Spaces:
Running
on
Zero
Running
on
Zero
refactor:
Browse files
app.py
CHANGED
|
@@ -1,230 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import spaces
|
| 3 |
import torch
|
|
|
|
| 4 |
from transformers import (
|
| 5 |
AutoProcessor,
|
| 6 |
AutoModelForZeroShotObjectDetection,
|
| 7 |
-
Owlv2ForObjectDetection,
|
| 8 |
-
OmDetTurboForObjectDetection,
|
| 9 |
)
|
| 10 |
-
from PIL import Image
|
| 11 |
-
import time
|
| 12 |
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
-
def extract_model_short_name(model_id):
|
| 15 |
return model_id.split("/")[-1].replace("-", " ").replace("_", " ")
|
| 16 |
|
|
|
|
| 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
model_llmdet_id = "iSEE-Laboratory/llmdet_tiny"
|
| 19 |
processor_llmdet = AutoProcessor.from_pretrained(model_llmdet_id)
|
| 20 |
-
model_llmdet = AutoModelForZeroShotObjectDetection.from_pretrained(model_llmdet_id)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
|
|
|
| 22 |
model_mm_grounding_id = "rziga/mm_grounding_dino_tiny_o365v1_goldg"
|
| 23 |
processor_mm_grounding = AutoProcessor.from_pretrained(model_mm_grounding_id)
|
| 24 |
-
model_mm_grounding = AutoModelForZeroShotObjectDetection.from_pretrained(
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
)
|
| 27 |
|
|
|
|
| 28 |
model_omdet_id = "omlab/omdet-turbo-swin-tiny-hf"
|
| 29 |
processor_omdet = AutoProcessor.from_pretrained(model_omdet_id)
|
| 30 |
-
model_omdet = AutoModelForZeroShotObjectDetection.from_pretrained(model_omdet_id)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
|
|
|
| 32 |
model_owlv2_id = "google/owlv2-large-patch14-ensemble"
|
| 33 |
processor_owlv2 = AutoProcessor.from_pretrained(model_owlv2_id)
|
| 34 |
-
model_owlv2 = AutoModelForZeroShotObjectDetection.from_pretrained(model_owlv2_id)
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
|
|
|
|
|
|
| 40 |
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
@spaces.GPU
|
| 43 |
-
def detect(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
t0 = time.perf_counter()
|
| 45 |
-
|
| 46 |
-
|
| 47 |
texts = [prompts]
|
| 48 |
-
inputs = processor(images=image, text=texts, return_tensors="pt").to(
|
|
|
|
| 49 |
with torch.inference_mode():
|
| 50 |
-
|
| 51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
outputs, threshold=threshold, target_sizes=[image.size[::-1]]
|
| 53 |
-
)
|
| 54 |
-
|
| 55 |
annotations = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
else:
|
| 63 |
-
key = "text_labels"
|
| 64 |
-
check = False
|
| 65 |
-
|
| 66 |
-
for box, score, label in zip(result["boxes"], result["scores"], result[key]):
|
| 67 |
-
if score >= threshold:
|
| 68 |
-
if check:
|
| 69 |
-
label_id = label
|
| 70 |
-
label_name = prompts[label_id]
|
| 71 |
else:
|
| 72 |
-
label_name =
|
| 73 |
-
|
| 74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
elapsed_ms = (time.perf_counter() - t0) * 1000
|
| 76 |
-
time_taken = f"**Inference time ({
|
| 77 |
return annotations, time_taken
|
| 78 |
|
|
|
|
|
|
|
| 79 |
|
| 80 |
def run_detection(
|
| 81 |
image: Image.Image,
|
| 82 |
prompts_str: str,
|
| 83 |
-
threshold_llm,
|
| 84 |
-
threshold_mm,
|
| 85 |
-
threshold_owlv2,
|
| 86 |
-
threshold_omdet,
|
| 87 |
):
|
| 88 |
-
prompts =
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
)
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
ann_owlv2, time_owlv2 = detect(
|
| 96 |
-
model_owlv2, processor_owlv2, image, prompts, threshold_owlv2
|
| 97 |
-
)
|
| 98 |
-
ann_omdet, time_omdet = detect(
|
| 99 |
-
model_omdet, processor_omdet, image, prompts, threshold_omdet
|
| 100 |
-
)
|
| 101 |
return (
|
| 102 |
-
(image, ann_llm),
|
| 103 |
-
|
| 104 |
-
(image,
|
| 105 |
-
|
| 106 |
-
(image, ann_owlv2),
|
| 107 |
-
time_owlv2,
|
| 108 |
-
(image, ann_omdet),
|
| 109 |
-
time_omdet,
|
| 110 |
)
|
| 111 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
|
| 113 |
with gr.Blocks() as app:
|
| 114 |
-
gr.Markdown(
|
| 115 |
-
|
| 116 |
-
"### Compare different zero-shot object detection models on the same image and prompts."
