File size: 23,276 Bytes
d4939ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
"""
Process ENTSO-E Raw Data into Features
=======================================

Transforms raw ENTSO-E data into feature matrix:
1. Encode transmission outages: Event-based → Hourly binary (0/1 per CNEC)
2. Encode generation outages: Event-based → Hourly (binary + MW per zone-tech)
3. Interpolate hydro storage: Weekly → Hourly
4. Pivot generation/demand/prices: Long → Wide format
5. Align all timestamps to MTU (Europe/Amsterdam timezone)
6. Merge into single feature matrix

Input: Raw parquet files from collect_entsoe_24month.py
Output: Unified ENTSO-E feature matrix (parquet)
"""

import polars as pl
import pandas as pd
from pathlib import Path
from datetime import datetime, timedelta
from typing import Dict, List


class EntsoEFeatureProcessor:
    """Process raw ENTSO-E data into feature matrix."""

    def __init__(self, raw_data_dir: Path, output_dir: Path):
        """Initialize processor.

        Args:
            raw_data_dir: Directory containing raw ENTSO-E parquet files
            output_dir: Directory to save processed features
        """
        self.raw_data_dir = raw_data_dir
        self.output_dir = output_dir
        self.output_dir.mkdir(parents=True, exist_ok=True)

    def encode_transmission_outages_to_hourly(
        self,
        outages_df: pl.DataFrame,
        start_date: str,
        end_date: str
    ) -> pl.DataFrame:
        """Encode event-based transmission outages to hourly binary features.

        Converts outage events (start_time, end_time) to hourly time-series
        with binary indicator (0 = no outage, 1 = outage active) for each CNEC.

        Args:
            outages_df: Outage events DataFrame with columns:
                        asset_eic, start_time, end_time
            start_date: Start date for hourly range (YYYY-MM-DD)
            end_date: End date for hourly range (YYYY-MM-DD)

        Returns:
            Polars DataFrame with hourly binary outage indicators
            Columns: timestamp, [cnec_eic_1], [cnec_eic_2], ...
        """
        print("Encoding transmission outages to hourly binary features...")

        # Create complete hourly timestamp range
        hourly_range = pl.datetime_range(
            start=pl.datetime(2023, 10, 1, 0, 0, 0),
            end=pl.datetime(2025, 9, 30, 23, 0, 0),
            interval="1h",
            time_zone="UTC",
            eager=True
        )

        # Initialize base DataFrame with hourly timestamps
        hourly_df = pl.DataFrame({
            'timestamp': hourly_range
        })

        if outages_df.is_empty():
            print("  No outages to encode")
            return hourly_df

        # Get unique CNECs
        unique_cnecs = outages_df.select('asset_eic').unique().sort('asset_eic')
        cnec_list = unique_cnecs.to_series().to_list()

        print(f"  Encoding {len(cnec_list)} CNECs to hourly binary...")
        print(f"  Hourly range: {len(hourly_df):,} hours")

        # For each CNEC, create binary indicator
        for i, cnec_eic in enumerate(cnec_list, 1):
            if i % 10 == 0:
                print(f"    Processing CNEC {i}/{len(cnec_list)}...")

            # Filter outages for this CNEC
            cnec_outages = outages_df.filter(pl.col('asset_eic') == cnec_eic)

            # Initialize all hours as 0 (no outage)
            outage_indicator = pl.Series([0] * len(hourly_df))

            # For each outage event, mark affected hours as 1
            for row in cnec_outages.iter_rows(named=True):
                start_time = row['start_time']
                end_time = row['end_time']

                # Create mask for hours within outage period
                mask = (
                    (hourly_df['timestamp'] >= start_time) &
                    (hourly_df['timestamp'] < end_time)
                )

                # Set outage indicator to 1 for affected hours
                outage_indicator = pl.when(mask).then(1).otherwise(outage_indicator)

            # Add column for this CNEC
            col_name = f"outage_{cnec_eic}"
            hourly_df = hourly_df.with_columns(outage_indicator.alias(col_name))

        print(f"  ✓ Encoded {len(cnec_list)} CNEC outage features")
        print(f"    Shape: {hourly_df.shape}")

        return hourly_df

    def encode_generation_outages_to_hourly(
        self,
        outages_df: pl.DataFrame,
        start_date: str,
        end_date: str
    ) -> pl.DataFrame:
        """Encode event-based generation outages to hourly features.

