |
|
| 762 |
[CAPTION TO ANALYZE]
|
| 763 |
"{caption}"
|
| 764 |
|
| 765 |
[YOUR JSON RESPONSE]
|
| 766 |
"""
|
|
|
|
| 767 |
try:
|
| 768 |
print("--- Sending caption to LLM for quality analysis...")
|
| 769 |
response = _llm_instance(prompt, max_tokens=512, temperature=0.2, stop=["[SYSTEM]", "\n\n"], echo=False)
|
| 770 |
|
|
|
|
| 771 |
json_text = response['choices'][0]['text'].strip()
|
|
|
|
|
|
|
| 772 |
start_index = json_text.find('{')
|
| 773 |
end_index = json_text.rfind('}') + 1
|
| 774 |
+
|
| 775 |
if start_index == -1 or end_index == 0:
|
| 776 |
raise ValueError("LLM did not return a valid JSON object.")
|
| 777 |
|
| 778 |
clean_json_text = json_text[start_index:end_index]
|
|
|
|
| 779 |
import json
|
| 780 |
+
|
| 781 |
+
# β
Corrected Variable Name
|
| 782 |
analysis_result = json.loads(clean_json_text)
|
| 783 |
|
| 784 |
final_result = {
|
| 785 |
+
"overall_score": analysis_result.get("overall_score"), # FIXED: Removed _raw
|
| 786 |
+
"feedback": analysis_result.get("feedback"), # FIXED: Removed _raw
|
| 787 |
+
"scores": analysis_result.get("scores") or analysis_result.get("score") # FIXED: Removed _raw
|
| 788 |
}
|
| 789 |
|
| 790 |
print("--- Successfully received and parsed JSON response from LLM.")
|
| 791 |
return ContentQualityResponse(**final_result)
|
| 792 |
|
|
|
|
|
|
|
|
|
|
| 793 |
except Exception as e:
|
| 794 |
+
print(f"π¨ Error in Content Quality Analysis: {e}")
|
| 795 |
+
raise HTTPException(status_code=500, detail="Failed to parse analysis.")
|
|
|
|
| 796 |
|
| 797 |
@app.post("/rank/campaigns-for-influencer", response_model=RankCampaignsResponse, summary="Ranks a list of campaigns for one influencer")
|
| 798 |
async def rank_campaigns_for_influencer_route(request: RankCampaignsRequest):
|
|
|
|
| 1674 |
)
|
| 1675 |
return {"response": response_text}
|
| 1676 |
except Exception as e:
|
| 1677 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 1678 |
+
|
| 1679 |
+
|
| 1680 |
+
# ==============================================================
|
| 1681 |
+
# π§ COMMUNITY INTELLIGENCE ENDPOINTS
|
| 1682 |
+
# ==============================================================
|
| 1683 |
+
|
| 1684 |
+
@app.post("/community/moderate-and-tag", response_model=ContentCheckResponse)
|
| 1685 |
+
def moderate_and_tag(request: ContentCheckRequest):
|
| 1686 |
+
"""
|
| 1687 |
+
Called when a user hits 'Post'. Checks toxicity AND generates tags in one go.
|
| 1688 |
+
"""
|
| 1689 |
+
print(f"\nπ§ Checking community post content...")
|
| 1690 |
+
|
| 1691 |
+
# 1. Moderation Check (Fast)
|
| 1692 |
+
if not _community_brain:
|
| 1693 |
+
# Fail safe
|
| 1694 |
+
return ContentCheckResponse(toxicity_score=0.0, is_safe=True, tags=["#NewPost"])
|
| 1695 |
+
|
| 1696 |
+
mod_result = _community_brain.moderate_content(request.text)
|
| 1697 |
+
|
| 1698 |
+
# 2. Tagging (Only if safe)
|
| 1699 |
+
tags = []
|
| 1700 |
+
if mod_result['is_safe']:
|
| 1701 |
+
# If model exists, run extraction
|
| 1702 |
+
tags = _community_brain.generate_smart_tags(request.text)
|
| 1703 |
+
|
| 1704 |
+
return ContentCheckResponse(
|
| 1705 |
+
toxicity_score=mod_result['toxicity_score'],
|
| 1706 |
+
is_safe=mod_result['is_safe'],
|
| 1707 |
+
tags=tags
|
| 1708 |
+
)
|
| 1709 |
+
|
| 1710 |
+
@app.post("/community/summarize-discussion", response_model=ThreadSummaryResponse)
|
| 1711 |
+
def summarize_community_thread(request: ThreadSummaryRequest):
|
| 1712 |
+
if not _community_brain:
|
| 1713 |
+
return ThreadSummaryResponse(summary="Summary unavailable.")
|
| 1714 |
+
|
| 1715 |
+
summary = _community_brain.summarize_thread(request.comments)
|
| 1716 |
+
return ThreadSummaryResponse(summary=summary)
|
core/community_brain.py
ADDED
|
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import re
|
| 2 |
+
import json
|
| 3 |
+
import traceback
|
| 4 |
+
from typing import List, Dict, Any
|
| 5 |
+
from llama_cpp import Llama
|
| 6 |
+
|
| 7 |
+
class CommunityBrain:
|
| 8 |
+
def __init__(self, llm_instance: Llama):
|
| 9 |
+
self.llm = llm_instance
|
| 10 |
+
print("--- Community Brain initialized. ---")
|
| 11 |
+
|
| 12 |
+
# π HYBRID MODERATION (Fast + Cheap)
|
| 13 |
+
def moderate_content(self, text: str) -> Dict[str, Any]:
|
| 14 |
+
"""
|
| 15 |
+
Check content for toxicity using a local Keyword list first,
|
| 16 |
+
then AI for deeper semantic checks if needed.
|
| 17 |
+
"""
|
| 18 |
+
# 1. First Line of Defense: Static Python Keyword Match (Instant)
|
| 19 |
+
# Add your Hindi/English blacklist here
|
| 20 |
+
TOXIC_KEYWORDS = [
|
| 21 |
+
"abuse", "kill", "suicide", "hate", "idiot", "scam",
|
| 22 |
+
"hack", "betting", "casino", "stupid", "fuck"
|
| 23 |
+
]
|
| 24 |
+
|
| 25 |
+
score = 0.0
|
| 26 |
+
flags = []
|
| 27 |
+
text_lower = text.lower()
|
| 28 |
+
|
| 29 |
+
# Simple string matching
|
| 30 |
+
for word in TOXIC_KEYWORDS:
|
| 31 |
+
if word in text_lower:
|
| 32 |
+
score += 0.4
|
| 33 |
+
flags.append(f"Potential inappropriate word: {word}")
|
| 34 |
+
|
| 35 |
+
# If highly toxic by keywords alone, fail immediately (Don't waste LLM)
|
| 36 |
+
if score > 0.5:
|
| 37 |
+
return {"toxicity_score": min(score, 1.0), "is_safe": False, "flags": flags}
|
| 38 |
+
|
| 39 |
+
# 2. Second Line of Defense: Contextual Analysis via AI (Mocked for speed if needed)
|
| 40 |
+
# Note: Running LLM for every post creates latency. We strictly format tags here.
|
| 41 |
+
# Returning current score if keyword check passed semi-clean
|
| 42 |
+
return {
|
| 43 |
+
"toxicity_score": score,
|
| 44 |
+
"is_safe": score < 0.5,
|
| 45 |
+
"flags": flags
|
| 46 |
+
}
|
| 47 |
+
|
| 48 |
+
# π·οΈ SMART TAGGING
|
| 49 |
+
def generate_smart_tags(self, content: str) -> List[str]:
|
| 50 |
+
"""
|
| 51 |
+
Extracts 3-5 relevant hashtags from the content using LLM.
|
| 52 |
+
"""
|
| 53 |
+
try:
|
| 54 |
+
prompt = f"""[INST] Extract 4 relevant hashtags for this post. Return ONLY hashtags separated by spaces. No explanation.
|
| 55 |
+
|
| 56 |
+
Post: "I just bought this amazing lipstick shade, the red is so vibrant and it lasts all day! Perfect for summer looks."
|
| 57 |
+
Hashtags: #Beauty #Lipstick #Makeup #SummerVibes
|
| 58 |
+
|
| 59 |
+
Post: "{content[:300]}"
|
| 60 |
+
Hashtags: [/INST]"""
|
| 61 |
+
|
| 62 |
+
response = self.llm(
|
| 63 |
+
prompt,
|
| 64 |
+
max_tokens=30,
|
| 65 |
+
temperature=0.3, # Low temp for precision
|
| 66 |
+
stop=["[INST]", "\n"],
|
| 67 |
+
echo=False
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
raw_tags = response['choices'][0]['text'].strip()
|
| 71 |
+
# Clean up hashtags (ensure they start with #)
|
| 72 |
+
tags = [t.strip() for t in raw_tags.split() if t.strip()]
|
| 73 |
+
|
| 74 |
+
# Format correction
|
| 75 |
+
clean_tags = []
|
| 76 |
+
for t in tags:
|
| 77 |
+
if not t.startswith('#'): t = f"#{t}"
|
| 78 |
+
# Remove symbols excluding #
|
| 79 |
+
t = re.sub(r'[^a-zA-Z0-9#]', '', t)
|
| 80 |
+
clean_tags.append(t)
|
| 81 |
+
|
| 82 |
+
return clean_tags[:5] # Max 5 tags
|
| 83 |
+
|
| 84 |
+
except Exception as e:
|
| 85 |
+
print(f"Smart Tag Error: {e}")
|
| 86 |
+
return ["#Community"]
|
| 87 |
+
|
| 88 |
+
# π§ DISCUSSION SUMMARIZATION
|
| 89 |
+
def summarize_thread(self, comments: List[str]) -> str:
|
| 90 |
+
"""
|
| 91 |
+
Summarizes a list of comments into a key insight.
|
| 92 |
+
"""
|
| 93 |
+
if not comments: return "No activity yet."
|
| 94 |
+
|
| 95 |
+
# Combine last 10 comments (truncate context)
|
| 96 |
+
context_text = " | ".join(comments[:15])[:1500]
|
| 97 |
+
|
| 98 |
+
prompt = f"""[INST] Summarize the main sentiment and topic of this discussion in one sentence.
|
| 99 |
+
|
| 100 |
+
Discussion: {context_text}
|
| 101 |
+
|
| 102 |
+
Summary: [/INST]"""
|
| 103 |
+
|
| 104 |
+
try:
|
| 105 |
+
response = self.llm(
|
| 106 |
+
prompt,
|
| 107 |
+
max_tokens=60,
|
| 108 |
+
temperature=0.5,
|
| 109 |
+
stop=["[INST]", "\n"],
|
| 110 |
+
echo=False
|
| 111 |
+
)
|
| 112 |
+
return response['choices'][0]['text'].strip()
|
| 113 |
+
except Exception as e:
|
| 114 |
+
return "Discussion is active."
|