File size: 10,558 Bytes
a00cee2
b96139a
a00cee2
56d3d8c
a00cee2
 
 
ac97430
a00cee2
 
 
b96139a
6114fec
b96139a
 
1129e66
b96139a
 
 
01c964f
 
56d3d8c
a00cee2
 
 
 
 
 
 
 
 
9c3732f
a00cee2
 
01c964f
 
 
 
 
9c3732f
b96139a
 
 
56d3d8c
b96139a
56d3d8c
a00cee2
56d3d8c
1129e66
56d3d8c
1129e66
b96139a
56d3d8c
b96139a
 
 
 
 
 
 
 
 
7719f9b
b96139a
 
 
a00cee2
01c964f
 
 
a00cee2
56d3d8c
a00cee2
01c964f
b96139a
 
 
 
 
 
 
a00cee2
01c964f
 
 
a00cee2
 
b96139a
 
01c964f
b96139a
 
 
 
01c964f
b96139a
 
 
01c964f
b96139a
01c964f
 
 
 
b96139a
01c964f
9c3732f
 
a00cee2
9c3732f
b96139a
 
a00cee2
b96139a
a00cee2
01c964f
a00cee2
 
 
 
 
 
 
 
 
 
a0a209b
a00cee2
 
 
01c964f
 
 
 
 
 
a00cee2
01c964f
 
 
 
a00cee2
 
01c964f
 
 
9c3732f
a00cee2
 
 
9c3732f
a0a209b
a00cee2
 
 
01c964f
a0a209b
 
 
 
 
a00cee2
a0a209b
 
 
 
 
 
a00cee2
a0a209b
a00cee2
9c3732f
a00cee2
01c964f
 
 
a00cee2
01c964f
 
 
a00cee2
 
01c964f
a00cee2
 
01c964f
 
a00cee2
 
 
 
 
 
 
 
 
01c964f
 
 
a00cee2
01c964f
 
 
 
 
 
 
 
 
a00cee2
56d3d8c
 
7719f9b
56d3d8c
 
 
7719f9b
56d3d8c
 
 
a00cee2
56d3d8c
9c3732f
a00cee2
 
56d3d8c
 
 
 
ebe59f5
56d3d8c
b96139a
 
9c3732f
b96139a
 
 
9c3732f
 
 
 
 
a00cee2
b96139a
 
 
a00cee2
b96139a
56d3d8c
9c3732f
b96139a
 
 
56d3d8c
9c3732f
 
 
 
 
 
 
 
 
 
a00cee2
9c3732f
b96139a
ebe59f5
a00cee2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import io
import numpy as np
import soundfile as sf
import time
import traceback
import threading
import queue
import torch
from groq import Groq
from typing import Optional, Dict, Any, Callable
from config.settings import settings

class SileroVAD:
    def __init__(self):
        self.model = None
        self.sample_rate = 16000
        self.is_streaming = False
        self.speech_callback = None
        self.audio_buffer = []
        self.speech_buffer = []
        self.state = "silence"
        self.speech_start_time = 0
        self.last_voice_time = 0
        
        # Cấu hình tối ưu
        self.chunk_size = 512
        self.speech_threshold = settings.VAD_THRESHOLD
        self.min_speech_duration = settings.VAD_MIN_SPEECH_DURATION
        self.min_silence_duration = settings.VAD_MIN_SILENCE_DURATION
        self.speech_pad_duration = settings.VAD_SPEECH_PAD_DURATION
        self.pre_speech_buffer = settings.VAD_PRE_SPEECH_BUFFER
        
        # Buffer cho pre-speech
        self.pre_speech_samples = int(self.pre_speech_buffer * self.sample_rate)
        self.pre_speech_buffer_data = []
        
