dhani10's picture
Update app.py
371fb7c verified
# # Import necessary libraries
# import numpy as np
# import joblib # For loading the serialized model
# import pandas as pd # For data manipulation
# from flask import Flask, request, jsonify # For creating the Flask API
# # Initialize the Flask application
# superkart_sales_api = Flask("SuperKart Sales Predictor")
# # Load the trained machine learning model
# model = joblib.load("superkart_sales_prediction_model_v1_0.joblib")
# # Define a route for the home page (GET request)
# @superkart_sales_api.get('/')
# def home():
# return "Welcome to the SuperKart Sales Prediction API!"
# # Define an endpoint for single product prediction (POST request)
# @superkart_sales_api.post('/v1/sales')
# def predict_sales():
# product_data = request.get_json()
# sample = {
# 'Product_Weight': product_data['Product_Weight'],
# 'Product_Sugar_Content': product_data['Product_Sugar_Content'],
# 'Product_Allocated_Area': product_data['Product_Allocated_Area'],
# 'Product_Type': product_data['Product_Type'],
# 'Product_MRP': product_data['Product_MRP'],
# 'Store_Establishment_Year': product_data['Store_Establishment_Year'],
# 'Store_Size': product_data['Store_Size'],
# 'Store_Location_City_Type': product_data['Store_Location_City_Type'],
# 'Store_Type': product_data['Store_Type']
# }
# input_data = pd.DataFrame([sample])
# predicted_sales = model.predict(input_data)[0]
# return jsonify({'Predicted Sales (in INR)': round(float(predicted_sales), 2)})
# # Define an endpoint for batch prediction (POST request)
# @superkart_sales_api.post('/v1/salesbatch')
# def predict_sales_batch():
# file = request.files['file']
# input_data = pd.read_csv(file)
# predicted_sales = model.predict(input_data).tolist()
# product_ids = input_data['Product_Id'].tolist() # Assuming 'Product_Id' column exists
# output_dict = dict(zip(product_ids, [round(float(p), 2) for p in predicted_sales]))
# return jsonify(output_dict)
# # Run the Flask application in debug mode
# if __name__ == '__main__':
# superkart_sales_api.run(debug=True)
from flask import Flask, request, jsonify
from flask_cors import CORS
import pandas as pd
app = Flask(__name__)
CORS(app)
# Dummy model logic for demo purposes
def predict_sales(features):
# Replace this logic with your trained model
return round(
features.get("Product_MRP", 100) * 1.5 +
features.get("Product_Allocated_Area", 0.1) * 2000 -
features.get("Product_Weight", 0.0) * 5,
2
)
@app.route("/")
def health():
return "✅ SuperKart Sales Prediction API is running."
@app.route("/v1/sales", methods=["POST"])
def online_prediction():
data = request.get_json()
prediction = predict_sales(data)
return jsonify({"predicted_sales": prediction})
@app.route("/v1/salesbatch", methods=["POST"])
def batch_prediction():
if "file" not in request.files:
return jsonify({"error": "CSV file missing"}), 400
file = request.files["file"]
try:
df = pd.read_csv(file)
results = {
str(i): predict_sales(row)
for i, row in df.iterrows()
}
return jsonify(results)
except Exception as e:
return jsonify({"error": str(e)}), 500