|
| 117 |
-
)
|
| 118 |
with gr.Row():
|
| 119 |
with gr.Column(scale=1):
|
| 120 |
image = gr.Image(type="pil", label="Upload an image", height=400)
|
| 121 |
prompts = gr.Textbox(
|
| 122 |
-
label="Prompts (comma-separated)",
|
|
|
|
|
|
|
| 123 |
)
|
| 124 |
with gr.Accordion("Per-model confidence thresholds", open=True):
|
| 125 |
-
threshold_llm = gr.Slider(
|
| 126 |
-
|
| 127 |
-
)
|
| 128 |
-
|
| 129 |
-
label="Threshold for MM GroundingDINO Tiny",
|
| 130 |
-
minimum=0.0,
|
| 131 |
-
maximum=1.0,
|
| 132 |
-
value=0.3,
|
| 133 |
-
)
|
| 134 |
-
threshold_owlv2 = gr.Slider(
|
| 135 |
-
label="Threshold for OwlV2 Large",
|
| 136 |
-
minimum=0.0,
|
| 137 |
-
maximum=1.0,
|
| 138 |
-
value=0.1,
|
| 139 |
-
)
|
| 140 |
-
threshold_omdet = gr.Slider(
|
| 141 |
-
label="Threshold for OMDet Turbo Swin Tiny",
|
| 142 |
-
minimum=0.0,
|
| 143 |
-
maximum=1.0,
|
| 144 |
-
value=0.2,
|
| 145 |
-
)
|
| 146 |
generate_btn = gr.Button(value="Detect")
|
|
|
|
| 147 |
with gr.Row():
|
| 148 |
with gr.Column(scale=2):
|
| 149 |
-
output_image_llm = gr.AnnotatedImage(
|
| 150 |
-
label=f"Annotated image for {model_llmdet_name}", height=400
|
| 151 |
-
)
|
| 152 |
output_time_llm = gr.Markdown()
|
| 153 |
with gr.Column(scale=2):
|
| 154 |
-
output_image_mm = gr.AnnotatedImage(
|
| 155 |
-
label=f"Annotated image for {model_mm_grounding_name}", height=400
|
| 156 |
-
)
|
| 157 |
output_time_mm = gr.Markdown()
|
|
|
|
| 158 |
with gr.Row():
|
| 159 |
with gr.Column(scale=2):
|
| 160 |
-
output_image_owlv2 = gr.AnnotatedImage(
|
| 161 |
-
label=f"Annotated image for {model_owlv2_name}", height=400
|
| 162 |
-
)
|
| 163 |
output_time_owlv2 = gr.Markdown()
|
| 164 |
with gr.Column(scale=2):
|
| 165 |
-
output_image_omdet = gr.AnnotatedImage(
|
| 166 |
-
label=f"Annotated image for {model_omdet_name}", height=400
|
| 167 |
-
)
|
| 168 |
output_time_omdet = gr.Markdown()
|
|
|
|
| 169 |
gr.Markdown("### Examples")
|
| 170 |
example_data = [
|
| 171 |
-
[
|
| 172 |
-
|
| 173 |
-
"a cat, a remote control",
|
| 174 |
-
0.30,
|
| 175 |
-
0.30,
|
| 176 |
-
0.10,
|
| 177 |
-
0.30,
|
| 178 |
-
],
|
| 179 |
-
[
|
| 180 |
-
"http://images.cocodataset.org/val2017/000000000139.jpg",
|
| 181 |
-
"a person, a tv, a remote",
|
| 182 |
-
0.35,
|
| 183 |
-
0.30,
|
| 184 |
-
0.12,
|
| 185 |
-
0.30,
|
| 186 |
-
],
|
| 187 |
]
|
| 188 |
|
| 189 |
gr.Examples(
|
| 190 |
examples=example_data,
|
| 191 |
-
inputs=[
|
| 192 |
-
image,
|
| 193 |
-
prompts,
|
| 194 |
-
threshold_llm,
|
| 195 |
-
threshold_mm,
|
| 196 |
-
threshold_owlv2,
|
| 197 |
-
threshold_omdet,
|
| 198 |
-
],
|
| 199 |
label="Click an example to populate the inputs",
|
| 200 |
)
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
prompts,
|
| 204 |
-
threshold_llm,
|
| 205 |
-
threshold_mm,
|
| 206 |
-
threshold_owlv2,
|
| 207 |