        Converts generation unit outage events to hourly time-series with:
        1. Binary indicator (0/1): Whether outages are active
        2. Capacity offline (MW): Total capacity offline

        Aggregates by zone-technology combination (e.g., FR_Nuclear, BE_Gas).

        Args:
            outages_df: Outage events DataFrame with columns:
                        zone, psr_type, psr_name, capacity_mw, start_time, end_time
            start_date: Start date for hourly range (YYYY-MM-DD)
            end_date: End date for hourly range (YYYY-MM-DD)

        Returns:
            Polars DataFrame with hourly generation outage features
            Columns: timestamp, [zone_tech_binary], [zone_tech_mw], ...
        """
        print("Encoding generation outages to hourly features...")

        # Create complete hourly timestamp range
        hourly_range = pl.datetime_range(
            start=pl.datetime(2023, 10, 1, 0, 0, 0),
            end=pl.datetime(2025, 9, 30, 23, 0, 0),
            interval="1h",
            time_zone="UTC",
            eager=True
        )

        # Initialize base DataFrame with hourly timestamps
        hourly_df = pl.DataFrame({
            'timestamp': hourly_range
        })

        if outages_df.is_empty():
            print("  No generation outages to encode")
            return hourly_df

        # Create zone-technology combinations
        outages_df = outages_df.with_columns(
            (pl.col('zone') + "_" + pl.col('psr_name').str.replace_all(' ', '_')).alias('zone_tech')
        )

        # Get unique zone-technology combinations
        unique_combos = outages_df.select('zone_tech').unique().sort('zone_tech')
        combo_list = unique_combos.to_series().to_list()

        print(f"  Encoding {len(combo_list)} zone-technology combinations to hourly...")
        print(f"  Hourly range: {len(hourly_df):,} hours")

        # For each zone-technology combination, create binary and capacity features
        for i, zone_tech in enumerate(combo_list, 1):
            if i % 5 == 0:
                print(f"    Processing {i}/{len(combo_list)}...")

            # Filter outages for this zone-technology
            combo_outages = outages_df.filter(pl.col('zone_tech') == zone_tech)

            # Initialize all hours as 0 (no outage)
            outage_binary = pl.Series([0] * len(hourly_df))
            outage_capacity = pl.Series([0.0] * len(hourly_df))

            # For each outage event, mark affected hours
            for row in combo_outages.iter_rows(named=True):
                start_time = row['start_time']
                end_time = row['end_time']
                capacity_mw = row['capacity_mw']

                # Create mask for hours within outage period
                mask = (
                    (hourly_df['timestamp'] >= start_time) &
                    (hourly_df['timestamp'] < end_time)
                )

                # Set binary indicator to 1 for affected hours
                outage_binary = pl.when(mask).then(1).otherwise(outage_binary)

                # Add capacity to total offline capacity (multiple outages may overlap)
                outage_capacity = pl.when(mask).then(
                    outage_capacity + capacity_mw
                ).otherwise(outage_capacity)

            # Add columns for this zone-technology combination
            binary_col = f"gen_outage_{zone_tech}_binary"
            capacity_col = f"gen_outage_{zone_tech}_mw"

            hourly_df = hourly_df.with_columns([
                outage_binary.alias(binary_col),
                outage_capacity.alias(capacity_col)
            ])

        print(f"  ✓ Encoded {len(combo_list)} zone-technology outage features")
        print(f"    Features: {len(combo_list) * 2} (binary + MW for each)")
        print(f"    Shape: {hourly_df.shape}")

        return hourly_df

    def interpolate_hydro_storage_to_hourly(
        self,
        hydro_df: pl.DataFrame,
        hourly_range: pl.Series
    ) -> pl.DataFrame:
        """Interpolate weekly hydro reservoir storage to hourly.

