# Slide 1: Title Slide **Title:** BMS AI Assistant **Subtitle:** Enterprise Supply Chain Optimization System **Footer:** Technical Overview | Version 1.0 --- # Slide 2: Executive Summary **Key Points:** * **Objective:** Streamline access to supply chain data via natural language. * **Solution:** Local AI Chatbot with integrated forecasting capabilities. * **Value Proposition:** Zero external API costs, 100% data privacy, instant response time. --- # Slide 3: System Architecture **Layers:** 1. **Presentation:** Web-based UI (HTML5/JS). 2. **API:** FastAPI Backend (Python). 3. **Logic:** Intent Parser & Business Rules. 4. **Data:** In-memory high-speed data store. --- # Slide 4: Core Capabilities **Features:** * **Demand Forecasting:** 30-day predictive analytics using ARIMA. * **Inventory Tracking:** Real-time multi-warehouse stock visibility. * **Supplier Intelligence:** Vendor lead times and contact details. * **Automated Reporting:** On-demand PDF generation. --- # Slide 5: Technical Stack **Technologies:** * **Language:** Python 3.10 * **Framework:** FastAPI + Uvicorn * **AI Model:** TinyLlama 1.1B (Local Inference) * **Deployment:** Docker Container --- # Slide 6: Process Flow **Steps:** 1. **User Input:** Natural language query. 2. **Intent Recognition:** Pattern matching algorithm. 3. **Data Retrieval:** SQL/CSV lookup or Model Inference. 4. **Response Generation:** JSON formatting and UI rendering. --- # Slide 7: Future Roadmap **Next Steps:** * Integration with live ERP database (SQL). * Advanced multi-variate forecasting models. * User authentication and role-based access control.