Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -41,19 +41,9 @@ def get_vector_store_from_url(url):
|
|
| 41 |
return vector_store
|
| 42 |
|
| 43 |
|
| 44 |
-
def get_context_retriever_chain(vector_store):
|
| 45 |
# llm = ChatOpenAI()
|
| 46 |
-
llm =
|
| 47 |
-
# model = "TheBloke/Mistral-7B-Instruct-v0.2-GGUF",
|
| 48 |
-
model= "TheBloke/Llama-2-7B-Chat-GGUF",
|
| 49 |
-
model_file = "llama-2-7b-chat.Q3_K_S.gguf",
|
| 50 |
-
model_type="llama",
|
| 51 |
-
max_new_tokens = 300,
|
| 52 |
-
temperature = 0.3,
|
| 53 |
-
lib="avx2", # for CPU
|
| 54 |
-
)
|
| 55 |
-
|
| 56 |
-
|
| 57 |
retriever = vector_store.as_retriever()
|
| 58 |
|
| 59 |
prompt = ChatPromptTemplate.from_messages([
|
|
@@ -67,17 +57,9 @@ def get_context_retriever_chain(vector_store):
|
|
| 67 |
return retriever_chain
|
| 68 |
|
| 69 |
|
| 70 |
-
def get_conversational_rag_chain(retriever_chain):
|
| 71 |
|
| 72 |
-
llm
|
| 73 |
-
# model = "TheBloke/Mistral-7B-Instruct-v0.2-GGUF",
|
| 74 |
-
model= "TheBloke/Llama-2-7B-Chat-GGUF",
|
| 75 |
-
model_file = "llama-2-7b-chat.Q3_K_S.gguf",
|
| 76 |
-
model_type="llama",
|
| 77 |
-
max_new_tokens = 300,
|
| 78 |
-
temperature = 0.3,
|
| 79 |
-
lib="avx2", # for CPU
|
| 80 |
-
)
|
| 81 |
|
| 82 |
prompt = ChatPromptTemplate.from_messages([
|
| 83 |
("system", "Answer the user's questions based on the below context:\n\n{context}"),
|
|
@@ -90,8 +72,17 @@ def get_conversational_rag_chain(retriever_chain):
|
|
| 90 |
return create_retrieval_chain(retriever_chain, stuff_documents_chain)
|
| 91 |
|
| 92 |
def get_response(user_input):
|
| 93 |
-
|
| 94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
response = conversation_rag_chain.invoke({
|
| 97 |
"chat_history": st.session_state.chat_history,
|
|
|
|
| 41 |
return vector_store
|
| 42 |
|
| 43 |
|
| 44 |
+
def get_context_retriever_chain(vector_store,llm):
|
| 45 |
# llm = ChatOpenAI()
|
| 46 |
+
llm = llm
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
retriever = vector_store.as_retriever()
|
| 48 |
|
| 49 |
prompt = ChatPromptTemplate.from_messages([
|
|
|
|
| 57 |
return retriever_chain
|
| 58 |
|
| 59 |
|
| 60 |
+
def get_conversational_rag_chain(retriever_chain,llm):
|
| 61 |
|
| 62 |
+
llm=llm
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
prompt = ChatPromptTemplate.from_messages([
|
| 65 |
("system", "Answer the user's questions based on the below context:\n\n{context}"),
|
|
|
|
| 72 |
return create_retrieval_chain(retriever_chain, stuff_documents_chain)
|
| 73 |
|
| 74 |
def get_response(user_input):
|
| 75 |
+
llm = CTransformers(
|
| 76 |
+
# model = "TheBloke/Mistral-7B-Instruct-v0.2-GGUF",
|
| 77 |
+
model= "TheBloke/Llama-2-7B-Chat-GGUF",
|
| 78 |
+
model_file = "llama-2-7b-chat.Q3_K_S.gguf",
|
| 79 |
+
model_type="llama",
|
| 80 |
+
max_new_tokens = 300,
|
| 81 |
+
temperature = 0.3,
|
| 82 |
+
lib="avx2", # for CPU
|
| 83 |
+
)
|
| 84 |
+
retriever_chain = get_context_retriever_chain(st.session_state.vector_store,llm)
|
| 85 |
+
conversation_rag_chain = get_conversational_rag_chain(retriever_chain,llm)
|
| 86 |
|
| 87 |
response = conversation_rag_chain.invoke({
|
| 88 |
"chat_history": st.session_state.chat_history,
|