        Args:
            hydro_df: Weekly hydro storage DataFrame
                      Columns: timestamp, storage_mwh, zone
            hourly_range: Hourly timestamp series to interpolate to

        Returns:
            Polars DataFrame with hourly interpolated storage
            Columns: timestamp, [zone_1_storage], [zone_2_storage], ...
        """
        print("Interpolating hydro storage from weekly to hourly...")

        hourly_df = pl.DataFrame({'timestamp': hourly_range})

        if hydro_df.is_empty():
            print("  No hydro storage data to interpolate")
            return hourly_df

        # Get unique zones
        zones = hydro_df.select('zone').unique().sort('zone').to_series().to_list()

        print(f"  Interpolating {len(zones)} zones...")

        for zone in zones:
            # Filter to this zone
            zone_df = hydro_df.filter(pl.col('zone') == zone).sort('timestamp')

            # Convert to pandas for interpolation
            zone_pd = zone_df.select(['timestamp', 'storage_mwh']).to_pandas()
            zone_pd = zone_pd.set_index('timestamp')

            # Reindex to hourly and interpolate
            hourly_pd = zone_pd.reindex(hourly_range.to_pandas())
            hourly_pd['storage_mwh'] = hourly_pd['storage_mwh'].interpolate(method='linear')

            # Fill any remaining NaNs (at edges) with forward/backward fill
            hourly_pd['storage_mwh'] = hourly_pd['storage_mwh'].fillna(method='ffill').fillna(method='bfill')

            # Add to result
            col_name = f"hydro_storage_{zone}"
            hourly_df = hourly_df.with_columns(
                pl.Series(col_name, hourly_pd['storage_mwh'].values)
            )

        print(f"  ✓ Interpolated {len(zones)} hydro storage features to hourly")

        return hourly_df

    def pivot_to_wide_format(
        self,
        df: pl.DataFrame,
        index_col: str,
        pivot_col: str,
        value_col: str,
        prefix: str
    ) -> pl.DataFrame:
        """Pivot long-format data to wide format.

        Args:
            df: Input DataFrame in long format
            index_col: Column to use as index (e.g., 'timestamp')
            pivot_col: Column to pivot (e.g., 'zone' or 'psr_type')
            value_col: Column with values (e.g., 'generation_mw')
            prefix: Prefix for new column names

        Returns:
            Wide-format DataFrame
        """
        # Group by timestamp and pivot column, aggregate to handle duplicates
        df_agg = df.group_by([index_col, pivot_col]).agg(
            pl.col(value_col).mean().alias(value_col)
        )

        # Pivot to wide format
        df_wide = df_agg.pivot(
            values=value_col,
            index=index_col,
            columns=pivot_col
        )

        # Rename columns with prefix
        new_columns = {
            col: f"{prefix}_{col}" if col != index_col else col
            for col in df_wide.columns
        }
        df_wide = df_wide.rename(new_columns)

        return df_wide

    def process_all_features(
        self,
        start_date: str = '2023-10-01',
        end_date: str = '2025-09-30'
    ) -> Dict[str, Path]:
        """Process all ENTSO-E raw data into features.

        Args:
            start_date: Start date (YYYY-MM-DD)
            end_date: End date (YYYY-MM-DD)

        Returns:
            Dictionary mapping feature types to output file paths
        """
        print("="*80)
        print("ENTSO-E FEATURE PROCESSING")
        print("="*80)
        print()
        print(f"Period: {start_date} to {end_date}")
        print(f"Input: {self.raw_data_dir}")
        print(f"Output: {self.output_dir}")
        print()

        results = {}

        # Create hourly timestamp range for alignment
        hourly_range = pl.datetime_range(
            start=pl.datetime(2023, 10, 1, 0, 0, 0),
            end=pl.datetime(2025, 9, 30, 23, 0, 0),
            interval="1h",
            time_zone="UTC",
            eager=True
        )

        # ====================================================================
        # 1. Process Transmission Outages → Hourly Binary
        # ====================================================================
        print("-"*80)
        print("[1/7] Processing Transmission Outages")
        print("-"*80)
        print()

        outages_file = self.raw_data_dir / "entsoe_transmission_outages_24month.parquet"
        if outages_file.exists():
            outages_df = pl.read_parquet(outages_file)
            print(f"Loaded: {len(outages_df):,} outage events")

            outages_hourly = self.encode_transmission_outages_to_hourly(
                outages_df, start_date, end_date
            )

            outages_path = self.output_dir / "entsoe_transmission_outages_hourly.parquet"
            outages_hourly.write_parquet(outages_path)
            results['transmission_outages'] = outages_path

            print(f"✓ Saved: {outages_path}")
            print(f"  Shape: {outages_hourly.shape}")
        else:
            print("  Warning: Transmission outages file not found, skipping")

        print()

