# ai-service/scripts/download_embedding_model.py from sentence_transformers import SentenceTransformer import os # --- Configuration --- # Hum is popular model ko use karenge. Yeh chota aur effective hai. MODEL_NAME = 'sentence-transformers/all-MiniLM-L6-v2' # Path jahan model save hoga. Yeh aapke main.py ke `EMBEDDING_MODEL_PATH` se match karna chahiye. SAVE_PATH = os.path.join(os.path.dirname(os.path.dirname(__file__)), 'embedding_model') # --- Main Logic --- def download_model(): """ Downloads the sentence-transformer model from Hugging Face and saves it locally. """ print(f"--- 🚀 Starting download for model: {MODEL_NAME} ---") # Check if the path already exists if os.path.exists(SAVE_PATH) and len(os.listdir(SAVE_PATH)) > 0: print(f"--- ✅ Model directory already exists and is not empty. Skipping download. ---") print(f" Path: {SAVE_PATH}") return print(f" Saving model to: {SAVE_PATH}") try: # Model download aur save karein model = SentenceTransformer(MODEL_NAME) model.save(SAVE_PATH) print(f"--- ✅ Model downloaded and saved successfully! ---") except Exception as e: print(f"--- 🚨 ERROR: Failed to download or save the model. ---") print(f" Error details: {e}") print(f" Please check your internet connection and try again.") if __name__ == "__main__": download_model()