Spaces:
Sleeping
Sleeping
File size: 33,951 Bytes
4d742bd af88e60 4d742bd af88e60 4d742bd af88e60 4d742bd af88e60 4d742bd af88e60 4d742bd af88e60 4d742bd af88e60 4d742bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 |
"""Engineer ~486 ENTSO-E features for FBMC forecasting.
Transforms 8 ENTSO-E datasets into model-ready features:
1. Generation by PSR type (~228 features):
- Individual PSR types (8 types × 12 zones × 2 = 192 features with lags)
- Aggregates (total + shares = 36 features)
2. Demand/Load (24 features)
3. Day-ahead prices (24 features)
4. Hydro reservoir storage (12 features)
5. Pumped storage (10 features)
6. Load forecasts (12 features)
7. Transmission outages (176 features - ALL CNECs with EIC mapping)
Total: ~486 features (generation outages not available in raw data)
Author: Claude
Date: 2025-11-10
"""
from pathlib import Path
from typing import Tuple, List
import polars as pl
import numpy as np
# =========================================================================
# Feature Category 1: Generation by PSR Type
# =========================================================================
def engineer_generation_features(generation_df: pl.DataFrame) -> pl.DataFrame:
"""Engineer ~228 generation features from PSR type data.
Features per zone:
- Individual PSR type generation (8 types × 2 = value + lag): 192 features
- Total generation (sum across PSR types): 12 features
- Renewable/Thermal shares: 24 features
PSR Types:
- B04: Fossil Gas
- B05: Fossil Hard coal
- B06: Fossil Oil
- B11: Hydro Run-of-river
- B12: Hydro Reservoir
- B14: Nuclear
- B16: Solar
- B19: Wind Onshore
Args:
generation_df: Generation by PSR type (12 zones × 8 PSR types)
Returns:
DataFrame with generation features, indexed by timestamp
"""
print("\n[1/8] Engineering generation features...")
# PSR type name mapping for clean feature names
psr_name_map = {
'Fossil Gas': 'fossil_gas',
'Fossil Hard coal': 'fossil_coal',
'Fossil Oil': 'fossil_oil',
'Hydro Run-of-river and poundage': 'hydro_ror',
'Hydro Water Reservoir': 'hydro_reservoir',
'Nuclear': 'nuclear',
'Solar': 'solar',
'Wind Onshore': 'wind_onshore'
}
# Create individual PSR type features (8 PSR types × 12 zones = 96 base features)
psr_features_list = []
for psr_name, psr_clean in psr_name_map.items():
# Filter data for this PSR type
psr_data = generation_df.filter(pl.col('psr_name') == psr_name)
if len(psr_data) > 0:
# Pivot to wide format (one column per zone)
psr_wide = psr_data.pivot(
values='generation_mw',
index='timestamp',
on='zone',
aggregate_function='sum'
)
# Rename columns with PSR type prefix
psr_cols = [c for c in psr_wide.columns if c != 'timestamp']
psr_wide = psr_wide.rename({c: f'gen_{psr_clean}_{c}' for c in psr_cols})
# Add lag features (t-1) for this PSR type
lag_features = {}
for col in psr_wide.columns:
if col.startswith('gen_'):
lag_features[f'{col}_lag1'] = pl.col(col).shift(1)
psr_wide = psr_wide.with_columns(**lag_features)
psr_features_list.append(psr_wide)
# Aggregate features: Total generation per zone
zone_total = generation_df.group_by(['timestamp', 'zone']).agg([
pl.col('generation_mw').sum().alias('total_gen')
])
total_gen_wide = zone_total.pivot(
values='total_gen',
index='timestamp',
on='zone',
aggregate_function='first'
).rename({c: f'gen_total_{c}' for c in zone_total['zone'].unique() if c != 'timestamp'})
# Aggregate features: Renewable and thermal shares
zone_shares = generation_df.group_by(['timestamp', 'zone']).agg([
pl.col('generation_mw').sum().alias('total_gen'),
pl.col('generation_mw').filter(
