File size: 10,558 Bytes
a00cee2 b96139a a00cee2 56d3d8c a00cee2 ac97430 a00cee2 b96139a 6114fec b96139a 1129e66 b96139a 01c964f 56d3d8c a00cee2 9c3732f a00cee2 01c964f 9c3732f b96139a 56d3d8c b96139a 56d3d8c a00cee2 56d3d8c 1129e66 56d3d8c 1129e66 b96139a 56d3d8c b96139a 7719f9b b96139a a00cee2 01c964f a00cee2 56d3d8c a00cee2 01c964f b96139a a00cee2 01c964f a00cee2 b96139a 01c964f b96139a 01c964f b96139a 01c964f b96139a 01c964f b96139a 01c964f 9c3732f a00cee2 9c3732f b96139a a00cee2 b96139a a00cee2 01c964f a00cee2 a0a209b a00cee2 01c964f a00cee2 01c964f a00cee2 01c964f 9c3732f a00cee2 9c3732f a0a209b a00cee2 01c964f a0a209b a00cee2 a0a209b a00cee2 a0a209b a00cee2 9c3732f a00cee2 01c964f a00cee2 01c964f a00cee2 01c964f a00cee2 01c964f a00cee2 01c964f a00cee2 01c964f a00cee2 56d3d8c 7719f9b 56d3d8c 7719f9b 56d3d8c a00cee2 56d3d8c 9c3732f a00cee2 56d3d8c ebe59f5 56d3d8c b96139a 9c3732f b96139a 9c3732f a00cee2 b96139a a00cee2 b96139a 56d3d8c 9c3732f b96139a 56d3d8c 9c3732f a00cee2 9c3732f b96139a ebe59f5 a00cee2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
import io
import numpy as np
import soundfile as sf
import time
import traceback
import threading
import queue
import torch
from groq import Groq
from typing import Optional, Dict, Any, Callable
from config.settings import settings
class SileroVAD:
def __init__(self):
self.model = None
self.sample_rate = 16000
self.is_streaming = False
self.speech_callback = None
self.audio_buffer = []
self.speech_buffer = []
self.state = "silence"
self.speech_start_time = 0
self.last_voice_time = 0
# Cấu hình tối ưu
self.chunk_size = 512
self.speech_threshold = settings.VAD_THRESHOLD
self.min_speech_duration = settings.VAD_MIN_SPEECH_DURATION
self.min_silence_duration = settings.VAD_MIN_SILENCE_DURATION
self.speech_pad_duration = settings.VAD_SPEECH_PAD_DURATION
self.pre_speech_buffer = settings.VAD_PRE_SPEECH_BUFFER
# Buffer cho pre-speech
self.pre_speech_samples = int(self.pre_speech_buffer * self.sample_rate)
self.pre_speech_buffer_data = []
# Double buffer system để tránh mất dữ liệu
self.active_speech_buffer = []
self.backup_speech_buffer = []
self._initialize_model()
def _initialize_model(self):
"""Khởi tạo Silero VAD model"""
try:
print("🔄 Đang tải Silero VAD model...")
self.model, utils = torch.hub.load(
repo_or_dir='snakers4/silero-vad',
model='silero_vad',
force_reload=False,
trust_repo=True
)
self.model.eval()
print("✅ Đã tải Silero VAD model thành công")
except Exception as e:
print(f"❌ Lỗi tải Silero VAD model: {e}")
self.model = None
def start_stream(self, speech_callback: Callable):
"""Bắt đầu stream với VAD"""
if self.model is None:
return False
self.is_streaming = True
self.speech_callback = speech_callback
self.audio_buffer = []
self.speech_buffer = []
self.pre_speech_buffer_data = []
self.active_speech_buffer = []
self.backup_speech_buffer = []
self.state = "silence"
self.speech_start_time = 0
self.last_voice_time = 0
print("🎙️ Bắt đầu VAD streaming với double buffer system...")
