Spaces:
Sleeping
Sleeping
File size: 11,723 Bytes
8fd4a0e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
"""OpenMeteo Weather Forecast Collection
Collects weather forecasts from OpenMeteo API using ECMWF IFS 0.25° model.
Used for inference to extend weather time series into the future.
Model: ECMWF IFS 0.25° (Integrated Forecasting System)
- Resolution: 0.25° (~25 km, high resolution)
- Forecast horizon: 15 days (360 hours)
- Temporal resolution: Hourly
- Update frequency: Every 6 hours (00, 06, 12, 18 UTC)
- Free tier: Fully accessible since ECMWF October 2025 open data release
ECMWF provides higher quality forecasts than GFS, especially for Europe.
The October 2025 open data initiative made ECMWF IFS freely accessible via OpenMeteo.
This module fetches the LATEST 15-day forecast for all 51 grid points and saves to parquet.
The forecast extends existing weather features (375) into future timestamps.
Author: Claude
Date: 2025-11-10 (Updated: 2025-11-11 - upgraded to ECMWF IFS 0.25° 15-day forecasts)
"""
import requests
import polars as pl
from pathlib import Path
from datetime import datetime
import time
from typing import Dict, List
from tqdm import tqdm
# Same 51 grid points as historical collection
GRID_POINTS = {
# Germany (6 points)
"DE_North_Sea": {"lat": 54.5, "lon": 7.0, "name": "Offshore North Sea"},
"DE_Hamburg": {"lat": 53.5, "lon": 10.0, "name": "Hamburg/Schleswig-Holstein"},
"DE_Berlin": {"lat": 52.5, "lon": 13.5, "name": "Berlin/Brandenburg"},
"DE_Frankfurt": {"lat": 50.1, "lon": 8.7, "name": "Frankfurt"},
"DE_Munich": {"lat": 48.1, "lon": 11.6, "name": "Munich/Bavaria"},
"DE_Baltic": {"lat": 54.5, "lon": 13.0, "name": "Offshore Baltic"},
# France (5 points)
"FR_Dunkirk": {"lat": 51.0, "lon": 2.3, "name": "Dunkirk/Lille"},
"FR_Paris": {"lat": 48.9, "lon": 2.3, "name": "Paris"},
"FR_Lyon": {"lat": 45.8, "lon": 4.8, "name": "Lyon"},
"FR_Marseille": {"lat": 43.3, "lon": 5.4, "name": "Marseille"},
"FR_Strasbourg": {"lat": 48.6, "lon": 7.8, "name": "Strasbourg"},
# Netherlands (4 points)
"NL_Offshore": {"lat": 53.5, "lon": 4.5, "name": "Offshore North"},
"NL_Amsterdam": {"lat": 52.4, "lon": 4.9, "name": "Amsterdam"},
"NL_Rotterdam": {"lat": 51.9, "lon": 4.5, "name": "Rotterdam"},
"NL_Groningen": {"lat": 53.2, "lon": 6.6, "name": "Groningen"},
# Austria (3 points)
"AT_Kaprun": {"lat": 47.26, "lon": 12.74, "name": "Kaprun"},
"AT_St_Peter": {"lat": 48.26, "lon": 13.08, "name": "St. Peter"},
"AT_Vienna": {"lat": 48.15, "lon": 16.45, "name": "Vienna"},
# Belgium (3 points)
"BE_Offshore": {"lat": 51.5, "lon": 2.8, "name": "Belgian Offshore"},
"BE_Doel": {"lat": 51.32, "lon": 4.26, "name": "Doel"},
"BE_Avelgem": {"lat": 50.78, "lon": 3.45, "name": "Avelgem"},