-
threshold_omdet,
|
| 208 |
-
]
|
| 209 |
outputs = [
|
| 210 |
-
output_image_llm,
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
output_image_owlv2,
|
| 215 |
-
output_time_owlv2,
|
| 216 |
-
output_image_omdet,
|
| 217 |
-
output_time_omdet,
|
| 218 |
]
|
| 219 |
-
generate_btn.click(
|
| 220 |
-
|
| 221 |
-
inputs=inputs,
|
| 222 |
-
outputs=outputs,
|
| 223 |
-
)
|
| 224 |
-
image.upload(
|
| 225 |
-
fn=run_detection,
|
| 226 |
-
inputs=inputs,
|
| 227 |
-
outputs=outputs,
|
| 228 |
-
)
|
| 229 |
|
| 230 |
-
|
|
|
|
|
|
| 1 |
+
import time
|
| 2 |
+
from dataclasses import dataclass
|
| 3 |
+
from typing import List, Tuple
|
| 4 |
+
|
| 5 |
import gradio as gr
|
| 6 |
import spaces
|
| 7 |
import torch
|
| 8 |
+
from PIL import Image
|
| 9 |
from transformers import (
|
| 10 |
AutoProcessor,
|
| 11 |
AutoModelForZeroShotObjectDetection,
|
|
|
|
|
|
|
| 12 |
)
|
|
|
|
|
|
|
| 13 |
|
| 14 |
+
# ---------------------------
|
| 15 |
+
# Setup
|
| 16 |
+
# ---------------------------
|
| 17 |
|
| 18 |
+
def extract_model_short_name(model_id: str) -> str:
|
| 19 |
return model_id.split("/")[-1].replace("-", " ").replace("_", " ")
|
| 20 |
|
| 21 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 22 |
|
| 23 |
+
# (Optional) modest speed-ups
|
| 24 |
+
torch.set_grad_enabled(False)
|
| 25 |
+
|
| 26 |
+
# Model bundles for cleaner wiring
|
| 27 |
+
@dataclass
|
| 28 |
+
class ZSDetBundle:
|
| 29 |
+
model_id: str
|
| 30 |
+
model_name: str
|
| 31 |
+
processor: AutoProcessor
|
| 32 |
+
model: AutoModelForZeroShotObjectDetection
|
| 33 |
+
use_label_ids: bool # True for OWLv2/OMDet (labels are indices), False for others
|
| 34 |
+
|
| 35 |
+
# LLMDet
|
| 36 |
model_llmdet_id = "iSEE-Laboratory/llmdet_tiny"
|
| 37 |
processor_llmdet = AutoProcessor.from_pretrained(model_llmdet_id)
|
| 38 |
+
model_llmdet = AutoModelForZeroShotObjectDetection.from_pretrained(model_llmdet_id).to(DEVICE).eval()
|
| 39 |
+
bundle_llmdet = ZSDetBundle(
|
| 40 |
+
model_id=model_llmdet_id,
|
| 41 |
+
model_name=extract_model_short_name(model_llmdet_id),
|
| 42 |
+
processor=processor_llmdet,
|
| 43 |
+
model=model_llmdet,
|
| 44 |
+
use_label_ids=False,
|
| 45 |
+
)
|
| 46 |
|
| 47 |
+
# MM GroundingDINO
|
| 48 |
model_mm_grounding_id = "rziga/mm_grounding_dino_tiny_o365v1_goldg"
|
| 49 |
processor_mm_grounding = AutoProcessor.from_pretrained(model_mm_grounding_id)
|
| 50 |
+
model_mm_grounding = AutoModelForZeroShotObjectDetection.from_pretrained(model_mm_grounding_id).to(DEVICE).eval()
|
| 51 |
+
bundle_mm_grounding = ZSDetBundle(
|
| 52 |
+
model_id=model_mm_grounding_id,
|
| 53 |
+
model_name=extract_model_short_name(model_mm_grounding_id),
|
| 54 |
+
processor=processor_mm_grounding,
|
| 55 |
+
model=model_mm_grounding,
|
| 56 |
+
use_label_ids=False,
|
| 57 |
)
|
| 58 |