pl.col('psr_name').is_in(['Wind Onshore', 'Solar', 'Hydro Run-of-river and poundage', 'Hydro Water Reservoir'])
).sum().alias('renewable_gen'),
pl.col('generation_mw').filter(
pl.col('psr_name').is_in(['Fossil Gas', 'Fossil Hard coal', 'Fossil Oil', 'Nuclear'])
).sum().alias('thermal_gen')
])
zone_shares = zone_shares.with_columns([
(pl.col('renewable_gen') / pl.col('total_gen').clip(lower_bound=1)).round(4).alias('renewable_share'),
(pl.col('thermal_gen') / pl.col('total_gen').clip(lower_bound=1)).round(4).alias('thermal_share')
])
renewable_share_wide = zone_shares.pivot(
values='renewable_share',
index='timestamp',
on='zone',
aggregate_function='first'
).rename({c: f'gen_renewable_share_{c}' for c in zone_shares['zone'].unique() if c != 'timestamp'})
thermal_share_wide = zone_shares.pivot(
values='thermal_share',
index='timestamp',
on='zone',
aggregate_function='first'
).rename({c: f'gen_thermal_share_{c}' for c in zone_shares['zone'].unique() if c != 'timestamp'})
# Merge all generation features
features = total_gen_wide
features = features.join(renewable_share_wide, on='timestamp', how='left')
features = features.join(thermal_share_wide, on='timestamp', how='left')
for psr_features in psr_features_list:
features = features.join(psr_features, on='timestamp', how='left')
print(f" Created {len(features.columns) - 1} generation features")
print(f" - Individual PSR types: {sum([len(pf.columns) - 1 for pf in psr_features_list])} features (8 types x 12 zones x 2)")
print(f" - Aggregates: {len(total_gen_wide.columns) + len(renewable_share_wide.columns) + len(thermal_share_wide.columns) - 3} features")
return features
# =========================================================================
# Feature Category 2: Demand/Load
# =========================================================================
def engineer_demand_features(demand_df: pl.DataFrame) -> pl.DataFrame:
"""Engineer ~24 demand features.
Features per zone:
- Actual demand
- Demand lag (t-1)
Args:
demand_df: Actual demand data (12 zones)
Returns:
DataFrame with demand features, indexed by timestamp
"""
print("\n[2/8] Engineering demand features...")
# FIX: Resample to hourly (some zones have 15-min data for 2025)
demand_df = demand_df.with_columns([
pl.col('timestamp').dt.truncate('1h').alias('timestamp')
])
# Aggregate by hour (mean of sub-hourly values)
demand_df = demand_df.group_by(['timestamp', 'zone']).agg([
pl.col('load_mw').mean().alias('load_mw')
])
# Pivot demand to wide format
demand_wide = demand_df.pivot(
values='load_mw',
index='timestamp',
on='zone',
aggregate_function='first'
)
# Rename to demand_<zone>
demand_cols = [c for c in demand_wide.columns if c != 'timestamp']
demand_wide = demand_wide.rename({c: f'demand_{c}' for c in demand_cols})
# Add lag features (t-1)
lag_features = {}
for col in demand_wide.columns:
if col.startswith('demand_'):
lag_features[f'{col}_lag1'] = pl.col(col).shift(1)
features = demand_wide.with_columns(**lag_features)
print(f" Created {len(features.columns) - 1} demand features")
return features
# =========================================================================
# Feature Category 3: Day-Ahead Prices
# =========================================================================
def engineer_price_features(prices_df: pl.DataFrame) -> pl.DataFrame:
"""Engineer ~24 price features.
Features per zone:
- Day-ahead price
- Price lag (t-1)
Args:
prices_df: Day-ahead prices (12 zones)
Returns:
DataFrame with price features, indexed by timestamp
"""
print("\n[3/8] Engineering price features...")
