Create speechbrain_vad.py
Browse files- core/speechbrain_vad.py +125 -132
core/speechbrain_vad.py
CHANGED
|
@@ -1,154 +1,147 @@
|
|
| 1 |
import torch
|
| 2 |
import torchaudio
|
| 3 |
import numpy as np
|
| 4 |
-
from
|
| 5 |
-
from typing import List, Tuple, Optional
|
| 6 |
-
import queue
|
| 7 |
-
import threading
|
| 8 |
-
import time
|
| 9 |
from config.settings import settings
|
| 10 |
|
| 11 |
class SpeechBrainVAD:
|
| 12 |
def __init__(self):
|
| 13 |
-
self.
|
| 14 |
self.sample_rate = settings.SAMPLE_RATE
|
| 15 |
-
self.
|
| 16 |
-
self.
|
| 17 |
-
self.
|
| 18 |
-
self.is_running = False
|
| 19 |
-
self.audio_queue = queue.Queue()
|
| 20 |
-
self.speech_buffer = []
|
| 21 |
-
self.silence_start_time = None
|
| 22 |
-
self.callback = None
|
| 23 |
-
|
| 24 |
self._initialize_model()
|
| 25 |
-
|
| 26 |
def _initialize_model(self):
|
| 27 |
-
"""Khởi tạo
|
| 28 |
try:
|
| 29 |
-
|
| 30 |
-
|
|
|
|
| 31 |
source=settings.VAD_MODEL,
|
| 32 |
-
savedir=f"
|
| 33 |
)
|
| 34 |
-
print("✅ Đã tải
|
| 35 |
except Exception as e:
|
| 36 |
-
print(f"❌ Lỗi tải
|
| 37 |
-
self.
|
| 38 |
-
|
| 39 |
-
def
|
| 40 |
-
"""
|
| 41 |
-
if
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
)
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
|
| 66 |
try:
|
| 67 |
-
|
| 68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
except Exception as e:
|
| 77 |
-
print(f"❌ Lỗi
|
| 78 |
-
return
|
| 79 |
-
|
| 80 |
-
def _energy_based_vad(self, audio_chunk: np.ndarray) -> bool:
|
| 81 |
-
"""Fallback VAD dựa trên năng lượng âm thanh"""
|
| 82 |
-
energy = np.mean(audio_chunk ** 2)
|
| 83 |
-
return energy > 0.01 # Simple threshold
|
| 84 |
-
|
| 85 |
-
def process_stream(self, audio_chunk: np.ndarray, original_sr: int):
|
| 86 |
-
"""Xử lý audio stream real-time"""
|
| 87 |
-
if not self.is_running:
|
| 88 |
-
return
|
| 89 |
-
|
| 90 |
-
# Preprocess audio
|
| 91 |
-
processed_audio = self.preprocess_audio(audio_chunk, original_sr)
|
| 92 |
-
|
| 93 |
-
# Detect voice activity
|
| 94 |
-
is_speech = self.detect_voice_activity(processed_audio)
|
| 95 |
-
|
| 96 |
-
if is_speech:
|
| 97 |
-
self.silence_start_time = None
|
| 98 |
-
self.speech_buffer.extend(processed_audio)
|
| 99 |
-
print("🎤 Đang nói...")
|
| 100 |
-
else:
|
| 101 |
-
# Silence detected
|
| 102 |
-
if self.silence_start_time is None:
|
| 103 |
-
self.silence_start_time = time.time()
|
| 104 |
-
elif len(self.speech_buffer) > 0:
|
| 105 |
-
silence_duration = time.time() - self.silence_start_time
|
| 106 |
-
if silence_duration >= self.min_silence_duration:
|
| 107 |
-
# End of speech segment
|
| 108 |
-
self._process_speech_segment()
|
| 109 |
-
|
| 110 |
-
return is_speech
|
| 111 |
-
|
| 112 |
-
def _process_speech_segment(self):
|
| 113 |
-
"""Xử lý segment giọng nói khi kết thúc"""
|
| 114 |
-
if len(self.speech_buffer) == 0:
|
| 115 |
-
return
|
| 116 |
-
|
| 117 |
-
# Convert buffer to numpy array
|
| 118 |
-
speech_audio = np.array(self.speech_buffer)
|
| 119 |
-
|
| 120 |
-
# Call callback with speech segment
|
| 121 |
-
if self.callback and callable(self.callback):
|
| 122 |
-
self.callback(speech_audio, self.sample_rate)
|
| 123 |
-
|
| 124 |
-
# Clear buffer
|
| 125 |
-
self.speech_buffer = []
|
| 126 |
-
self.silence_start_time = None
|
| 127 |
-
|
| 128 |
-
print("✅ Đã xử lý segment giọng nói")
|
| 129 |
-
|
| 130 |
-
def start_stream(self, callback: callable):
|
| 131 |
-
"""Bắt đầu xử lý stream"""
|
| 132 |
-
self.is_running = True
|
| 133 |
-
self.callback = callback
|
| 134 |
-
self.speech_buffer = []
|
| 135 |
-
self.silence_start_time = None
|
| 136 |
-
print("🎙️ Bắt đầu stream VAD...")