|
| 59 |
+
# OMDet Turbo
|
| 60 |
model_omdet_id = "omlab/omdet-turbo-swin-tiny-hf"
|
| 61 |
processor_omdet = AutoProcessor.from_pretrained(model_omdet_id)
|
| 62 |
+
model_omdet = AutoModelForZeroShotObjectDetection.from_pretrained(model_omdet_id).to(DEVICE).eval()
|
| 63 |
+
bundle_omdet = ZSDetBundle(
|
| 64 |
+
model_id=model_omdet_id,
|
| 65 |
+
model_name=extract_model_short_name(model_omdet_id),
|
| 66 |
+
processor=processor_omdet,
|
| 67 |
+
model=model_omdet,
|
| 68 |
+
use_label_ids=True, # returns label indices
|
| 69 |
+
)
|
| 70 |
|
| 71 |
+
# OWLv2
|
| 72 |
model_owlv2_id = "google/owlv2-large-patch14-ensemble"
|
| 73 |
processor_owlv2 = AutoProcessor.from_pretrained(model_owlv2_id)
|
| 74 |
+
model_owlv2 = AutoModelForZeroShotObjectDetection.from_pretrained(model_owlv2_id).to(DEVICE).eval()
|
| 75 |
+
bundle_owlv2 = ZSDetBundle(
|
| 76 |
+
model_id=model_owlv2_id,
|
| 77 |
+
model_name=extract_model_short_name(model_owlv2_id),
|
| 78 |
+
processor=processor_owlv2,
|
| 79 |
+
model=model_owlv2,
|
| 80 |
+
use_label_ids=True, # returns label indices
|
| 81 |
+
)
|
| 82 |
|
| 83 |
+
# ---------------------------
|
| 84 |
+
# Inference
|
| 85 |
+
# ---------------------------
|
| 86 |
|
| 87 |
@spaces.GPU
|
| 88 |
+
def detect(
|
| 89 |
+
bundle: ZSDetBundle,
|
| 90 |
+
image: Image.Image,
|
| 91 |
+
prompts: List[str],
|
| 92 |
+
threshold: float,
|
| 93 |
+
) -> Tuple[List[Tuple[Tuple[int, int, int, int], str]], str]:
|
| 94 |
+
"""
|
| 95 |
+
Returns [(bbox, label_score_str), ...], time_str
|
| 96 |
+
"""
|
| 97 |
t0 = time.perf_counter()
|
| 98 |
+
|
| 99 |
+
# HF zero-shot OD expects list-of-list text
|
| 100 |
texts = [prompts]
|
| 101 |
+
inputs = bundle.processor(images=image, text=texts, return_tensors="pt").to(DEVICE)
|
| 102 |
+
|
| 103 |
with torch.inference_mode():
|
| 104 |
+
if DEVICE == "cuda":
|
| 105 |
+
# Use autocast to speed up mixed-precision-friendly ops
|
| 106 |
+
with torch.amp.autocast():
|
| 107 |
+
outputs = bundle.model(**inputs)
|
| 108 |
+
else:
|
| 109 |
+
outputs = bundle.model(**inputs)
|
| 110 |
+
|
| 111 |
+
results = bundle.processor.post_process_grounded_object_detection(
|
| 112 |
outputs, threshold=threshold, target_sizes=[image.size[::-1]]
|
| 113 |
+
)[0]
|
| 114 |
+
|
| 115 |
annotations = []
|
| 116 |
+
key = "labels" if bundle.use_label_ids else "text_labels"
|
| 117 |
+
|
| 118 |
+
for box, score, label in zip(results["boxes"], results["scores"], results[key]):
|
| 119 |
+
if float(score) < threshold:
|
| 120 |
+
continue
|
| 121 |
|
| 122 |
+
if bundle.use_label_ids:
|
| 123 |
+
# Map label index -> prompt string
|
| 124 |
+
label_idx = int(label) if isinstance(label, torch.Tensor) else int(label)
|
| 125 |
+
if 0 <= label_idx < len(prompts):
|
| 126 |
+
label_name = prompts[label_idx]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