return True
def stop_stream(self):
"""Dừng stream"""
self.is_streaming = False
self.speech_callback = None
self.audio_buffer = []
self.speech_buffer = []
self.pre_speech_buffer_data = []
self.active_speech_buffer = []
self.backup_speech_buffer = []
self.state = "silence"
print("🛑 Đã dừng VAD streaming")
def process_stream(self, audio_chunk: np.ndarray, sample_rate: int):
"""Xử lý audio chunk với VAD và double buffer"""
if not self.is_streaming or self.model is None:
return
try:
# Resample nếu cần
if sample_rate != self.sample_rate:
audio_chunk = self._resample_audio(audio_chunk, sample_rate, self.sample_rate)
# Thêm vào audio buffer
self.audio_buffer.extend(audio_chunk)
# Đồng thời thêm vào backup buffer để tránh mất dữ liệu
if self.state == "speech":
self.backup_speech_buffer.extend(audio_chunk)
# Xử lý VAD theo chunks
while len(self.audio_buffer) >= self.chunk_size:
chunk = self.audio_buffer[:self.chunk_size]
self._process_vad_chunk(np.array(chunk))
self.audio_buffer = self.audio_buffer[self.chunk_size:]
except Exception as e:
print(f"❌ Lỗi xử lý VAD: {e}")
def _process_vad_chunk(self, audio_chunk: np.ndarray):
"""Xử lý VAD cho một chunk với double buffer"""
current_time = time.time()
# Chuẩn hóa audio
audio_chunk = self._normalize_audio(audio_chunk)
# Lấy xác suất speech
speech_prob = self._get_speech_probability(audio_chunk)
if self.state == "silence":
if speech_prob > self.speech_threshold:
print("🎤 Bắt đầu phát hiện speech")
self.state = "speech"
self.speech_start_time = current_time
self.last_voice_time = current_time
# Khởi tạo cả active và backup buffer
self.active_speech_buffer = self.pre_speech_buffer_data.copy()
self.active_speech_buffer.extend(audio_chunk)
self.backup_speech_buffer = self.active_speech_buffer.copy()
else:
# Lưu pre-speech buffer
self.pre_speech_buffer_data.extend(audio_chunk)
if len(self.pre_speech_buffer_data) > self.pre_speech_samples:
self.pre_speech_buffer_data = self.pre_speech_buffer_data[-self.pre_speech_samples:]
elif self.state == "speech":
# Thêm vào cả hai buffers
self.active_speech_buffer.extend(audio_chunk)
self.backup_speech_buffer.extend(audio_chunk)
# Cập nhật thời gian voice cuối cùng
if speech_prob > self.speech_threshold:
self.last_voice_time = current_time
# Tính toán thời gian
silence_duration = current_time - self.last_voice_time
speech_duration = current_time - self.speech_start_time
# Logic kết thúc thông minh
is_short_response = speech_duration < self.min_speech_duration
is_long_silence_after_short = silence_duration >= self.min_silence_duration
if is_short_response and is_long_silence_after_short:
print(f"🎯 Phát hiện phản hồi ngắn: {speech_duration:.2f}s, im lặng: {silence_duration:.2f}s")
self._finalize_speech()
elif (speech_duration >= self.min_speech_duration and
silence_duration >= self.min_silence_duration):
print(f"🎯 Kết thúc speech dài: {speech_duration:.2f}s")
self._finalize_speech()
elif speech_duration > settings.MAX_AUDIO_DURATION:
print(f"⏰ Speech timeout ({speech_duration:.2f}s) - xử lý dù đang nói")
self._finalize_speech()
elif self.state == "processing":
# Trong khi đang xử lý, vẫn tiếp tục ghi vào backup buffer
self.backup_speech_buffer.extend(audio_chunk)
def _finalize_speech(self):
"""Hoàn thành xử lý speech segment với buffer switching"""
if not self.active_speech_buffer:
self._reset_buffers()
return
# Chuyển sang state processing
self.state = "processing"
# Sử dụng active buffer cho xử lý hiện tại
speech_audio = np.array(self.active_speech_buffer, dtype=np.float32)
# Gọi callback trong thread riêng
if self.speech_callback:
threading.Thread(
target=self.speech_callback,
args=(speech_audio, self.sample_rate),
daemon=True
).start()
# Chuẩn bị cho lần tiếp theo: chuyển backup buffer thành active buffer
self.active_speech_buffer = self.backup_speech_buffer.copy()
self.backup_speech_buffer = []
# Quay lại state speech để tiếp tục nhận dữ liệu
self.state = "speech"
self.last_voice_time = time.time()
def _reset_buffers(self):
"""Reset tất cả buffers"""
self.active_speech_buffer = []
self.backup_speech_buffer = []
self.audio_buffer = []
self.state = "silence"
def _normalize_audio(self, audio: np.ndarray) -> np.ndarray:
"""Chuẩn hóa audio"""
if audio.dtype != np.float32:
audio = audio.astype(np.float32)
if np.max(np.abs(audio)) > 1.0:
audio = audio / 32768.0
return np.clip(audio, -1.0, 1.0)
def _get_speech_probability(self, audio_chunk: np.ndarray) -> float:
"""Lấy xác suất speech"""
try:
if len(audio_chunk) != self.chunk_size:
return 0.0
audio_tensor = torch.from_numpy(audio_chunk).float().unsqueeze(0)
with torch.no_grad():
return self.model(audio_tensor, self.sample_rate).item()
except Exception as e:
print(f" Lỗi speech probability: {e}")
return 0.0
def _resample_audio(self, audio: np.ndarray, orig_sr: int, target_sr: int) -> np.ndarray:
"""Resample audio"""
if orig_sr == target_sr:
return audio
try:
from scipy import signal
duration = len(audio) / orig_sr
new_length = int(duration * target_sr)
resampled_audio = signal.resample(audio, new_length)
return resampled_audio.astype(np.float32)
except Exception:
return audio
def is_speech(self, audio_chunk: np.ndarray, sample_rate: int) -> bool:
"""Kiểm tra speech (cho compatibility)"""
if self.model is None:
return True
try:
if sample_rate != self.sample_rate:
audio_chunk = self._resample_audio(audio_chunk, sample_rate, self.sample_rate)
audio_chunk = self._normalize_audio(audio_chunk)
chunk_size = 512
speech_probs = []
for i in range(0, len(audio_chunk), chunk_size):
chunk = audio_chunk[i:i+chunk_size]
if len(chunk) == chunk_size:
prob = self._get_speech_probability(chunk)
speech_probs.append(prob)
return np.mean(speech_probs) > self.speech_threshold if speech_probs else False
except Exception as e:
print(f" Lỗi kiểm tra speech: {e}")
return True |