Spaces:
Running
Running
File size: 12,089 Bytes
9916f7c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Complete Process Flow - BMS AI Assistant</title>
<style>
* {
margin: 0;
padding: 0;
box-sizing: border-box;
}
body {
font-family: Arial, sans-serif;
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
padding: 20px;
}
.container {
max-width: 1200px;
margin: 0 auto;
background: white;
border-radius: 10px;
box-shadow: 0 10px 40px rgba(0, 0, 0, 0.1);
}
.header {
background: linear-gradient(135deg, #D01010 0%, #A00C0C 100%);
color: white;
padding: 30px;
text-align: center;
border-radius: 10px 10px 0 0;
}
.header h1 {
font-size: 2em;
margin-bottom: 10px;
}
.content {
padding: 30px;
}
.flow-step {
background: #f8f9fa;
border-left: 5px solid #D01010;
padding: 20px;
margin: 15px 0;
border-radius: 5px;
}
.flow-step h3 {
color: #D01010;
margin-bottom: 10px;
display: flex;
align-items: center;
gap: 10px;
}
.step-num {
background: #D01010;
color: white;
width: 35px;
height: 35px;
border-radius: 50%;
display: inline-flex;
align-items: center;
justify-content: center;
font-weight: bold;
}
.arrow {
text-align: center;
font-size: 2em;
color: #D01010;
margin: 10px 0;
}
.code {
background: #2d2d2d;
color: #f8f8f2;
padding: 15px;
border-radius: 5px;
margin: 10px 0;
font-family: monospace;
font-size: 0.9em;
overflow-x: auto;
}
.branch {
display: grid;
grid-template-columns: repeat(auto-fit, minmax(200px, 1fr));
gap: 10px;
margin: 15px 0;
}
.branch-item {
background: white;
border: 2px solid #D01010;
padding: 15px;
text-align: center;
border-radius: 5px;
}
.branch-item h4 {
color: #D01010;
margin-bottom: 5px;
}
</style>
</head>
<body>
<div class="container">
<div class="header">
<h1>π Complete Technical Process Flow</h1>
<p>BMS AI Assistant - User to System to User</p>
</div>
<div class="content">
<div class="flow-step">
<h3><span class="step-num">1</span> User Input</h3>
<p><strong>Component:</strong> Frontend UI (index.html)</p>
<p><strong>Action:</strong> User types query in chat interface</p>
<p><strong>Example:</strong> "What is the forecast for BMS0015 next month?"</p>
<div class="code">userInput.addEventListener('keypress', (e) => {
if (e.key === 'Enter') sendMessage();
});</div>
</div>
<div class="arrow">β</div>
<div class="flow-step">
<h3><span class="step-num">2</span> Client Processing</h3>
<p><strong>Component:</strong> JavaScript</p>
<p><strong>Action:</strong> Validate input, display user message, prepare API call</p>
<div class="code">const text = userInput.value.trim();
addMessage(text, 'user');</div>
</div>
<div class="arrow">β</div>
<div class="flow-step">
<h3><span class="step-num">3</span> HTTP POST Request</h3>
<p><strong>Endpoint:</strong> /api/chat</p>
<p><strong>Method:</strong> POST</p>
<p><strong>Payload:</strong> {"message": "user query"}</p>
<div class="code">fetch('/api/chat', {
method: 'POST',
headers: {'Content-Type': 'application/json'},
body: JSON.stringify({message: text})
});</div>
</div>
<div class="arrow">β</div>
<div class="flow-step">
<h3><span class="step-num">4</span> Server Receives Request</h3>
<p><strong>Component:</strong> FastAPI (main.py)</p>
<p><strong>Server:</strong> Uvicorn ASGI</p>
<div class="code">@app.post("/api/chat")
async def chat(request: ChatRequest):
message = request.message</div>
</div>
<div class="arrow">β</div>
<div class="flow-step">
<h3><span class="step-num">5</span> Intent Parsing</h3>
<p><strong>Component:</strong> intent_parser.py</p>
<p><strong>Method:</strong> Regex pattern matching</p>
<p><strong>Extracts:</strong> Intent, Item code, Quantity, Location, Horizon</p>
<div class="code">parsed = parser.parse(message)
# Returns: {
# "intent": "demand_forecast",
# "item_code": "BMS0015",
# "horizon_days": 30
# }</div>
</div>
<div class="arrow">β</div>
<div class="flow-step">
<h3><span class="step-num">6</span> Intent Routing</h3>
<p><strong>Decision Point:</strong> Route to appropriate handler</p>
<div class="branch">
<div class="branch-item">
<h4>Forecast</h4>
