dhani10 commited on
Commit
6a0b5e3
·
verified ·
1 Parent(s): 6eae451

Deploy Engine Condition Predictor

Browse files
Files changed (3) hide show
  1. README.md +5 -9
  2. requirements.txt +1 -1
  3. streamlit_app.py +10 -10
README.md CHANGED
@@ -1,13 +1,9 @@
1
  ---
2
- title: Engine Condition Predictor
3
- emoji: 🔧
4
- colorFrom: blue
5
- colorTo: indigo
6
  sdk: docker
7
- app_file: streamlit_app.py
8
  pinned: false
9
  ---
10
-
11
- # Engine Condition Predictor
12
-
13
- MLOps pipeline for engine condition monitoring and predictive maintenance.
 
1
  ---
2
+ title: Engine Condition App
3
+ emoji: "🚧"
4
+ colorFrom: indigo
5
+ colorTo: blue
6
  sdk: docker
 
7
  pinned: false
8
  ---
9
+ This Space runs a Streamlit app that predicts engine condition from sensor data.
 
 
 
requirements.txt CHANGED
@@ -1,6 +1,6 @@
1
  streamlit==1.39.0
 
2
  pandas==2.2.2
3
  numpy==2.0.2
4
  scikit-learn==1.6.1
5
- joblib==1.4.2
6
  huggingface_hub==0.25.1
 
1
  streamlit==1.39.0
2
+ joblib==1.4.2
3
  pandas==2.2.2
4
  numpy==2.0.2
5
  scikit-learn==1.6.1
 
6
  huggingface_hub==0.25.1
streamlit_app.py CHANGED
@@ -8,12 +8,12 @@ import os
8
 
9
  # Configuration
10
  HF_MODEL_REPO = os.getenv("HF_MODEL_REPO", "dhani10/engine-maintenance-model")
11
- MODEL_FILE = os.getenv("MODEL_FILE", "best_model.pkl")
12
 
13
- # Expected features (match your training data exactly)
14
  EXPECTED_COLS = [
15
- 'Engine rpm', 'Lub oil pressure', 'Fuel pressure',
16
- 'Coolant pressure', 'lub oil temp', 'Coolant temp'
17
  ]
18
 
19
  @st.cache_resource
@@ -72,12 +72,12 @@ def main():
72
  if submitted:
73
  # Create input data with EXACT column names from training
74
  input_data = pd.DataFrame([{
75
- 'Engine rpm': engine_rpm,
76
- 'Lub oil pressure': lub_oil_pressure,
77
- 'Fuel pressure': fuel_pressure,
78
- 'Coolant pressure': coolant_pressure,
79
- 'lub oil temp': lub_oil_temp,
80
- 'Coolant temp': coolant_temp
81
  }])
82
 
83
  try:
 
8
 
9
  # Configuration
10
  HF_MODEL_REPO = os.getenv("HF_MODEL_REPO", "dhani10/engine-maintenance-model")
11
+ MODEL_FILE = os.getenv("MODEL_FILE", "best_model.pkl")
12
 
13
+ # Expected features (match your training data exactly - should be snake_case)
14
  EXPECTED_COLS = [
15
+ 'engine_rpm', 'lub_oil_pressure', 'fuel_pressure',
16
+ 'coolant_pressure', 'lub_oil_temp', 'coolant_temp'
17
  ]
18
 
19
  @st.cache_resource
 
72
  if submitted:
73
  # Create input data with EXACT column names from training
74
  input_data = pd.DataFrame([{
75
+ 'engine_rpm': engine_rpm,
76
+ 'lub_oil_pressure': lub_oil_pressure,
77
+ 'fuel_pressure': fuel_pressure,
78
+ 'coolant_pressure': coolant_pressure,
79
+ 'lub_oil_temp': lub_oil_temp,
80
+ 'coolant_temp': coolant_temp
81
  }])
82
 
83
  try: