#================================================================================== # https://huggingface.co/spaces/asigalov61/Guided-Accompaniment-Transformer #================================================================================== print('=' * 70) print('Guided Accompaniment Transformer Gradio App') print('=' * 70) print('Loading core Guided Accompaniment Transformer modules...') import os import copy import time as reqtime import datetime from pytz import timezone print('=' * 70) print('Loading main Guided Accompaniment Transformer modules...') os.environ['USE_FLASH_ATTENTION'] = '1' import torch torch.set_float32_matmul_precision('high') torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn torch.backends.cuda.enable_mem_efficient_sdp(True) torch.backends.cuda.enable_math_sdp(True) torch.backends.cuda.enable_flash_sdp(True) torch.backends.cuda.enable_cudnn_sdp(True) from huggingface_hub import hf_hub_download import TMIDIX from midi_to_colab_audio import midi_to_colab_audio from x_transformer_1_23_2 import * import random from collections import defaultdict import tqdm print('=' * 70) print('Loading aux Guided Accompaniment Transformer modules...') import matplotlib.pyplot as plt import gradio as gr import spaces print('=' * 70) print('PyTorch version:', torch.__version__) print('=' * 70) print('Done!') print('Enjoy! :)') print('=' * 70) #================================================================================== MODEL_CHECKPOINT = 'Guided_Accompaniment_Transformer_Trained_Model_36457_steps_0.5384_loss_0.8417_acc.pth' SOUNDFONT_PATH = 'SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2' MAX_MELODY_NOTES = 72 #================================================================================== print('=' * 70) print('Loading popular hook melodies dataset...') popular_hook_melodies_pickle = hf_hub_download(repo_id='asigalov61/Guided-Accompaniment-Transformer', filename='popular_hook_melodies_24_64_CC_BY_NC_SA.pickle' ) popular_hook_melodies = TMIDIX.Tegridy_Any_Pickle_File_Reader(popular_hook_melodies_pickle) print('=' * 70) print('Done!') print('=' * 70) #================================================================================== print('=' * 70) print('Instantiating model...') device_type = 'cuda' dtype = 'bfloat16' ptdtype = {'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype] ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype) SEQ_LEN = 4096 PAD_IDX = 1794 model = TransformerWrapper( num_tokens = PAD_IDX+1, max_seq_len = SEQ_LEN, attn_layers = Decoder(dim = 2048, depth = 4, heads = 32, rotary_pos_emb = True, attn_flash = True ) ) model = AutoregressiveWrapper(model, ignore_index=PAD_IDX, pad_value=PAD_IDX) print('=' * 70) print('Loading model checkpoint...') model_checkpoint = hf_hub_download(repo_id='asigalov61/Guided-Accompaniment-Transformer', filename=MODEL_CHECKPOINT) model.load_state_dict(torch.load(model_checkpoint, map_location='cpu', weights_only=True)) model = torch.compile(model, mode='max-autotune') model.to(device_type) model.eval() print('=' * 70) print('Done!') print('=' * 70) print('Model will use', dtype, 'precision...') print('=' * 70) #================================================================================== def load_midi(input_midi, melody_patch=-1): raw_score = TMIDIX.midi2single_track_ms_score(input_midi) escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)[0] escore_notes = TMIDIX.augment_enhanced_score_notes(escore_notes, timings_divider=32) sp_escore_notes = TMIDIX.solo_piano_escore_notes(escore_notes) if melody_patch == -1: zscore = TMIDIX.recalculate_score_timings(sp_escore_notes) else: mel_score = [e for e in sp_escore_notes if e[6] == melody_patch] if mel_score: zscore = TMIDIX.recalculate_score_timings(mel_score) else: zscore = TMIDIX.recalculate_score_timings(sp_escore_notes) cscore = TMIDIX.chordify_score([1000, zscore])[:MAX_MELODY_NOTES] score = [] pc = cscore[0] for c in cscore: score.append(max(0, min(127, c[0][1]-pc[0][1]))) n = c[0] score.extend([max(1, min(127, n[2]))+128, max(1, min(127, n[4]))+256]) pc = c score_len = len(score) // 3 score_ptcs = [t-256 for t in score if t > 256] return score, score_len, score_ptcs #================================================================================== def tokens_to_scores(tokens, mel_len): time = 0 dur = 0 vel = 90 pitch = 0 channel = 0 patch = 0 channels_map = [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 9, 12, 13, 14, 15] patches_map = [40, 0, 10, 19, 24, 35, 40, 52, 56, 9, 65, 73, 0, 0, 0, 0] velocities_map = [125, 80, 100, 80, 90, 100, 100, 80, 110, 110, 110, 110, 80, 80, 80, 80] melody = [] accompaniment = [] mel_notes_count = 0 final_time = 9999999 for m in tokens: if 0 <= m < 128: time += m * 32 elif 128 < m < 256: dur = (m-128) * 32 elif 256 < m < 1792: cha = (m-256) // 128 pitch = (m-256) % 128 channel = channels_map[cha] patch = patches_map[channel] vel = velocities_map[channel] if time > final_time: break if channel == 0: melody.append(['note', time, dur, channel, pitch, vel, patch]) mel_notes_count += 1 if mel_notes_count == mel_len: final_time = time else: accompaniment.append(['note', time, dur, channel, pitch, vel, patch]) return melody, accompaniment #================================================================================== def check_tones(mel, acc): mel_times = [e[1] for e in