Spaces:
Runtime error
Runtime error
add "enable_queue = True"
Browse files
app.py
ADDED
|
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import re
|
| 3 |
+
|
| 4 |
+
from gradio.mix import Parallel
|
| 5 |
+
from transformers import (
|
| 6 |
+
AutoTokenizer,
|
| 7 |
+
AutoModelForSeq2SeqLM,
|
| 8 |
+
)
|
| 9 |
+
|
| 10 |
+
def clean_text(text):
|
| 11 |
+
text = text.encode("ascii", errors="ignore").decode(
|
| 12 |
+
"ascii"
|
| 13 |
+
) # remove non-ascii, Chinese characters
|
| 14 |
+
text = re.sub(r"\n", " ", text)
|
| 15 |
+
text = re.sub(r"\n\n", " ", text)
|
| 16 |
+
text = re.sub(r"\t", " ", text)
|
| 17 |
+
text = text.strip(" ")
|
| 18 |
+
text = re.sub(
|
| 19 |
+
" +", " ", text
|
| 20 |
+
).strip() # get rid of multiple spaces and replace with a single
|
| 21 |
+
return text
|
| 22 |
+
|
| 23 |
+
modchoice_1 = "chinhon/headline_writer"
|
| 24 |
+
|
| 25 |
+
def headline_writer1(text):
|
| 26 |
+
input_text = clean_text(text)
|
| 27 |
+
|
| 28 |
+
tokenizer_1 = AutoTokenizer.from_pretrained(modchoice_1)
|
| 29 |
+
|
| 30 |
+
model_1 = AutoModelForSeq2SeqLM.from_pretrained(modchoice_1)
|
| 31 |
+
|
| 32 |
+
with tokenizer_1.as_target_tokenizer():
|
| 33 |
+
batch = tokenizer_1(
|
| 34 |
+
input_text, truncation=True, padding="longest", return_tensors="pt"
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
translated = model_1.generate(**batch)
|
| 38 |
+
|
| 39 |
+
summary_1 = tokenizer_1.batch_decode(translated, skip_special_tokens=True)
|
| 40 |
+
|
| 41 |
+
return summary_1[0]
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
headline1 = gr.Interface(
|
| 45 |
+
fn=headline_writer1,
|
| 46 |
+
inputs=gr.inputs.Textbox(),
|
| 47 |
+
outputs=gr.outputs.Textbox(label=""),
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
modchoice_2 = "chinhon/pegasus-multi_news-headline"
|
| 52 |
+
|
| 53 |
+
def headline_writer2(text):
|
| 54 |
+
input_text = clean_text(text)
|
| 55 |
+
|
| 56 |
+
tokenizer_2 = AutoTokenizer.from_pretrained(modchoice_2)
|
| 57 |
+
|
| 58 |
+
model_2 = AutoModelForSeq2SeqLM.from_pretrained(modchoice_2)
|
| 59 |
+
|
| 60 |
+
with tokenizer_2.as_target_tokenizer():
|
| 61 |
+
batch = tokenizer_2(
|
| 62 |
+
input_text, truncation=True, padding="longest", return_tensors="pt"
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
+
translated = model_2.generate(**batch)
|
| 66 |
+
|
| 67 |
+
summary_2 = tokenizer_2.batch_decode(translated, skip_special_tokens=True)
|
| 68 |
+
|
| 69 |
+
return summary_2[0]
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
headline2 = gr.Interface(
|
| 73 |
+
fn=headline_writer2,
|
| 74 |
+
inputs=gr.inputs.Textbox(),
|
| 75 |
+
outputs=gr.outputs.Textbox(label=""),
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
modchoice_3 = "chinhon/pegasus-newsroom-headline_writer"
|
| 80 |
+
|
| 81 |
+
def headline_writer3(text):
|
| 82 |
+
input_text = clean_text(text)
|
| 83 |
+
|
| 84 |
+
tokenizer_3 = AutoTokenizer.from_pretrained(modchoice_3)
|
| 85 |
+
|
| 86 |
+
model_3 = AutoModelForSeq2SeqLM.from_pretrained(modchoice_3)
|
| 87 |
+
|
| 88 |
+
with tokenizer_3.as_target_tokenizer():
|
| 89 |
+
batch = tokenizer_3(
|
| 90 |
+
input_text, truncation=True, padding="longest", return_tensors="pt"
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
translated = model_3.generate(**batch)
|
| 94 |
+
|
| 95 |
+
summary_3 = tokenizer_3.batch_decode(
|
| 96 |
+
translated, skip_special_tokens=True, max_length=100
|
| 97 |
+
)
|
| 98 |
+
|
| 99 |
+
return summary_3[0]
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
headline3 = gr.Interface(
|
| 103 |
+
fn=headline_writer3,
|
| 104 |
+
inputs=gr.inputs.Textbox(),
|
| 105 |
+
outputs=gr.outputs.Textbox(label=""),
|
| 106 |
+
)
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
Parallel(
|
| 110 |
+
headline1,
|
| 111 |
+
headline2,
|
| 112 |
+
headline3,
|
| 113 |
+
title="AI Headlines Generator",
|
| 114 |
+
inputs=gr.inputs.Textbox(
|
| 115 |
+
lines=20,
|
| 116 |
+
label="Paste the first few paragraphs of your story here, and choose from 3 suggested headlines",
|
| 117 |
+
),
|
| 118 |
+
theme="darkhuggingface",
|
| 119 |
+
enable_queue = True
|
| 120 |
+
).launch()
|