defaults: - base_config - override data: t5_clap # change here for loading different text features in training/evaluation - override hydra/job_logging: custom - _self_ hydra: run: dir: ./exps/${exp_id} output_subdir: train-${now:%Y-%m-%d_%H-%M-%S}-hydra ema: start: 0 mini_train: False example_train: False enable_grad_scaler: True ac_oversample_rate: 5 log_text_interval: 50 log_extra_interval: 10_000 val_interval: 10_000 eval_interval: 10_000 save_eval_interval: 10_000 save_weights_interval: 5_000 save_checkpoint_interval: 10_000 save_copy_iterations: [] batch_size: 128 eval_batch_size: 4 num_iterations: 100_000 learning_rate: 1e-4 linear_warmup_steps: 1_000 lr_schedule: step lr_schedule_steps: [40_000, 45_000] # this is not used, lr_schedule_steps will be determined by the number of iterations lr_schedule_gamma: 0.1 clip_grad_norm: 1.0 weight_decay: 1.0e-6 output_name: null # for eval use_meanflow: True use_repa: False