Update app.py
Browse files
app.py
CHANGED
|
@@ -1,22 +1,8 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import torch
|
| 3 |
import os
|
| 4 |
-
import subprocess
|
| 5 |
from pytubefix import YouTube
|
| 6 |
from moviepy.editor import VideoFileClip
|
| 7 |
from transformers import pipeline
|
| 8 |
-
import subprocess
|
| 9 |
-
import sys
|
| 10 |
-
|
| 11 |
-
# Ensure moviepy is installed
|
| 12 |
-
try:
|
| 13 |
-
import moviepy.editor
|
| 14 |
-
except ImportError:
|
| 15 |
-
subprocess.run([sys.executable, "-m", "pip", "install", "moviepy"], check=True)
|
| 16 |
-
import moviepy.editor # Retry import after installation
|
| 17 |
-
|
| 18 |
-
# Ensure required packages are installed inside Hugging Face Spaces
|
| 19 |
-
subprocess.run(["pip", "install", "pytubefix", "moviepy", "transformers", "torchaudio"], check=True)
|
| 20 |
|
| 21 |
# Load Whisper model for transcription
|
| 22 |
asr = pipeline("automatic-speech-recognition", model="distil-whisper/distil-small.en")
|
|
@@ -24,32 +10,41 @@ asr = pipeline("automatic-speech-recognition", model="distil-whisper/distil-smal
|
|
| 24 |
# Load Summarization model
|
| 25 |
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
| 26 |
|
| 27 |
-
|
| 28 |
def process_youtube_link(youtube_url):
|
| 29 |
try:
|
| 30 |
# Download YouTube Video
|
| 31 |
yt = YouTube(youtube_url)
|
| 32 |
-
|
| 33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
# Extract Audio
|
| 36 |
-
audio_path = "
|
| 37 |
video = VideoFileClip(video_path)
|
| 38 |
-
video.audio.write_audiofile(audio_path)
|
| 39 |
|
| 40 |
# Transcribe Audio
|
| 41 |
-
transcription = asr(audio_path)
|
| 42 |
transcribed_text = transcription["text"]
|
| 43 |
|
| 44 |
# Summarize Transcription
|
| 45 |
summary = summarizer(transcribed_text, max_length=150, min_length=50, do_sample=False)[0]["summary_text"]
|
| 46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
return transcribed_text, summary
|
| 48 |
|
| 49 |
except Exception as e:
|
| 50 |
return f"Error: {str(e)}", ""
|
| 51 |
|
| 52 |
-
|
| 53 |
# Create Gradio Interface
|
| 54 |
iface = gr.Interface(
|
| 55 |
fn=process_youtube_link,
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
import os
|
|
|
|
| 3 |
from pytubefix import YouTube
|
| 4 |
from moviepy.editor import VideoFileClip
|
| 5 |
from transformers import pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
# Load Whisper model for transcription
|
| 8 |
asr = pipeline("automatic-speech-recognition", model="distil-whisper/distil-small.en")
|
|
|
|
| 10 |
# Load Summarization model
|
| 11 |
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
| 12 |
|
|
|
|
| 13 |
def process_youtube_link(youtube_url):
|
| 14 |
try:
|
| 15 |
# Download YouTube Video
|
| 16 |
yt = YouTube(youtube_url)
|
| 17 |
+
title = yt.title
|
| 18 |
+
print(f"Downloading: {title}")
|
| 19 |
+
|
| 20 |
+
video_stream = yt.streams.get_highest_resolution()
|
| 21 |
+
if not video_stream:
|
| 22 |
+
return "Error: No available video stream", ""
|
| 23 |
+
|
| 24 |
+
video_path = f"{title}.mp4"
|
| 25 |
+
video_stream.download(filename=video_path)
|
| 26 |
|
| 27 |
# Extract Audio
|
| 28 |
+
audio_path = f"{title}.wav"
|
| 29 |
video = VideoFileClip(video_path)
|
| 30 |
+
video.audio.write_audiofile(audio_path, codec="pcm_s16le")
|
| 31 |
|
| 32 |
# Transcribe Audio
|
| 33 |
+
transcription = asr(audio_path, return_timestamps=True)
|
| 34 |
transcribed_text = transcription["text"]
|
| 35 |
|
| 36 |
# Summarize Transcription
|
| 37 |
summary = summarizer(transcribed_text, max_length=150, min_length=50, do_sample=False)[0]["summary_text"]
|
| 38 |
|
| 39 |
+
# Clean up files after processing
|
| 40 |
+
os.remove(video_path)
|
| 41 |
+
os.remove(audio_path)
|
| 42 |
+
|
| 43 |
return transcribed_text, summary
|
| 44 |
|
| 45 |
except Exception as e:
|
| 46 |
return f"Error: {str(e)}", ""
|
| 47 |
|
|
|
|
| 48 |
# Create Gradio Interface
|
| 49 |
iface = gr.Interface(
|
| 50 |
fn=process_youtube_link,
|