else:
|
| 128 |
+
label_name = str(label_idx)
|
| 129 |
+
else:
|
| 130 |
+
# Direct text label
|
| 131 |
+
label_name = label if isinstance(label, str) else str(label)
|
| 132 |
+
|
| 133 |
+
xmin, ymin, xmax, ymax = map(lambda v: int(v), box.tolist())
|
| 134 |
+
annotations.append(((xmin, ymin, xmax, ymax), f"{label_name} {float(score):.2f}"))
|
| 135 |
+
|
| 136 |
elapsed_ms = (time.perf_counter() - t0) * 1000
|
| 137 |
+
time_taken = f"**Inference time ({bundle.model_name}):** {elapsed_ms:.0f} ms"
|
| 138 |
return annotations, time_taken
|
| 139 |
|
| 140 |
+
def parse_prompts(prompts_str: str) -> List[str]:
|
| 141 |
+
return [p.strip() for p in prompts_str.split(",") if p.strip()]
|
| 142 |
|
| 143 |
def run_detection(
|
| 144 |
image: Image.Image,
|
| 145 |
prompts_str: str,
|
| 146 |
+
threshold_llm: float,
|
| 147 |
+
threshold_mm: float,
|
| 148 |
+
threshold_owlv2: float,
|
| 149 |
+
threshold_omdet: float,
|
| 150 |
):
|
| 151 |
+
prompts = parse_prompts(prompts_str)
|
| 152 |
+
|
| 153 |
+
ann_llm, time_llm = detect(bundle_llmdet, image, prompts, threshold_llm)
|
| 154 |
+
ann_mm, time_mm = detect(bundle_mm_grounding, image, prompts, threshold_mm)
|
| 155 |
+
ann_owlv2, time_owlv2 = detect(bundle_owlv2, image, prompts, threshold_owlv2)
|
| 156 |
+
ann_omdet, time_omdet = detect(bundle_omdet, image, prompts, threshold_omdet)
|
| 157 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
return (
|
| 159 |
+
(image, ann_llm), time_llm,
|
| 160 |
+
(image, ann_mm), time_mm,
|
| 161 |
+
(image, ann_owlv2), time_owlv2,
|
| 162 |
+
(image, ann_omdet), time_omdet,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
)
|
| 164 |
|
| 165 |
+
# ---------------------------
|
| 166 |
+
# Compact Description
|
| 167 |
+
# ---------------------------
|
| 168 |
+
|
| 169 |
+
description_md = """
|
| 170 |
+
# Zero-Shot Object Detection Arena
|
| 171 |
+
|
| 172 |
+
Compare **four zero-shot object detectors** on the same image + prompts.
|
| 173 |
+
Upload an image (or pick an example), add **comma-separated prompts**, tweak per-model **thresholds**, and hit **Detect**.
|
| 174 |
+
You'll see bounding boxes, scores, and **per-model inference time**.
|
| 175 |
+
|
| 176 |
+
**Models**
|
| 177 |
+
- LLMDet Tiny β [`iSEE-Laboratory/llmdet_tiny`](https://huggingface.co/iSEE-Laboratory/llmdet_tiny)
|
| 178 |
+
- MM GroundingDINO Tiny O365v1 GoldG β [`rziga/mm_grounding_dino_tiny_o365v1_goldg`](https://huggingface.co/rziga/mm_grounding_dino_tiny_o365v1_goldg)
|
| 179 |
+
- OMDet Turbo Swin Tiny β [`omlab/omdet-turbo-swin-tiny-hf`](https://huggingface.co/omlab/omdet-turbo-swin-tiny-hf)
|
| 180 |
+
- OWL-V2 Large Patch14 Ensemble β [`google/owlv2-large-patch14-ensemble`](https://huggingface.co/google/owlv2-large-patch14-ensemble)