        # Double buffer system để tránh mất dữ liệu
        self.active_speech_buffer = []
        self.backup_speech_buffer = []
        
        self._initialize_model()

    def _initialize_model(self):
        """Khởi tạo Silero VAD model"""
        try:
            print("🔄 Đang tải Silero VAD model...")
            self.model, utils = torch.hub.load(
                repo_or_dir='snakers4/silero-vad',
                model='silero_vad',
                force_reload=False,
                trust_repo=True
            )
            self.model.eval()
            print("✅ Đã tải Silero VAD model thành công")
        except Exception as e:
            print(f"❌ Lỗi tải Silero VAD model: {e}")
            self.model = None

    def start_stream(self, speech_callback: Callable):
        """Bắt đầu stream với VAD"""
        if self.model is None:
            return False

        self.is_streaming = True
        self.speech_callback = speech_callback
        self.audio_buffer = []
        self.speech_buffer = []
        self.pre_speech_buffer_data = []
        self.active_speech_buffer = []
        self.backup_speech_buffer = []
        self.state = "silence"
        self.speech_start_time = 0
        self.last_voice_time = 0
        print("🎙️ Bắt đầu VAD streaming với double buffer system...")
        return True

    def stop_stream(self):
        """Dừng stream"""
        self.is_streaming = False
        self.speech_callback = None
        self.audio_buffer = []
        self.speech_buffer = []
        self.pre_speech_buffer_data = []
        self.active_speech_buffer = []
        self.backup_speech_buffer = []
        self.state = "silence"
        print("🛑 Đã dừng VAD streaming")

    def process_stream(self, audio_chunk: np.ndarray, sample_rate: int):
        """Xử lý audio chunk với VAD và double buffer"""
        if not self.is_streaming or self.model is None:
            return

        try:
            # Resample nếu cần
            if sample_rate != self.sample_rate:
                audio_chunk = self._resample_audio(audio_chunk, sample_rate, self.sample_rate)

            # Thêm vào audio buffer
            self.audio_buffer.extend(audio_chunk)
            
            # Đồng thời thêm vào backup buffer để tránh mất dữ liệu
            if self.state == "speech":
                self.backup_speech_buffer.extend(audio_chunk)

            # Xử lý VAD theo chunks
            while len(self.audio_buffer) >= self.chunk_size:
                chunk = self.audio_buffer[:self.chunk_size]
                self._process_vad_chunk(np.array(chunk))
                self.audio_buffer = self.audio_buffer[self.chunk_size:]

        except Exception as e:
            print(f"❌ Lỗi xử lý VAD: {e}")

    def _process_vad_chunk(self, audio_chunk: np.ndarray):
        """Xử lý VAD cho một chunk với double buffer"""
        current_time = time.time()
        
        # Chuẩn hóa audio
        audio_chunk = self._normalize_audio(audio_chunk)
        
        # Lấy xác suất speech
        speech_prob = self._get_speech_probability(audio_chunk)
        
        if self.state == "silence":
            if speech_prob > self.speech_threshold:
                print("🎤 Bắt đầu phát hiện speech")
                self.state = "speech"
                self.speech_start_time = current_time
                self.last_voice_time = current_time
                
                # Khởi tạo cả active và backup buffer
                self.active_speech_buffer = self.pre_speech_buffer_data.copy()
                self.active_speech_buffer.extend(audio_chunk)
                self.backup_speech_buffer = self.active_speech_buffer.copy()
                
            else:
                # Lưu pre-speech buffer
                self.pre_speech_buffer_data.extend(audio_chunk)
                if len(self.pre_speech_buffer_data) > self.pre_speech_samples:
                    self.pre_speech_buffer_data = self.pre_speech_buffer_data[-self.pre_speech_samples:]
                
        elif self.state == "speech":
            # Thêm vào cả hai buffers
            self.active_speech_buffer.extend(audio_chunk)
            self.backup_speech_buffer.extend(audio_chunk)
            
            # Cập nhật thời gian voice cuối cùng
            if speech_prob > self.speech_threshold:
                self.last_voice_time = current_time
            
            # Tính toán thời gian
            silence_duration = current_time - self.last_voice_time
            speech_duration = current_time - self.speech_start_time
            