# Czech Republic (3 points)
"CZ_Hradec": {"lat": 50.70, "lon": 13.80, "name": "Hradec-RPST"},
"CZ_Bohemia": {"lat": 50.50, "lon": 13.60, "name": "Northwest Bohemia"},
"CZ_Temelin": {"lat": 49.18, "lon": 14.37, "name": "Temelin"},
# Poland (4 points)
"PL_Baltic": {"lat": 54.8, "lon": 17.5, "name": "Baltic Offshore"},
"PL_SHVDC": {"lat": 54.5, "lon": 17.0, "name": "SwePol Link"},
"PL_Belchatow": {"lat": 51.27, "lon": 19.32, "name": "Belchatow"},
"PL_Mikulowa": {"lat": 51.5, "lon": 15.2, "name": "Mikulowa PST"},
# Hungary (3 points)
"HU_Paks": {"lat": 46.57, "lon": 18.86, "name": "Paks Nuclear"},
"HU_Bekescsaba": {"lat": 46.68, "lon": 21.09, "name": "Bekescsaba"},
"HU_Gyor": {"lat": 47.68, "lon": 17.63, "name": "Gyor"},
# Romania (3 points)
"RO_Fantanele": {"lat": 44.59, "lon": 28.57, "name": "Fantanele-Cogealac"},
"RO_Iron_Gates": {"lat": 44.67, "lon": 22.53, "name": "Iron Gates"},
"RO_Cernavoda": {"lat": 44.32, "lon": 28.03, "name": "Cernavoda"},
# Slovakia (3 points)
"SK_Bohunice": {"lat": 48.49, "lon": 17.68, "name": "Bohunice/Mochovce"},
"SK_Gabcikovo": {"lat": 47.88, "lon": 17.54, "name": "Gabcikovo"},
"SK_Rimavska": {"lat": 48.38, "lon": 20.00, "name": "Rimavska Sobota"},
# Slovenia (2 points)
"SI_Krsko": {"lat": 45.94, "lon": 15.52, "name": "Krsko Nuclear"},
"SI_Divaca": {"lat": 45.68, "lon": 13.97, "name": "Divaca"},
# Croatia (3 points)
"HR_Ernestinovo": {"lat": 45.47, "lon": 18.67, "name": "Ernestinovo"},
"HR_Zerjavinec": {"lat": 46.30, "lon": 16.20, "name": "Zerjavinec"},
"HR_Melina": {"lat": 45.43, "lon": 14.17, "name": "Melina"},
# Additional strategic points (9)
"DE_Ruhr": {"lat": 51.5, "lon": 7.2, "name": "Ruhr Valley"},
"FR_Brittany": {"lat": 48.0, "lon": -3.0, "name": "Brittany"},
"NL_IJmuiden": {"lat": 52.5, "lon": 4.6, "name": "IJmuiden"},
"PL_Krajnik": {"lat": 52.85, "lon": 14.37, "name": "Krajnik PST"},
"CZ_Kletne": {"lat": 50.80, "lon": 14.50, "name": "Kletne PST"},
"AT_Salzburg": {"lat": 47.80, "lon": 13.04, "name": "Salzburg"},
"SK_Velke": {"lat": 48.85, "lon": 21.93, "name": "Velke Kapusany"},
"HU_Sandorfalva": {"lat": 46.3, "lon": 20.2, "name": "Sandorfalva"},
"RO_Isaccea": {"lat": 45.27, "lon": 28.45, "name": "Isaccea"}
}
class OpenMeteoForecastCollector:
"""Collects ECMWF IFS 0.25° weather forecasts from OpenMeteo API."""
def __init__(self, requests_per_minute: int = 60):
"""Initialize forecast collector.
Args:
requests_per_minute: Rate limit (default 60 = 1 req/sec, safe for free tier)
"""
self.api_url = "https://api.open-meteo.com/v1/ecmwf" # ECMWF-specific endpoint
self.requests_per_minute = requests_per_minute
self.delay_between_requests = 60 / requests_per_minute
def fetch_forecast_for_location(
self,
location_id: str,
lat: float,
lon: float
) -> pl.DataFrame:
"""Fetch ECMWF IFS 0.25° forecast for a single location.
