Spaces:
Sleeping
Sleeping
Deploy Engine Condition Predictor
Browse files- Dockerfile +20 -0
- README.md +5 -6
- requirements.txt +6 -0
- streamlit_app.py +119 -0
Dockerfile
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM python:3.11-slim
|
| 2 |
+
|
| 3 |
+
WORKDIR /app
|
| 4 |
+
|
| 5 |
+
# Install system dependencies
|
| 6 |
+
RUN apt-get update && apt-get install -y gcc g++ && rm -rf /var/lib/apt/lists/*
|
| 7 |
+
|
| 8 |
+
# Copy requirements
|
| 9 |
+
COPY requirements.txt .
|
| 10 |
+
|
| 11 |
+
# Install Python packages
|
| 12 |
+
RUN pip install --upgrade pip
|
| 13 |
+
RUN pip install -r requirements.txt
|
| 14 |
+
|
| 15 |
+
# Copy app
|
| 16 |
+
COPY streamlit_app.py .
|
| 17 |
+
|
| 18 |
+
EXPOSE 7860
|
| 19 |
+
|
| 20 |
+
CMD ["streamlit", "run", "streamlit_app.py", "--server.port=7860", "--server.address=0.0.0.0"]
|
README.md
CHANGED
|
@@ -1,10 +1,9 @@
|
|
| 1 |
---
|
| 2 |
-
title: Engine
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: docker
|
| 7 |
pinned: false
|
| 8 |
---
|
| 9 |
-
|
| 10 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Engine Condition App
|
| 3 |
+
emoji: "🚧"
|
| 4 |
+
colorFrom: indigo
|
| 5 |
+
colorTo: blue
|
| 6 |
sdk: docker
|
| 7 |
pinned: false
|
| 8 |
---
|
| 9 |
+
This Space runs a Streamlit app that predicts engine condition from sensor data.
|
|
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
streamlit==1.39.0
|
| 2 |
+
pandas==2.2.2
|
| 3 |
+
numpy==1.26.4
|
| 4 |
+
scikit-learn==1.5.0
|
| 5 |
+
joblib==1.4.2
|
| 6 |
+
huggingface_hub==0.25.1
|
streamlit_app.py
ADDED
|
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import streamlit as st
|
| 3 |
+
import joblib
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import numpy as np
|
| 6 |
+
from huggingface_hub import hf_hub_download
|
| 7 |
+
import os
|
| 8 |
+
|
| 9 |
+
# Configuration
|
| 10 |
+
HF_MODEL_REPO = os.getenv("HF_MODEL_REPO", "dhani10/engine-maintenance-model")
|
| 11 |
+
MODEL_FILE = os.getenv("MODEL_FILE", "best_engine_model.joblib")
|
| 12 |
+
|
| 13 |
+
# Expected features (match your training data exactly)
|
| 14 |
+
EXPECTED_COLS = [
|
| 15 |
+
'Engine rpm', 'Lub oil pressure', 'Fuel pressure',
|
| 16 |
+
'Coolant pressure', 'lub oil temp', 'Coolant temp'
|
| 17 |
+
]
|
| 18 |
+
|
| 19 |
+
@st.cache_resource
|
| 20 |
+
def load_model():
|
| 21 |
+
"""Load the model from Hugging Face Hub"""
|
| 22 |
+
try:
|
| 23 |
+
model_path = hf_hub_download(
|
| 24 |
+
repo_id=HF_MODEL_REPO,
|
| 25 |
+
filename=MODEL_FILE,
|
| 26 |
+
repo_type="model",
|
| 27 |
+
token=os.getenv("HF_TOKEN")
|
| 28 |
+
)
|
| 29 |
+
model = joblib.load(model_path)
|
| 30 |
+
st.success("Model loaded successfully!")