|
| 137 |
-
|
| 138 |
-
def stop_stream(self):
|
| 139 |
-
"""Dừng xử lý stream"""
|
| 140 |
-
self.is_running = False
|
| 141 |
-
# Process any remaining speech
|
| 142 |
-
if len(self.speech_buffer) > 0:
|
| 143 |
-
self._process_speech_segment()
|
| 144 |
-
print("🛑 Đã dừng stream VAD")
|
| 145 |
-
|
| 146 |
-
def get_audio_chunk_from_stream(self, stream, chunk_size: int = 1024):
|
| 147 |
-
"""Lấy audio chunk từ stream (for microphone input)"""
|
| 148 |
-
try:
|
| 149 |
-
data = stream.read(chunk_size, exception_on_overflow=False)
|
| 150 |
-
audio_data = np.frombuffer(data, dtype=np.int16)
|
| 151 |
-
return audio_data.astype(np.float32) / 32768.0 # Normalize to [-1, 1]
|
| 152 |
-
except Exception as e:
|
| 153 |
-
print(f"❌ Lỗi đọc audio stream: {e}")
|
| 154 |
-
return None
|
|
|
|
| 1 |
import torch
|
| 2 |
import torchaudio
|
| 3 |
import numpy as np
|
| 4 |
+
from typing import Optional, Callable
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
from config.settings import settings
|
| 6 |
|
| 7 |
class SpeechBrainVAD:
|
| 8 |
def __init__(self):
|
| 9 |
+
self.model = None
|
| 10 |
self.sample_rate = settings.SAMPLE_RATE
|
| 11 |
+
self.is_streaming = False
|
| 12 |
+
self.speech_callback = None
|
| 13 |
+
self.audio_buffer = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
self._initialize_model()
|
| 15 |
+
|
| 16 |
def _initialize_model(self):
|
| 17 |
+
"""Khởi tạo VAD model từ SpeechBrain"""
|
| 18 |
try:
|
| 19 |
+
from speechbrain.pretrained import VAD
|
| 20 |
+
print("🔄 Đang tải VAD model từ SpeechBrain...")
|
| 21 |
+
self.model = VAD.from_hparams(
|
| 22 |
source=settings.VAD_MODEL,
|
| 23 |
+
savedir=f"/tmp/{settings.VAD_MODEL.replace('/', '_')}"
|
| 24 |
)
|
| 25 |
+
print("✅ Đã tải VAD model thành công")
|
| 26 |
except Exception as e:
|
| 27 |
+
print(f"❌ Lỗi tải VAD model: {e}")
|
| 28 |
+
self.model = None
|
| 29 |
+
|
| 30 |
+
def start_stream(self, speech_callback: Callable):
|
| 31 |
+
"""Bắt đầu stream với VAD"""
|
| 32 |
+
if self.model is None:
|
| 33 |
+
print("❌ VAD model chưa được khởi tạo")
|
| 34 |
+
return False
|
| 35 |
+
|
| 36 |
+
self.is_streaming = True
|
| 37 |
+
self.speech_callback = speech_callback
|
| 38 |
+
self.audio_buffer = []
|
| 39 |
+
print("🎙️ Bắt đầu VAD streaming...")
|
| 40 |
+
return True
|
| 41 |
+
|
| 42 |
+
def stop_stream(self):
|
| 43 |
+
"""Dừng stream"""
|
| 44 |
+
self.is_streaming = False
|
| 45 |
+
self.speech_callback = None
|
| 46 |
+
self.audio_buffer = []
|
| 47 |
+
print("🛑 Đã dừng VAD streaming")
|
| 48 |
+
|
| 49 |
+
def process_stream(self, audio_chunk: np.ndarray, sample_rate: int):
|
| 50 |
+
"""Xử lý audio chunk với VAD"""
|
| 51 |
+
if not self.is_streaming or self.model is None:
|
| 52 |
+
return
|
| 53 |
+
|
| 54 |
+
try:
|
| 55 |
+
# Resample nếu cần
|
| 56 |
+
if sample_rate != self.sample_rate:
|
| 57 |
+
audio_chunk = self._resample_audio(audio_chunk, sample_rate, self.sample_rate)
|
| 58 |
+
|
| 59 |
+
# Thêm vào buffer
|
| 60 |
+
self.audio_buffer.extend(audio_chunk)
|
| 61 |
+
|
| 62 |
+
# Xử lý khi buffer đủ lớn (2 giây)
|
| 63 |
+
buffer_duration = len(self.audio_buffer) / self.sample_rate
|
| 64 |
+
if buffer_duration >= 2.0:
|
| 65 |
+
self._process_buffer()
|
| 66 |
+
|
| 67 |
+
except Exception as e:
|
| 68 |
+
print(f"❌ Lỗi xử lý VAD: {e}")