        # ====================================================================
        # 2. Process Generation Outages → Hourly (Binary + MW)
        # ====================================================================
        print("-"*80)
        print("[2/7] Processing Generation Outages")
        print("-"*80)
        print()

        gen_outages_file = self.raw_data_dir / "entsoe_generation_outages_24month.parquet"
        if gen_outages_file.exists():
            gen_outages_df = pl.read_parquet(gen_outages_file)
            print(f"Loaded: {len(gen_outages_df):,} generation outage events")

            gen_outages_hourly = self.encode_generation_outages_to_hourly(
                gen_outages_df, start_date, end_date
            )

            gen_outages_path = self.output_dir / "entsoe_generation_outages_hourly.parquet"
            gen_outages_hourly.write_parquet(gen_outages_path)
            results['generation_outages'] = gen_outages_path

            print(f"✓ Saved: {gen_outages_path}")
            print(f"  Shape: {gen_outages_hourly.shape}")
        else:
            print("  Warning: Generation outages file not found, skipping")

        print()

        # ====================================================================
        # 3. Process Generation by PSR Type → Wide Format
        # ====================================================================
        print("-"*80)
        print("[3/7] Processing Generation by PSR Type")
        print("-"*80)
        print()

        gen_file = self.raw_data_dir / "entsoe_generation_by_psr_24month.parquet"
        if gen_file.exists():
            gen_df = pl.read_parquet(gen_file)
            print(f"Loaded: {len(gen_df):,} records")

            # Create combined column: zone_psrname
            gen_df = gen_df.with_columns(
                (pl.col('zone') + "_" + pl.col('psr_name').str.replace_all(' ', '_')).alias('zone_psr')
            )

            gen_wide = self.pivot_to_wide_format(
                gen_df,
                index_col='timestamp',
                pivot_col='zone_psr',
                value_col='generation_mw',
                prefix='gen'
            )

            gen_path = self.output_dir / "entsoe_generation_hourly.parquet"
            gen_wide.write_parquet(gen_path)
            results['generation'] = gen_path

            print(f"✓ Saved: {gen_path}")
            print(f"  Shape: {gen_wide.shape}")
        else:
            print("  Warning: Generation file not found, skipping")

        print()

        # ====================================================================
        # 4. Process Demand → Wide Format
        # ====================================================================
        print("-"*80)
        print("[4/7] Processing Demand")
        print("-"*80)
        print()

        demand_file = self.raw_data_dir / "entsoe_demand_24month.parquet"
        if demand_file.exists():
            demand_df = pl.read_parquet(demand_file)
            print(f"Loaded: {len(demand_df):,} records")

            demand_wide = self.pivot_to_wide_format(
                demand_df,
                index_col='timestamp',
                pivot_col='zone',
                value_col='load_mw',
                prefix='demand'
            )

            demand_path = self.output_dir / "entsoe_demand_hourly.parquet"
            demand_wide.write_parquet(demand_path)
            results['demand'] = demand_path

            print(f"✓ Saved: {demand_path}")
            print(f"  Shape: {demand_wide.shape}")
        else:
            print("  Warning: Demand file not found, skipping")

        print()

        # ====================================================================
        # 5. Process Day-Ahead Prices → Wide Format
        # ====================================================================
        print("-"*80)
        print("[5/7] Processing Day-Ahead Prices")
        print("-"*80)
        print()

        prices_file = self.raw_data_dir / "entsoe_prices_24month.parquet"
        if prices_file.exists():
            prices_df = pl.read_parquet(prices_file)
            print(f"Loaded: {len(prices_df):,} records")

            prices_wide = self.pivot_to_wide_format(
                prices_df,
                index_col='timestamp',
                pivot_col='zone',
                value_col='price_eur_mwh',
                prefix='price'
            )

            prices_path = self.output_dir / "entsoe_prices_hourly.parquet"
            prices_wide.write_parquet(prices_path)
            results['prices'] = prices_path

            print(f"✓ Saved: {prices_path}")
            print(f"  Shape: {prices_wide.shape}")
        else:
            print("  Warning: Prices file not found, skipping")

        print()