|
| 31 |
+
return model
|
| 32 |
+
except Exception as e:
|
| 33 |
+
st.error(f"Failed to load model: {e}")
|
| 34 |
+
return None
|
| 35 |
+
|
| 36 |
+
def main():
|
| 37 |
+
st.set_page_config(
|
| 38 |
+
page_title="Engine Condition Predictor",
|
| 39 |
+
layout="centered",
|
| 40 |
+
page_icon="🚧"
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
st.title("Predictive Maintenance — Engine Condition")
|
| 44 |
+
st.markdown("Monitor engine health using real-time sensor data")
|
| 45 |
+
st.caption(f"Model: {HF_MODEL_REPO}")
|
| 46 |
+
|
| 47 |
+
# Load model
|
| 48 |
+
with st.spinner("Loading AI model..."):
|
| 49 |
+
model = load_model()
|
| 50 |
+
|
| 51 |
+
if model is None:
|
| 52 |
+
st.stop()
|
| 53 |
+
|
| 54 |
+
# Input form
|
| 55 |
+
st.header("🔧 Engine Sensor Readings")
|
| 56 |
+
|
| 57 |
+
with st.form("prediction_form"):
|
| 58 |
+
col1, col2 = st.columns(2)
|
| 59 |
+
|
| 60 |
+
with col1:
|
| 61 |
+
engine_rpm = st.slider("Engine RPM", 100, 2500, 1200)
|
| 62 |
+
lub_oil_pressure = st.slider("Lub Oil Pressure (bar)", 0.5, 7.0, 3.0, 0.1)
|
| 63 |
+
fuel_pressure = st.slider("Fuel Pressure (bar)", 0.5, 20.0, 6.0, 0.1)
|
| 64 |
+
|
| 65 |
+
with col2:
|
| 66 |
+
coolant_pressure = st.slider("Coolant Pressure (bar)", 0.5, 7.0, 2.0, 0.1)
|
| 67 |
+
lub_oil_temp = st.slider("Lub Oil Temp (°C)", 70.0, 110.0, 80.0, 0.1)
|
| 68 |
+
coolant_temp = st.slider("Coolant Temp (°C)", 60.0, 100.0, 75.0, 0.1)
|
| 69 |
+
|
| 70 |
+
submitted = st.form_submit_button("Analyze Engine Condition", type="primary")
|
| 71 |
+
|
| 72 |
+
if submitted:
|
| 73 |
+
# Create input data with EXACT column names from training
|
| 74 |
+
input_data = pd.DataFrame([{
|
| 75 |
+
'Engine rpm': engine_rpm,
|
| 76 |
+
'Lub oil pressure': lub_oil_pressure,
|
| 77 |
+
'Fuel pressure': fuel_pressure,
|
| 78 |
+
'Coolant pressure': coolant_pressure,
|
| 79 |
+
'lub oil temp': lub_oil_temp,
|
| 80 |
+
'Coolant temp': coolant_temp
|
| 81 |
+
}])
|
| 82 |
+
|
| 83 |
+
try:
|
| 84 |
+
# Make prediction
|
| 85 |
+
prediction = model.predict(input_data)[0]
|
| 86 |
+
probability = model.predict_proba(input_data)[0]
|
| 87 |
+
|
| 88 |
+
# Display results
|
| 89 |
+
st.header("Analysis Results")
|
| 90 |
+
|
| 91 |
+
if prediction == 1:
|
| 92 |
+
st.error("**FAULTY ENGINE DETECTED**")
|
| 93 |
+
st.progress(probability[1])
|
| 94 |
+
st.warning(f"**Risk Probability:** {probability[1]*100:.1f}%")
|
| 95 |
+
st.markdown("""
|
| 96 |
+
**Recommended Actions:**
|
| 97 |
+
- Schedule immediate maintenance
|
| 98 |
+
- Inspect lubrication system
|
| 99 |
+
- Check cooling system
|
| 100 |
+
""")
|
| 101 |
+
else:
|
| 102 |
+
st.success("**ENGINE OPERATING NORMALLY**")
|
| 103 |
+
st.progress(probability[0])
|
| 104 |
+
st.info(f"**Health Score:** {probability[0]*100:.1f}%")
|
| 105 |
+
st.markdown("""
|
| 106 |
+
**Status:** Continue routine monitoring
|
| 107 |
+
**Next maintenance:** As scheduled
|
| 108 |
+
""")
|
| 109 |
+
|
| 110 |
+
# Show input data
|
| 111 |
+
with st.expander("View Input Data"):
|
| 112 |
+
st.dataframe(input_data)
|
| 113 |
+
|
| 114 |
+
except Exception as e:
|
| 115 |
+
st.error(f"Prediction error: {str(e)}")
|
| 116 |
+
st.info("Please check that the model expects the correct feature names")
|
| 117 |
+
|
| 118 |
+
if __name__ == "__main__":
|
| 119 |
+
main()
|