|
| 181 |
+
|
| 182 |
+
**Tip:** Lower thresholds β recall but may β false positives.
|
| 183 |
+
"""
|
| 184 |
+
|
| 185 |
+
# ---------------------------
|
| 186 |
+
# UI
|
| 187 |
+
# ---------------------------
|
| 188 |
|
| 189 |
with gr.Blocks() as app:
|
| 190 |
+
gr.Markdown(description_md)
|
| 191 |
+
|
|
|
|
|
|
|
| 192 |
with gr.Row():
|
| 193 |
with gr.Column(scale=1):
|
| 194 |
image = gr.Image(type="pil", label="Upload an image", height=400)
|
| 195 |
prompts = gr.Textbox(
|
| 196 |
+
label="Prompts (comma-separated)",
|
| 197 |
+
value="a cat, a remote control",
|
| 198 |
+
placeholder="e.g., a cat, a remote control",
|
| 199 |
)
|
| 200 |
with gr.Accordion("Per-model confidence thresholds", open=True):
|
| 201 |
+
threshold_llm = gr.Slider(label=f"Threshold β {bundle_llmdet.model_name}", minimum=0.0, maximum=1.0, value=0.3)
|
| 202 |
+
threshold_mm = gr.Slider(label=f"Threshold β {bundle_mm_grounding.model_name}", minimum=0.0, maximum=1.0, value=0.3)
|
| 203 |
+
threshold_owlv2 = gr.Slider(label=f"Threshold β {bundle_owlv2.model_name}", minimum=0.0, maximum=1.0, value=0.1)
|
| 204 |
+
threshold_omdet = gr.Slider(label=f"Threshold β {bundle_omdet.model_name}", minimum=0.0, maximum=1.0, value=0.2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 205 |
generate_btn = gr.Button(value="Detect")
|
| 206 |
+
|
| 207 |
with gr.Row():
|
| 208 |
with gr.Column(scale=2):
|
| 209 |
+
output_image_llm = gr.AnnotatedImage(label=f"Annotated β {bundle_llmdet.model_name}", height=400)
|
|
|
|
|
|
|
| 210 |
output_time_llm = gr.Markdown()
|
| 211 |
with gr.Column(scale=2):
|
| 212 |
+
output_image_mm = gr.AnnotatedImage(label=f"Annotated β {bundle_mm_grounding.model_name}", height=400)
|
|
|
|
|
|
|
| 213 |
output_time_mm = gr.Markdown()
|
| 214 |
+
|
| 215 |
with gr.Row():
|
| 216 |
with gr.Column(scale=2):
|
| 217 |
+
output_image_owlv2 = gr.AnnotatedImage(label=f"Annotated β {bundle_owlv2.model_name}", height=400)
|
|
|
|
|
|
|
| 218 |
output_time_owlv2 = gr.Markdown()
|
| 219 |
with gr.Column(scale=2):
|
| 220 |
+
output_image_omdet = gr.AnnotatedImage(label=f"Annotated β {bundle_omdet.model_name}", height=400)
|
|
|
|
|
|
|
| 221 |
output_time_omdet = gr.Markdown()
|
| 222 |
+
|
| 223 |
gr.Markdown("### Examples")
|
| 224 |
example_data = [
|
| 225 |
+
["https://images.cocodataset.org/val2017/000000039769.jpg", "a cat, a remote control", 0.30, 0.30, 0.10, 0.30],
|
| 226 |
+
["https://images.cocodataset.org/val2017/000000000139.jpg", "a person, a tv, a remote", 0.35, 0.30, 0.12, 0.30],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 227 |
]
|
| 228 |
|
| 229 |
gr.Examples(
|
| 230 |
examples=example_data,
|
| 231 |
+
inputs=[image, prompts, threshold_llm, threshold_mm, threshold_owlv2, threshold_omdet],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 232 |
label="Click an example to populate the inputs",
|
| 233 |
)
|
| 234 |
+
|
| 235 |
+
inputs = [image, prompts, threshold_llm, threshold_mm, threshold_owlv2, threshold_omdet]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 236 |
outputs = [
|
| 237 |
+
output_image_llm, output_time_llm,
|
| 238 |
+
output_image_mm, output_time_mm,
|
| 239 |
+
output_image_owlv2, output_time_owlv2,
|
| 240 |
+
output_image_omdet, output_time_omdet,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 241 |
]
|
| 242 |
+
generate_btn.click(fn=run_detection, inputs=inputs, outputs=outputs)
|
| 243 |
+
image.upload(fn=run_detection, inputs=inputs, outputs=outputs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 244 |
|
| 245 |
+
# Optional: queue to handle multiple users gracefully (tune as needed)
|
| 246 |
+
app.queue(max_size=16, concurrency_count=1).launch()
|