Spaces:
Runtime error
Runtime error
Armen Gabrielyan
commited on
Commit
·
cde7ed6
1
Parent(s):
4820fa1
add batch generation
Browse files- app.py +4 -6
- inference.py +4 -10
- utils.py +0 -7
app.py
CHANGED
|
@@ -2,6 +2,7 @@ from datetime import timedelta
|
|
| 2 |
import gradio as gr
|
| 3 |
from sentence_transformers import SentenceTransformer
|
| 4 |
import torchvision
|
|
|
|
| 5 |
from sklearn.metrics.pairwise import cosine_similarity
|
| 6 |
import numpy as np
|
| 7 |
|
|
@@ -27,13 +28,10 @@ def search_in_video(video, query):
|
|
| 27 |
video[idx:idx + frame_step, :, :, :] for idx in range(0, video.shape[0], frame_step)
|
| 28 |
]
|
| 29 |
|
| 30 |
-
|
|
|
|
| 31 |
|
| 32 |
-
|
| 33 |
-
pixel_values = utils.video2image(video_seg, encoder_model_name)
|
| 34 |
-
|
| 35 |
-
generated_text = inference.generate_text(pixel_values, encoder_model_name)
|
| 36 |
-
generated_texts.append(generated_text)
|
| 37 |
|
| 38 |
sentences = [query] + generated_texts
|
| 39 |
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
from sentence_transformers import SentenceTransformer
|
| 4 |
import torchvision
|
| 5 |
+
import torch
|
| 6 |
from sklearn.metrics.pairwise import cosine_similarity
|
| 7 |
import numpy as np
|
| 8 |
|
|
|
|
| 28 |
video[idx:idx + frame_step, :, :, :] for idx in range(0, video.shape[0], frame_step)
|
| 29 |
]
|
| 30 |
|
| 31 |
+
pixel_values = [utils.video2image(video_seg, encoder_model_name) for video_seg in video_segments]
|
| 32 |
+
pixel_values = torch.stack(pixel_values)
|
| 33 |
|
| 34 |
+
generated_texts = inference.generate_texts(pixel_values)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
sentences = [query] + generated_texts
|
| 37 |
|
inference.py
CHANGED
|
@@ -1,7 +1,6 @@
|
|
| 1 |
import torch
|
| 2 |
from transformers import AutoTokenizer, VisionEncoderDecoderModel
|
| 3 |
|
| 4 |
-
import utils
|
| 5 |
|
| 6 |
class Inference:
|
| 7 |
def __init__(self, decoder_model_name, max_length=32):
|
|
@@ -13,22 +12,17 @@ class Inference:
|
|
| 13 |
|
| 14 |
self.max_length = max_length
|
| 15 |
|
| 16 |
-
def
|
| 17 |
-
if isinstance(video, str):
|
| 18 |
-
pixel_values = utils.video2image_from_path(video, encoder_model_name)
|
| 19 |
-
else:
|
| 20 |
-
pixel_values = video
|
| 21 |
-
|
| 22 |
if not self.tokenizer.pad_token:
|
| 23 |
self.tokenizer.add_special_tokens({'pad_token': '[PAD]'})
|
| 24 |
self.encoder_decoder_model.decoder.resize_token_embeddings(len(self.tokenizer))
|
| 25 |
|
| 26 |
generated_ids = self.encoder_decoder_model.generate(
|
| 27 |
-
pixel_values.
|
| 28 |
max_length=self.max_length,
|
| 29 |
num_beams=4,
|
| 30 |
no_repeat_ngram_size=2,
|
| 31 |
)
|
| 32 |
-
|
| 33 |
|
| 34 |
-
return
|
|
|
|
| 1 |
import torch
|
| 2 |
from transformers import AutoTokenizer, VisionEncoderDecoderModel
|
| 3 |
|
|
|
|
| 4 |
|
| 5 |
class Inference:
|
| 6 |
def __init__(self, decoder_model_name, max_length=32):
|
|
|
|
| 12 |
|
| 13 |
self.max_length = max_length
|
| 14 |
|
| 15 |
+
def generate_texts(self, pixel_values):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
if not self.tokenizer.pad_token:
|
| 17 |
self.tokenizer.add_special_tokens({'pad_token': '[PAD]'})
|
| 18 |
self.encoder_decoder_model.decoder.resize_token_embeddings(len(self.tokenizer))
|
| 19 |
|
| 20 |
generated_ids = self.encoder_decoder_model.generate(
|
| 21 |
+
pixel_values.to(self.device),
|
| 22 |
max_length=self.max_length,
|
| 23 |
num_beams=4,
|
| 24 |
no_repeat_ngram_size=2,
|
| 25 |
)
|
| 26 |
+
generated_texts = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
|
| 27 |
|
| 28 |
+
return generated_texts
|
utils.py
CHANGED
|
@@ -1,15 +1,8 @@
|
|
| 1 |
from transformers import ViTFeatureExtractor
|
| 2 |
-
import torchvision
|
| 3 |
import torchvision.transforms.functional as fn
|
| 4 |
import torch as th
|
| 5 |
|
| 6 |
|
| 7 |
-
def video2image_from_path(video_path, feature_extractor_name):
|
| 8 |
-
video = torchvision.io.read_video(video_path)
|
| 9 |
-
|
| 10 |
-
return video2image(video[0], feature_extractor_name)
|
| 11 |
-
|
| 12 |
-
|
| 13 |
def video2image(video, feature_extractor_name):
|
| 14 |
feature_extractor = ViTFeatureExtractor.from_pretrained(
|
| 15 |
feature_extractor_name
|
|
|
|
| 1 |
from transformers import ViTFeatureExtractor
|
|
|
|
| 2 |
import torchvision.transforms.functional as fn
|
| 3 |
import torch as th
|
| 4 |
|
| 5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
def video2image(video, feature_extractor_name):
|
| 7 |
feature_extractor = ViTFeatureExtractor.from_pretrained(
|
| 8 |
feature_extractor_name
|