mel] mel_tones = [e[4] % 12 for e in mel] groups = defaultdict(list) for sub in acc: key = sub[1] if key in mel_times: groups[key].append(sub) matches = [] for k, v in groups.items(): ktone = mel_tones[mel_times.index(k)] vtones = sorted(set([e[4] % 12 for e in v])) if ktone in vtones: matches.append(True) else: matches.append(False) return sum(matches) #================================================================================== def check_seq(seq, mel_len, mel_ptcs): mel, acc = tokens_to_scores(seq, mel_len) trg_mel_ptcs = [e[4] for e in mel] ptcs_good = mel_ptcs == trg_mel_ptcs mel_times = [e[1] for e in mel] acc_times = [e[1] for e in acc if e[3] != 9] times_good = all(mel_times[i] in acc_times for i in range(len(mel_times))) if ptcs_good and times_good: return mel, acc else: return None, None #================================================================================== @spaces.GPU def generate_sequences(score_seq, score_len, temperature=0.9, top_k_value=15, num_batches=48, verbose=True ): x = torch.LongTensor([score_seq] * num_batches).cuda() with ctx: out = model.generate(x, 32*score_len, filter_logits_fn=top_k, filter_kwargs={'k': top_k_value}, temperature=temperature, return_prime=False, verbose=verbose) output = out.tolist() return output #================================================================================== def Generate_Accompaniment(input_midi, input_melody, melody_patch, model_temperature, model_sampling_top_k ): #=============================================================================== print('=' * 70) print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) start_time = reqtime.time() print('=' * 70) print('=' * 70) print('Requested settings:') print('=' * 70) if input_midi: fn = os.path.basename(input_midi) fn1 = fn.split('.')[0] print('Input MIDI file name:', fn) else: print('Input sample melody:', input_melody) print('Source melody patch:', melody_patch) print('Model temperature:', model_temperature) print('Model top k:', model_sampling_top_k) print('=' * 70) #================================================================== print('Prepping melody...') if input_midi: inp_mel = 'Custom MIDI' score, score_len, score_ptcs = load_midi(input_midi.name, melody_patch) else: mel_list = [m[0].lower() for m in popular_hook_melodies] inp_mel = random.choice(mel_list).title() for m in mel_list: if input_melody.lower().strip() in m: inp_mel = m.title() break score = popular_hook_melodies[[m[0] for m in popular_hook_melodies].index(inp_mel)][1] score_len = len(score) // 3 score_ptcs = [t-256 for t in score if t > 256] print('Selected melody:', inp_mel) print('Sample score events', score[:12]) #================================================================== print('=' * 70) print('Generating...') #================================================================== score_seq = [1792] + score + [1793] #================================================================== output = generate_sequences(score_seq, score_len, temperature=model_temperature, top_k_value=model_sampling_top_k, ) print('=' * 70) print('Done!') print('=' * 70) #=============================================================================== print('Processing generated sequences...') good_scores = [] for seq in output: mel, acc = check_seq(seq, score_len, score_ptcs) if mel and acc: if check_tones(mel, acc) / len(mel) >= 0.7: score = sorted(mel + acc, key=lambda x: x[1]) good_scores.append(score) print('Number of good scores:', len(good_scores)) if len(good_scores) > 0: final_score = random.choice(good_scores) else: mel, acc = tokens_to_scores(random.choice(output), score_len) final_score = sorted(mel + acc, key=lambda x: x[1]) print('Done!') print('=' * 70) #=============================================================================== print('Rendering results...') fn1 = "Guided-Accompaniment-Transformer-Composition" patches_map = [40, 0, 10, 19, 24, 35, 40, 52, 56, 9, 65, 73, 0, 0, 0, 0] detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(final_score, output_signature = 'Guided Accompaniment Transformer', output_file_name = fn1, track_name='Project Los Angeles', list_of_MIDI_patches=patches_map ) new_fn = fn1+'.mid' audio = midi_to_colab_audio(new_fn, soundfont_path=SOUNDFONT_PATH, sample_rate=16000, output_for_gradio=True ) print('Done!') print('=' * 70) #======================================================== output_title = str(inp_mel) output_midi = str(new_fn) output_audio = (16000, audio) output_plot = TMIDIX.plot_ms_SONG(final_score, plot_title=output_midi, return_plt=True ) print('Output MIDI file name:', output_midi) print('Output MIDI melody title:', output_title) print('=' * 70) #======================================================== print('-' * 70) print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) print('-' * 70) print('Req execution time:', (reqtime.time() - start_time), 'sec') return output_title, output_audio, output_plot, output_midi #================================================================================== PDT = timezone('US/Pacific') print('=' * 70) print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) print('=' * 70) #================================================================================== with gr.Blocks() as demo: #================================================================================== gr.Markdown("