<p>forecasting.py</p>
</div>
<div class="branch-item">
<h4>Item Details</h4>
<p>data_loader.py</p>
</div>
<div class="branch-item">
<h4>Inventory</h4>
<p>data_loader.py</p>
</div>
<div class="branch-item">
<h4>Supplier</h4>
<p>data_loader.py</p>
</div>
<div class="branch-item">
<h4>Requisition</h4>
<p>data_loader.py</p>
</div>
<div class="branch-item">
<h4>Status</h4>
<p>data_loader.py</p>
</div>
<div class="branch-item">
<h4>PDF</h4>
<p>pdf_generator.py</p>
</div>
<div class="branch-item">
<h4>Chat</h4>
<p>llm_engine.py</p>
</div>
</div>
</div>
<div class="arrow">β</div>
<div class="flow-step">
<h3><span class="step-num">7</span> Business Logic Execution</h3>
<p><strong>Example:</strong> Demand Forecast</p>
<p>1. Load demand_history.csv<br>
2. Filter by item_code<br>
3. Fit ARIMA model<br>
4. Generate forecast<br>
5. Format as JSON</p>
<div class="code">forecast_data = forecast_demand(item_code, horizon)
# Returns: [{"date": "2025-01-01", "qty": 150}, ...]</div>
</div>
<div class="arrow">β</div>
<div class="flow-step">
<h3><span class="step-num">8</span> Data Retrieval</h3>
<p><strong>Component:</strong> data_loader.py</p>
<p><strong>Sources:</strong> items.csv, inventory.csv, suppliers.csv, etc.</p>
<p><strong>Technology:</strong> Pandas DataFrames</p>
<div class="code">item = loader.items_df[loader.items_df['item_code'] == 'BMS0015']</div>
</div>
<div class="arrow">β</div>
<div class="flow-step">
<h3><span class="step-num">9</span> LLM Processing (if needed)</h3>
<p><strong>Component:</strong> llm_engine.py</p>
<p><strong>Trigger:</strong> Only for general_chat intent</p>
<p><strong>Model:</strong> TinyLlama 1.1B</p>
<p><strong>Time:</strong> 5-15 seconds</p>
<div class="code">response = llm.generate_response(query)
# Uses company_context.txt for RAG</div>
</div>
<div class="arrow">β</div>
<div class="flow-step">
<h3><span class="step-num">10</span> Response Formatting</h3>
<p><strong>Component:</strong> main.py</p>
<p><strong>Format:</strong> JSON</p>
<div class="code">return {
"intent": "demand_forecast",
"answer": "Forecast for BMS0015...",
"forecast": [{"date": "2025-01-01", "qty": 150}]
}</div>
</div>
<div class="arrow">β</div>
<div class="flow-step">
<h3><span class="step-num">11</span> HTTP Response</h3>
<p><strong>Status:</strong> 200 OK</p>
<p><strong>Content-Type:</strong> application/json</p>
<p><strong>Sent to:</strong> Client browser</p>
</div>
<div class="arrow">β</div>
<div class="flow-step">
<h3><span class="step-num">12</span> Client Receives Response</h3>
<p><strong>Component:</strong> JavaScript Fetch API</p>
<p><strong>Action:</strong> Parse JSON response</p>
<div class="code">const data = await response.json();
let botHtml = data.answer;</div>
</div>
<div class="arrow">β</div>
<div class="flow-step">
<h3><span class="step-num">13</span> UI Rendering</h3>
<p><strong>Component:</strong> JavaScript DOM manipulation</p>
<p><strong>Actions:</strong></p>
<p>1. Create message bubble<br>
2. Add bot icon<br>
3. Render forecast table (if present)<br>
4. Add download button (if PDF)<br>
5. Scroll to bottom</p>
<div class="code">addMessage(botHtml, 'bot', true);
if (data.forecast) {
botHtml += renderForecastTable(data.forecast);
}</div>
</div>
<div class="arrow">β</div>
<div class="flow-step">
<h3><span class="step-num">14</span> User Sees Response</h3>
<p><strong>Display:</strong> Chat bubble with bot icon</p>
<p><strong>Features:</strong> Formatted text, tables, download links</p>
<p><strong>Animation:</strong> Fade-in effect</p>
<p><strong>Interaction:</strong> User can copy text, download PDFs, ask follow-up</p>
</div>
<div style="background: #e8f5e9; padding: 20px; border-radius: 5px; margin-top: 30px;">
<h3 style="color: #2e7d32; margin-bottom: 10px;">β
Flow Complete</h3>
<p><strong>Total Steps:</strong> 14</p>
<p><strong>Average Time:</strong> 2-15 seconds (depending on intent)</p>
<p><strong>Technologies Used:</strong> HTML/JS, FastAPI, Pandas, ARIMA, TinyLlama</p>
</div>
</div>
</div>
</body>
</html> |