|
| 69 |
+
|
| 70 |
+
def _process_buffer(self):
|
| 71 |
+
"""Xử lý buffer audio với VAD"""
|
| 72 |
+
try:
|
| 73 |
+
# Chuyển buffer thành tensor
|
| 74 |
+
audio_tensor = torch.FloatTensor(self.audio_buffer).unsqueeze(0)
|
| 75 |
|
| 76 |
+
# Phát hiện speech với VAD
|
| 77 |
+
boundaries = self.model.get_speech_segments(
|
| 78 |
+
audio_tensor,
|
| 79 |
+
# Điều chỉnh parameters để nhạy hơn
|
| 80 |
+
threshold=settings.VAD_THRESHOLD - 0.1, # Giảm threshold
|
| 81 |
+
min_silence_duration=settings.VAD_MIN_SILENCE_DURATION + 0.3, # Tăng silence duration
|
| 82 |
+
speech_pad_duration=settings.VAD_SPEECH_PAD_DURATION
|
| 83 |
)
|
| 84 |
+
|
| 85 |
+
# Xử lý speech segments
|
| 86 |
+
if len(boundaries) > 0:
|
| 87 |
+
for start, end in boundaries:
|
| 88 |
+
start_sample = int(start * self.sample_rate)
|
| 89 |
+
end_sample = int(end * self.sample_rate)
|
| 90 |
+
|
| 91 |
+
# Trích xuất speech segment
|
| 92 |
+
speech_audio = np.array(self.audio_buffer[start_sample:end_sample])
|
| 93 |
+
|
| 94 |
+
if len(speech_audio) > self.sample_rate * 0.5: # Ít nhất 0.5 giây
|
| 95 |
+
print(f"🎯 VAD phát hiện speech: {len(speech_audio)/self.sample_rate:.2f}s")
|
| 96 |
+
|
| 97 |
+
# Gọi callback với speech segment
|
| 98 |
+
if self.speech_callback:
|
| 99 |
+
self.speech_callback(speech_audio, self.sample_rate)
|
| 100 |
+
|
| 101 |
+
# Giữ lại 0.5 giây cuối để overlap
|
| 102 |
+
keep_samples = int(self.sample_rate * 0.5)
|
| 103 |
+
if len(self.audio_buffer) > keep_samples:
|
| 104 |
+
self.audio_buffer = self.audio_buffer[-keep_samples:]
|
| 105 |
+
else:
|
| 106 |
+
self.audio_buffer = []
|
| 107 |
+
|
| 108 |
+
except Exception as e:
|
| 109 |
+
print(f"❌ Lỗi xử lý VAD buffer: {e}")
|
| 110 |
+
self.audio_buffer = []
|
| 111 |
+
|
| 112 |
+
def _resample_audio(self, audio: np.ndarray, orig_sr: int, target_sr: int) -> np.ndarray:
|
| 113 |
+
"""Resample audio nếu cần"""
|
| 114 |
+
if orig_sr == target_sr:
|
| 115 |
+
return audio
|
| 116 |
|
| 117 |
try:
|
| 118 |
+
audio_tensor = torch.FloatTensor(audio).unsqueeze(0)
|
| 119 |
+
resampler = torchaudio.transforms.Resample(orig_sr, target_sr)
|
| 120 |
+
resampled = resampler(audio_tensor)
|
| 121 |
+
return resampled.squeeze(0).numpy()
|
| 122 |
+
except Exception as e:
|
| 123 |
+
print(f"⚠️ Lỗi resample: {e}")
|
| 124 |
+
return audio
|
| 125 |
+
|
| 126 |
+
def is_speech(self, audio_chunk: np.ndarray, sample_rate: int) -> bool:
|
| 127 |
+
"""Kiểm tra xem audio chunk có phải là speech không"""
|
| 128 |
+
if self.model is None:
|
| 129 |
+
return True # Fallback: luôn coi là speech
|
| 130 |
|
| 131 |
+
try:
|
| 132 |
+
# Resample nếu cần
|
| 133 |
+
if sample_rate != self.sample_rate:
|
| 134 |
+
audio_chunk = self._resample_audio(audio_chunk, sample_rate, self.sample_rate)
|
| 135 |
+
|
| 136 |
+
# Chuyển thành tensor
|
| 137 |
+
audio_tensor = torch.FloatTensor(audio_chunk).unsqueeze(0)
|
| 138 |
|
| 139 |
+
# Phát hiện speech
|
| 140 |
+
prob_speech = self.model.get_speech_prob_chunk(audio_tensor)
|
| 141 |
+
|
| 142 |
+
# Kiểm tra ngưỡng
|
| 143 |
+
return prob_speech.mean().item() > (settings.VAD_THRESHOLD - 0.1)
|
| 144 |
|
| 145 |
except Exception as e:
|
| 146 |
+
print(f"❌ Lỗi kiểm tra speech: {e}")
|
| 147 |
+
return True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|