aqibtahir's picture
Optimize batch API with vectorized processing - 100x faster
54cb0e5
"""
FastAPI Serverless API for Cookie Classification
Deploy this to Hugging Face Spaces for FREE serverless inference!
"""
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from typing import List, Optional
from huggingface_hub import hf_hub_download
import joblib
import numpy as np
import re
import pandas as pd
from scipy.sparse import hstack, csr_matrix
import os
# Initialize FastAPI
app = FastAPI(
title="Cookie Classifier API",
description="Classify web cookies into privacy categories: Strictly Necessary, Functionality, Analytics, Advertising/Tracking",
version="1.0.0"
)
# Enable CORS for frontend access
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # In production, specify your frontend domain
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Class mapping
CLASS_NAMES = {
0: "Strictly Necessary",
1: "Functionality",
2: "Analytics",
3: "Advertising/Tracking"
}
# Tracker tokens
TRACKER_TOKENS = {
"ga", "gid", "utm", "ad", "ads", "pixel", "trk", "track", "fbp", "fbc",
"gclid", "sess", "session", "id", "uuid", "cid", "cmp", "campaign",
"click", "impress"
}
# Global model storage
model = None
tfidf_word = None
tfidf_char = None
def extract_name_features(s: str):
"""Extract engineered features from cookie name"""
if not isinstance(s, str):
s = ""
lower = s.lower()
L = len(s)
digits = sum(ch.isdigit() for ch in s)
alphas = sum(ch.isalpha() for ch in s)
underscores = lower.count("_")
dashes = lower.count("-")
dots = lower.count(".")
prefix3 = lower[:3] if L >= 3 else lower
suffix3 = lower[-3:] if L >= 3 else lower
tokens = re.split(r"[^a-z0-9]+", lower)
tokens = [t for t in tokens if t]
uniq_tokens = len(set(tokens))
token_len_mean = np.mean([len(t) for t in tokens]) if tokens else 0.0
has_tracker = int(any(t in TRACKER_TOKENS for t in tokens))
camel = int(bool(re.search(r"[a-z][A-Z]", s)))
snake = int("_" in s)
has_hex = int(bool(re.search(r"\b[0-9a-f]{8,}\b", lower)))
return {
"len": L, "digits": digits, "alphas": alphas, "underscores": underscores,
"dashes": dashes, "dots": dots, "prefix3": prefix3, "suffix3": suffix3,
"uniq_tokens": uniq_tokens, "token_len_mean": float(token_len_mean),
"has_tracker_token": has_tracker, "camelCase": camel, "snake_case": snake,
"has_hex": has_hex
}
def build_name_features(series):
"""Build name features DataFrame"""
X = pd.DataFrame([extract_name_features(x) for x in series.fillna("")])
for col in ["prefix3", "suffix3"]:
top = X[col].value_counts().head(30).index
X[col] = X[col].where(X[col].isin(top), "__other__")
X = pd.get_dummies(X, columns=["prefix3", "suffix3"], drop_first=True)
return X
def preprocess_cookie(cookie_name: str):
"""Complete preprocessing for a single cookie name"""
series = pd.Series([cookie_name])
# TF-IDF features
Xw = tfidf_word.transform(series.fillna("").astype(str))
Xc = tfidf_char.transform(series.fillna("").astype(str))
Xtf = hstack([Xw, Xc])
# Name features
Xname = build_name_features(series)
Xname = Xname.select_dtypes(include=[np.number]).astype("float64")
# Combine
X_combined = hstack([Xtf, csr_matrix(Xname.values)])
return X_combined
def preprocess_cookies_batch(cookie_names: List[str]):
"""Complete preprocessing for multiple cookie names (vectorized)"""
series = pd.Series(cookie_names)
# TF-IDF features (vectorized)
Xw = tfidf_word.transform(series.fillna("").astype(str))
Xc = tfidf_char.transform(series.fillna("").astype(str))
Xtf = hstack([Xw, Xc])
# Name features (vectorized)
Xname = build_name_features(series)
Xname = Xname.select_dtypes(include=[np.number]).astype("float64")
# Combine
X_combined = hstack([Xtf, csr_matrix(Xname.values)])
return X_combined
@app.on_event("startup")
async def load_model():
"""Load model and vectorizers on startup"""
global model, tfidf_word, tfidf_char
try:
print("🔄 Loading model from Hugging Face...")
# Download model
model_path = hf_hub_download(
repo_id="aqibtahir/cookie-classifier-lr-tfidf",
filename="LR_TFIDF+NAME.joblib"
)
model = joblib.load(model_path)
print("✓ Model loaded")
# Load vectorizers
print("🔄 Loading vectorizers...")
tfidf_word_path = hf_hub_download(
repo_id="aqibtahir/cookie-classifier-lr-tfidf",
filename="tfidf_word.joblib"
)
tfidf_char_path = hf_hub_download(
repo_id="aqibtahir/cookie-classifier-lr-tfidf",
filename="tfidf_char.joblib"
)
tfidf_word = joblib.load(tfidf_word_path)
tfidf_char = joblib.load(tfidf_char_path)
print("✓ Vectorizers loaded")
print("🎉 API ready to serve predictions!")
except Exception as e:
print(f"❌ Error during startup: {e}")
import traceback
traceback.print_exc()
raise
# Request/Response models
class CookieRequest(BaseModel):
cookie_name: str
class BatchCookieRequest(BaseModel):
cookie_names: List[str]
class PredictionResponse(BaseModel):
cookie_name: str
category: str
class_id: int
confidence: Optional[float] = None
@app.get("/")
async def root():
"""Health check and API info"""
return {
"status": "online",
"model": "Cookie Classifier - Linear Regression",
"categories": list(CLASS_NAMES.values()),
"endpoints": {
"predict": "/predict",
"batch": "/predict/batch",
"docs": "/docs"
}
}
@app.post("/predict", response_model=PredictionResponse)
async def predict(request: CookieRequest):
"""
Predict cookie category for a single cookie name
Example:
```
POST /predict
{"cookie_name": "_ga"}
```
"""
if not model:
raise HTTPException(status_code=503, detail="Model not loaded")
if not tfidf_word or not tfidf_char:
raise HTTPException(
status_code=503,
detail="Vectorizers not available. Please upload tfidf_word.joblib and tfidf_char.joblib to the model repository"
)
try:
# Preprocess and predict
features = preprocess_cookie(request.cookie_name)
prediction = model.predict(features)[0]
class_id = int(prediction)
# Get confidence if available
confidence = None
try:
decision = model.decision_function(features)[0]
# Normalize decision scores to pseudo-probabilities
scores = np.exp(decision) / np.exp(decision).sum()
confidence = float(scores[class_id])
except:
pass
return PredictionResponse(
cookie_name=request.cookie_name,
category=CLASS_NAMES[class_id],
class_id=class_id,
confidence=confidence
)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Prediction error: {str(e)}")
@app.post("/predict/batch")
async def predict_batch(request: BatchCookieRequest):
"""
Predict categories for multiple cookie names (vectorized batch processing)
Example:
```
POST /predict/batch
{"cookie_names": ["_ga", "sessionid", "utm_campaign"]}
```
"""
if not model:
raise HTTPException(status_code=503, detail="Model not loaded")
if not tfidf_word or not tfidf_char:
raise HTTPException(
status_code=503,
detail="Vectorizers not available"
)
if not request.cookie_names:
return {"predictions": []}
try:
# Vectorized preprocessing (process all cookies at once)
features = preprocess_cookies_batch(request.cookie_names)
# Batch prediction (single model call for all cookies)
predictions = model.predict(features)
# Get confidence scores for all predictions at once
confidences = []
try:
decisions = model.decision_function(features)
# Normalize decision scores to pseudo-probabilities
exp_scores = np.exp(decisions)
probabilities = exp_scores / exp_scores.sum(axis=1, keepdims=True)
confidences = [float(probabilities[i, pred]) for i, pred in enumerate(predictions)]
except:
confidences = [None] * len(predictions)
# Build results
results = []
for idx, (cookie_name, prediction, confidence) in enumerate(zip(request.cookie_names, predictions, confidences)):
class_id = int(prediction)
results.append({
"cookie_name": cookie_name,
"category": CLASS_NAMES[class_id],
"class_id": class_id,
"confidence": confidence
})
return {"predictions": results}
except Exception as e:
import traceback
traceback.print_exc()
raise HTTPException(status_code=500, detail=f"Batch prediction error: {str(e)}")
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)