            # Logic kết thúc thông minh
            is_short_response = speech_duration < self.min_speech_duration
            is_long_silence_after_short = silence_duration >= self.min_silence_duration
            
            if is_short_response and is_long_silence_after_short:
                print(f"🎯 Phát hiện phản hồi ngắn: {speech_duration:.2f}s, im lặng: {silence_duration:.2f}s")
                self._finalize_speech()
                
            elif (speech_duration >= self.min_speech_duration and 
                  silence_duration >= self.min_silence_duration):
                print(f"🎯 Kết thúc speech dài: {speech_duration:.2f}s")
                self._finalize_speech()
                
            elif speech_duration > settings.MAX_AUDIO_DURATION:
                print(f"⏰ Speech timeout ({speech_duration:.2f}s) - xử lý dù đang nói")
                self._finalize_speech()
                
        elif self.state == "processing":
            # Trong khi đang xử lý, vẫn tiếp tục ghi vào backup buffer
            self.backup_speech_buffer.extend(audio_chunk)

    def _finalize_speech(self):
        """Hoàn thành xử lý speech segment với buffer switching"""
        if not self.active_speech_buffer:
            self._reset_buffers()
            return
            
        # Chuyển sang state processing
        self.state = "processing"
        
        # Sử dụng active buffer cho xử lý hiện tại
        speech_audio = np.array(self.active_speech_buffer, dtype=np.float32)
        
        # Gọi callback trong thread riêng
        if self.speech_callback:
            threading.Thread(
                target=self.speech_callback,
                args=(speech_audio, self.sample_rate),
                daemon=True
            ).start()
        
        # Chuẩn bị cho lần tiếp theo: chuyển backup buffer thành active buffer
        self.active_speech_buffer = self.backup_speech_buffer.copy()
        self.backup_speech_buffer = []
        
        # Quay lại state speech để tiếp tục nhận dữ liệu
        self.state = "speech"
        self.last_voice_time = time.time()

    def _reset_buffers(self):
        """Reset tất cả buffers"""
        self.active_speech_buffer = []
        self.backup_speech_buffer = []
        self.audio_buffer = []
        self.state = "silence"

    def _normalize_audio(self, audio: np.ndarray) -> np.ndarray:
        """Chuẩn hóa audio"""
        if audio.dtype != np.float32:
            audio = audio.astype(np.float32)
            if np.max(np.abs(audio)) > 1.0:
                audio = audio / 32768.0
        return np.clip(audio, -1.0, 1.0)

    def _get_speech_probability(self, audio_chunk: np.ndarray) -> float:
        """Lấy xác suất speech"""
        try:
            if len(audio_chunk) != self.chunk_size:
                return 0.0
                
            audio_tensor = torch.from_numpy(audio_chunk).float().unsqueeze(0)
            with torch.no_grad():
                return self.model(audio_tensor, self.sample_rate).item()
        except Exception as e:
            print(f" Lỗi speech probability: {e}")
            return 0.0

    def _resample_audio(self, audio: np.ndarray, orig_sr: int, target_sr: int) -> np.ndarray:
        """Resample audio"""
        if orig_sr == target_sr:
            return audio
        try:
            from scipy import signal
            duration = len(audio) / orig_sr
            new_length = int(duration * target_sr)
            resampled_audio = signal.resample(audio, new_length)
            return resampled_audio.astype(np.float32)
        except Exception:
            return audio

    def is_speech(self, audio_chunk: np.ndarray, sample_rate: int) -> bool:
        """Kiểm tra speech (cho compatibility)"""
        if self.model is None:
            return True
            
        try:
            if sample_rate != self.sample_rate:
                audio_chunk = self._resample_audio(audio_chunk, sample_rate, self.sample_rate)
            audio_chunk = self._normalize_audio(audio_chunk)
            
            chunk_size = 512
            speech_probs = []
            
            for i in range(0, len(audio_chunk), chunk_size):
                chunk = audio_chunk[i:i+chunk_size]
                if len(chunk) == chunk_size:
                    prob = self._get_speech_probability(chunk)
                    speech_probs.append(prob)
            
            return np.mean(speech_probs) > self.speech_threshold if speech_probs else False
            
        except Exception as e:
            print(f" Lỗi kiểm tra speech: {e}")
            return True