Spaces:
No application file
No application file
| import os | |
| from typing import List, Union | |
| import datasets as ds | |
| import evaluate | |
| import numpy as np | |
| import numpy.typing as npt | |
| from PIL import Image | |
| _DESCRIPTION = r"""\ | |
| Computes the average pixel value of areas covered by elements in S. | |
| """ | |
| _KWARGS_DESCRIPTION = """\ | |
| FIXME | |
| """ | |
| _CITATION = """\ | |
| @inproceedings{hsu2023posterlayout, | |
| title={Posterlayout: A new benchmark and approach for content-aware visual-textual presentation layout}, | |
| author={Hsu, Hsiao Yuan and He, Xiangteng and Peng, Yuxin and Kong, Hao and Zhang, Qing}, | |
| booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, | |
| pages={6018--6026}, | |
| year={2023} | |
| } | |
| """ | |
| class LayoutOcculusion(evaluate.Metric): | |
| def __init__( | |
| self, | |
| canvas_width: int, | |
| canvas_height: int, | |
| **kwargs, | |
| ) -> None: | |
| super().__init__(**kwargs) | |
| self.canvas_width = canvas_width | |
| self.canvas_height = canvas_height | |
| def _info(self) -> evaluate.EvaluationModuleInfo: | |
| return evaluate.MetricInfo( | |
| description=_DESCRIPTION, | |
| citation=_CITATION, | |
| inputs_description=_KWARGS_DESCRIPTION, | |
| features=ds.Features( | |
| { | |
| "predictions": ds.Sequence(ds.Sequence(ds.Value("float64"))), | |
| "gold_labels": ds.Sequence(ds.Sequence(ds.Value("int64"))), | |
| "saliency_maps_1": ds.Sequence(ds.Value("string")), | |
| "saliency_maps_2": ds.Sequence(ds.Value("string")), | |
| } | |
| ), | |
| codebase_urls=[ | |
| "https://github.com/PKU-ICST-MIPL/PosterLayout-CVPR2023/blob/main/eval.py#L144-L171" | |
| ], | |
| ) | |
| def load_saliency_map( | |
| self, | |
| filepath: Union[os.PathLike, List[os.PathLike]], | |
| ) -> npt.NDArray[np.float64]: | |
| if isinstance(filepath, list): | |
| assert len(filepath) == 1, filepath | |
| filepath = filepath[0] | |
| map_pil = Image.open(filepath) # type: ignore | |
| map_pil = map_pil.convert("L") | |
| if map_pil.size != (self.canvas_width, self.canvas_height): | |
| map_pil = map_pil.resize((self.canvas_width, self.canvas_height)) | |
| map_arr = np.array(map_pil) | |
| map_arr = map_arr / 255.0 | |
| return map_arr | |
| def get_rid_of_invalid( | |
| self, predictions: npt.NDArray[np.float64], gold_labels: npt.NDArray[np.int64] | |
| ) -> npt.NDArray[np.int64]: | |
| assert len(predictions) == len(gold_labels) | |
| w = self.canvas_width / 100 | |
| h = self.canvas_height / 100 | |
| for i, prediction in enumerate(predictions): | |
| for j, b in enumerate(prediction): | |
| xl, yl, xr, yr = b | |
| xl = max(0, xl) | |
| yl = max(0, yl) | |
| xr = min(self.canvas_width, xr) | |
| yr = min(self.canvas_height, yr) | |
| if abs((xr - xl) * (yr - yl)) < w * h * 10: | |
| if gold_labels[i, j]: | |
| gold_labels[i, j] = 0 | |
| return gold_labels | |
| def _compute( | |
| self, | |
| *, | |
| predictions: Union[npt.NDArray[np.float64], List[List[float]]], | |
| gold_labels: Union[npt.NDArray[np.int64], List[int]], | |
| saliency_maps_1: List[os.PathLike], | |
| saliency_maps_2: List[os.PathLike], | |
| ) -> float: | |
| predictions = np.array(predictions) | |
| gold_labels = np.array(gold_labels) | |
| predictions[:, :, ::2] *= self.canvas_width | |
| predictions[:, :, 1::2] *= self.canvas_height | |
| gold_labels = self.get_rid_of_invalid( | |
| predictions=predictions, gold_labels=gold_labels | |
| ) | |
| score = 0.0 | |
| assert ( | |
| len(predictions) | |
| == len(gold_labels) | |
| == len(saliency_maps_1) | |
| == len(saliency_maps_2) | |
| ) | |
| num_predictions = len(predictions) | |
| it = zip(predictions, gold_labels, saliency_maps_1, saliency_maps_2) | |
| for prediction, gold_label, smap_1, smap_2 in it: | |
| smap_arr_1 = self.load_saliency_map(smap_1) | |
| smap_arr_2 = self.load_saliency_map(smap_2) | |
| smap_arr = np.maximum(smap_arr_1, smap_arr_2) | |
| cal_mask = np.zeros_like(smap_arr) | |
| prediction = np.array(prediction, dtype=int) | |
| gold_label = np.array(gold_label, dtype=int) | |
| mask = (gold_label > 0).reshape(-1) | |
| mask_prediction = prediction[mask] | |
| for mp in mask_prediction: | |
| xl, yl, xr, yr = mp | |
| cal_mask[yl:yr, xl:xr] = 1 | |
| total_area = np.sum(cal_mask) | |
| total_sal = np.sum(smap_arr[cal_mask == 1]) | |
| if total_sal and total_area: | |
| score += total_sal / total_area | |
| return score / num_predictions | |