        # ====================================================================
        # 6. Process Hydro Storage → Interpolated Hourly
        # ====================================================================
        print("-"*80)
        print("[6/7] Processing Hydro Reservoir Storage")
        print("-"*80)
        print()

        hydro_file = self.raw_data_dir / "entsoe_hydro_storage_24month.parquet"
        if hydro_file.exists():
            hydro_df = pl.read_parquet(hydro_file)
            print(f"Loaded: {len(hydro_df):,} weekly records")

            hydro_hourly = self.interpolate_hydro_storage_to_hourly(
                hydro_df, hourly_range
            )

            hydro_path = self.output_dir / "entsoe_hydro_storage_hourly.parquet"
            hydro_hourly.write_parquet(hydro_path)
            results['hydro_storage'] = hydro_path

            print(f"✓ Saved: {hydro_path}")
            print(f"  Shape: {hydro_hourly.shape}")
        else:
            print("  Warning: Hydro storage file not found, skipping")

        print()

        # ====================================================================
        # 7. Process Pumped Storage & Load Forecast → Wide Format
        # ====================================================================
        print("-"*80)
        print("[7/7] Processing Pumped Storage & Load Forecast")
        print("-"*80)
        print()

        # Pumped storage
        pumped_file = self.raw_data_dir / "entsoe_pumped_storage_24month.parquet"
        if pumped_file.exists():
            pumped_df = pl.read_parquet(pumped_file)
            print(f"Pumped storage loaded: {len(pumped_df):,} records")

            pumped_wide = self.pivot_to_wide_format(
                pumped_df,
                index_col='timestamp',
                pivot_col='zone',
                value_col='generation_mw',
                prefix='pumped'
            )

            pumped_path = self.output_dir / "entsoe_pumped_storage_hourly.parquet"
            pumped_wide.write_parquet(pumped_path)
            results['pumped_storage'] = pumped_path

            print(f"✓ Saved: {pumped_path}")
            print(f"  Shape: {pumped_wide.shape}")

        # Load forecast
        forecast_file = self.raw_data_dir / "entsoe_load_forecast_24month.parquet"
        if forecast_file.exists():
            forecast_df = pl.read_parquet(forecast_file)
            print(f"Load forecast loaded: {len(forecast_df):,} records")

            forecast_wide = self.pivot_to_wide_format(
                forecast_df,
                index_col='timestamp',
                pivot_col='zone',
                value_col='forecast_mw',
                prefix='load_forecast'
            )

            forecast_path = self.output_dir / "entsoe_load_forecast_hourly.parquet"
            forecast_wide.write_parquet(forecast_path)
            results['load_forecast'] = forecast_path

            print(f"✓ Saved: {forecast_path}")
            print(f"  Shape: {forecast_wide.shape}")

        print()
        print("="*80)
        print("PROCESSING COMPLETE")
        print("="*80)
        print()
        print(f"Processed {len(results)} feature types:")
        for feature_type, path in results.items():
            file_size = path.stat().st_size / (1024**2)
            print(f"  {feature_type}: {file_size:.1f} MB")

        print()

        return results


if __name__ == "__main__":
    import argparse

    parser = argparse.ArgumentParser(description="Process ENTSO-E raw data into features")
    parser.add_argument(
        '--raw-data-dir',
        type=Path,
        default=Path('data/raw'),
        help='Directory containing raw ENTSO-E parquet files'
    )
    parser.add_argument(
        '--output-dir',
        type=Path,
        default=Path('data/processed'),
        help='Output directory for processed features'
    )
    parser.add_argument(
        '--start-date',
        default='2023-10-01',
        help='Start date (YYYY-MM-DD)'
    )
    parser.add_argument(
        '--end-date',
        default='2025-09-30',
        help='End date (YYYY-MM-DD)'
    )

    args = parser.parse_args()

    # Initialize processor
    processor = EntsoEFeatureProcessor(
        raw_data_dir=args.raw_data_dir,
        output_dir=args.output_dir
    )

    # Process all features
    results = processor.process_all_features(
        start_date=args.start_date,
        end_date=args.end_date
    )

    print("Next steps:")
    print("  1. Merge all ENTSO-E features into single matrix")
    print("  2. Combine with JAO features (726) → ~952-1,037 total features")
    print("  3. Create ENTSO-E features EDA notebook for validation")