Args:
location_id: Grid point identifier
lat: Latitude
lon: Longitude
Returns:
DataFrame with hourly forecasts for 15 days (360 hours)
"""
# ECMWF API parameters (15-day horizon)
# ECMWF IFS 0.25° became freely accessible in October 2025 via OpenMeteo
params = {
'latitude': lat,
'longitude': lon,
'hourly': [
'temperature_2m',
'windspeed_10m',
'windspeed_100m',
'winddirection_100m',
'shortwave_radiation',
'cloudcover',
'surface_pressure'
],
'forecast_days': 15, # 15-day horizon (360 hours)
'timezone': 'UTC'
}
try:
response = requests.get(self.api_url, params=params, timeout=30)
response.raise_for_status()
data = response.json()
# Parse response
hourly = data.get('hourly', {})
timestamps = hourly.get('time', [])
if not timestamps:
print(f"[WARNING] No forecast data for {location_id}")
return pl.DataFrame()
# Build DataFrame
forecast_data = {
'timestamp': pl.Series(timestamps).str.to_datetime(),
'grid_point': location_id,
'latitude': lat,
'longitude': lon,
'temperature_2m': hourly.get('temperature_2m', [None] * len(timestamps)),
'windspeed_10m': hourly.get('windspeed_10m', [None] * len(timestamps)),
'windspeed_100m': hourly.get('windspeed_100m', [None] * len(timestamps)),
'winddirection_100m': hourly.get('winddirection_100m', [None] * len(timestamps)),
'shortwave_radiation': hourly.get('shortwave_radiation', [None] * len(timestamps)),
'cloudcover': hourly.get('cloudcover', [None] * len(timestamps)),
'surface_pressure': hourly.get('surface_pressure', [None] * len(timestamps))
}
return pl.DataFrame(forecast_data)
except requests.exceptions.RequestException as e:
print(f"[ERROR] Failed to fetch forecast for {location_id}: {str(e)}")
return pl.DataFrame()
def collect_all_forecasts(self, output_path: Path) -> pl.DataFrame:
"""Collect forecasts for all 51 grid points.
Args:
output_path: Where to save combined forecast parquet
Returns:
Combined DataFrame with forecasts for all locations
"""
print(f"Collecting ECMWF HRES forecasts for {len(GRID_POINTS)} locations...")
print(f"Rate limit: {self.requests_per_minute} requests/minute")
print()
all_forecasts = []
for i, (location_id, coords) in enumerate(tqdm(GRID_POINTS.items(), desc="Fetching forecasts"), 1):
# Fetch forecast
forecast_df = self.fetch_forecast_for_location(
location_id,
coords['lat'],
coords['lon']
)
if not forecast_df.is_empty():
all_forecasts.append(forecast_df)
print(f" [{i}/{len(GRID_POINTS)}] {location_id}: {len(forecast_df)} forecast hours")
else:
print(f" [{i}/{len(GRID_POINTS)}] {location_id}: [FAILED]")
# Rate limiting
if i < len(GRID_POINTS):
time.sleep(self.delay_between_requests)
# Combine all forecasts
if all_forecasts:
combined = pl.concat(all_forecasts)
combined = combined.sort(['timestamp', 'grid_point'])
# Save to parquet
output_path.parent.mkdir(parents=True, exist_ok=True)
combined.write_parquet(output_path)
print()
print("[SUCCESS] Forecast collection complete")
print(f"Total forecast hours: {len(combined):,}")
print(f"Grid points: {combined['grid_point'].n_unique()}")
print(f"Date range: {combined['timestamp'].min()} to {combined['timestamp'].max()}")
print(f"Saved to: {output_path}")
return combined
else:
print()
print("[ERROR] No forecasts collected")
return pl.DataFrame()
def main():
"""Main execution for testing."""
# Paths
base_dir = Path.cwd()
raw_dir = base_dir / 'data' / 'raw'
output_path = raw_dir / 'weather_forecast_latest.parquet'
print("="*80)
print("ECMWF IFS 0.25° WEATHER FORECAST COLLECTION")
print("="*80)
print()
print("Model: ECMWF IFS 0.25° (Integrated Forecasting System)")
print("Forecast horizon: 15 days (360 hours)")
print("Temporal resolution: Hourly")
print("Grid points: 51 strategic locations")
print("Free tier: Enabled since ECMWF October 2025 open data release")
print()
# Initialize collector
collector = OpenMeteoForecastCollector(requests_per_minute=60)
# Collect forecasts
forecast_df = collector.collect_all_forecasts(output_path)
if not forecast_df.is_empty():
print()
print("="*80)
print("FORECAST DATA SUMMARY")
print("="*80)
print()
print(f"Shape: {forecast_df.shape}")
print()
print("Sample (first 5 rows):")
print(forecast_df.head(5))
print()
# Completeness check
null_count_total = forecast_df.null_count().sum_horizontal()[0]
completeness = (1 - null_count_total / (forecast_df.shape[0] * forecast_df.shape[1])) * 100
print(f"Data completeness: {completeness:.2f}%")
print()
print("[OK] Weather forecast collection complete!")
else:
print("[ERROR] Forecast collection failed")
if __name__ == '__main__':
main()
|