Spaces:
Runtime error
Runtime error
full demo.
Browse files
app.py
CHANGED
|
@@ -4,38 +4,68 @@ import tempfile
|
|
| 4 |
import torch
|
| 5 |
import gradio as gr
|
| 6 |
from transformers import pipeline
|
|
|
|
| 7 |
|
| 8 |
|
| 9 |
-
MODEL_NAME = "openai/whisper-large-v3"
|
| 10 |
-
BATCH_SIZE = 8
|
| 11 |
-
|
| 12 |
device = 0 if torch.cuda.is_available() else "cpu"
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
pipe = pipeline(
|
| 15 |
task="automatic-speech-recognition",
|
| 16 |
-
model=
|
| 17 |
chunk_length_s=30,
|
| 18 |
device=device,
|
| 19 |
)
|
| 20 |
|
| 21 |
|
| 22 |
-
def transcribe(
|
| 23 |
-
|
|
|
|
| 24 |
raise gr.Error("No audio file submitted!")
|
| 25 |
|
| 26 |
output = pipe(
|
| 27 |
-
|
| 28 |
-
batch_size=BATCH_SIZE,
|
| 29 |
-
generate_kwargs={"task":
|
| 30 |
return_timestamps=True
|
| 31 |
)
|
| 32 |
return output["text"]
|
| 33 |
|
| 34 |
-
demo = gr.Interface(
|
| 35 |
-
fn=transcribe,
|
| 36 |
-
inputs=["audio"],
|
| 37 |
-
outputs="text",
|
| 38 |
-
title="Transcribe Audio to Text", # Give our demo a title
|
| 39 |
-
)
|
| 40 |
|
| 41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
import torch
|
| 5 |
import gradio as gr
|
| 6 |
from transformers import pipeline
|
| 7 |
+
from huggingface_hub import InferenceClient
|
| 8 |
|
| 9 |
|
|
|
|
|
|
|
|
|
|
| 10 |
device = 0 if torch.cuda.is_available() else "cpu"
|
| 11 |
|
| 12 |
+
AUDIO_MODEL_NAME = "distil-whisper/distil-large-v3" # faster and very close in performance to the full-size "openai/whisper-large-v3"
|
| 13 |
+
TEXT_MODEL_NAME = "microsoft/Phi-3-mini-4k-instruct"
|
| 14 |
+
BATCH_SIZE = 8
|
| 15 |
+
|
| 16 |
pipe = pipeline(
|
| 17 |
task="automatic-speech-recognition",
|
| 18 |
+
model=AUDIO_MODEL_NAME,
|
| 19 |
chunk_length_s=30,
|
| 20 |
device=device,
|
| 21 |
)
|
| 22 |
|
| 23 |
|
| 24 |
+
def transcribe(audio_input):
|
| 25 |
+
"""Function to convert audio to text."""
|
| 26 |
+
if audio_input is None:
|
| 27 |
raise gr.Error("No audio file submitted!")
|
| 28 |
|
| 29 |
output = pipe(
|
| 30 |
+
audio_input,
|
| 31 |
+
batch_size=BATCH_SIZE,
|
| 32 |
+
generate_kwargs={"task": "transcribe"},
|
| 33 |
return_timestamps=True
|
| 34 |
)
|
| 35 |
return output["text"]
|
| 36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
+
def organize_text(meeting_transcript):
|
| 39 |
+
messages = build_messages(meeting_transcript)
|
| 40 |
+
response = client.chat_completion(
|
| 41 |
+
messages, model=TEXT_MODEL_NAME, max_tokens=250, seed=430
|
| 42 |
+
)
|
| 43 |
+
return response.choices[0].message.content
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def build_messages(meeting_transcript) -> list:
|
| 47 |
+
system_input = "You are an assitant that organizes meeting minutes."
|
| 48 |
+
user_input = """Take this raw meeting transcript and return an organized version.
|
| 49 |
+
Here is the transcript:
|
| 50 |
+
{meeting_transcript}
|
| 51 |
+
""".format(meeting_transcript=meeting_transcript)
|
| 52 |
+
|
| 53 |
+
messages = [
|
| 54 |
+
{"role": "system", "content": system_input},
|
| 55 |
+
{"role": "user", "content": user_input},
|
| 56 |
+
]
|
| 57 |
+
return messages
|
| 58 |
+
|
| 59 |
+
def meeting_transcript_tool(audio_input):
|
| 60 |
+
meeting_text = transcribe(audio_input)
|
| 61 |
+
organized_text = organize_text(meeting_text)
|
| 62 |
+
return organized_text
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
full_demo = gr.Interface(
|
| 66 |
+
fn=meeting_transcript_tool,
|
| 67 |
+
inputs=gr.Audio(type="filepath"),
|
| 68 |
+
outputs=gr.Textbox(show_copy_button=True),
|
| 69 |
+
title="The Complete Meeting Transcript Tool",
|
| 70 |
+
)
|
| 71 |
+
full_demo.launch()
|