# Pivot prices to wide format
price_wide = prices_df.pivot(
values='price_eur_mwh',
index='timestamp',
on='zone',
aggregate_function='first'
)
# Rename to price_<zone>
price_cols = [c for c in price_wide.columns if c != 'timestamp']
price_wide = price_wide.rename({c: f'price_{c}' for c in price_cols})
# Add lag features (t-1)
lag_features = {}
for col in price_wide.columns:
if col.startswith('price_'):
lag_features[f'{col}_lag1'] = pl.col(col).shift(1)
features = price_wide.with_columns(**lag_features)
print(f" Created {len(features.columns) - 1} price features")
return features
# =========================================================================
# Feature Category 4: Hydro Reservoir Storage
# =========================================================================
def engineer_hydro_storage_features(hydro_df: pl.DataFrame) -> pl.DataFrame:
"""Engineer ~12 hydro storage features (weekly → hourly interpolation).
Features per zone with data (6 zones):
- Hydro storage level (interpolated to hourly)
- Storage change (week-over-week)
Args:
hydro_df: Weekly hydro storage data (6 zones)
Returns:
DataFrame with hydro storage features, indexed by timestamp
"""
print("\n[4/8] Engineering hydro storage features...")
# Pivot to wide format
hydro_wide = hydro_df.pivot(
values='storage_mwh',
index='timestamp',
on='zone',
aggregate_function='first'
)
# Rename to hydro_storage_<zone>
hydro_cols = [c for c in hydro_wide.columns if c != 'timestamp']
hydro_wide = hydro_wide.rename({c: f'hydro_storage_{c}' for c in hydro_cols})
# Create hourly date range (Oct 2023 - Sept 2025)
hourly_range = pl.DataFrame({
'timestamp': pl.datetime_range(
start=hydro_wide['timestamp'].min(),
end=hydro_wide['timestamp'].max(),
interval='1h',
eager=True
)
})
# Cast timestamp to match precision (datetime[ns])
hydro_wide = hydro_wide.with_columns(
pl.col('timestamp').cast(pl.Datetime('us'))
)
# Join and interpolate (forward fill for weekly → hourly)
features = hourly_range.join(hydro_wide, on='timestamp', how='left')
# Forward fill missing values (weekly data → hourly)
for col in features.columns:
if col.startswith('hydro_storage_'):
features = features.with_columns(
pl.col(col).forward_fill().alias(col)
)
# Add week-over-week change (168 hours = 1 week)
change_features = {}
for col in features.columns:
if col.startswith('hydro_storage_'):
change_features[f'{col}_change_w'] = pl.col(col) - pl.col(col).shift(168)
features = features.with_columns(**change_features)
print(f" Created {len(features.columns) - 1} hydro storage features")
return features
# =========================================================================
# Feature Category 5: Pumped Storage
# =========================================================================
def engineer_pumped_storage_features(pumped_df: pl.DataFrame) -> pl.DataFrame:
"""Engineer ~10 pumped storage features.
Features per zone with data (5 zones):
- Pumped storage generation
- Generation lag (t-1)
Args:
pumped_df: Pumped storage generation (5 zones)
Returns:
DataFrame with pumped storage features, indexed by timestamp
"""
print("\n[5/8] Engineering pumped storage features...")
# Pivot to wide format
pumped_wide = pumped_df.pivot(
values='generation_mw',
index='timestamp',
on='zone',
aggregate_function='first'
)
# Rename to pumped_storage_<zone>
pumped_cols = [c for c in pumped_wide.columns if c != 'timestamp']
pumped_wide = pumped_wide.rename({c: f'pumped_storage_{c}' for c in pumped_cols})
# Add lag features (t-1)
lag_features = {}
for col in pumped_wide.columns:
if col.startswith('pumped_storage_'):
lag_features[f'{col}_lag1'] = pl.col(col).shift(1)
features = pumped_wide.with_columns(**lag_features)
print(f" Created {len(features.columns) - 1} pumped storage features")
return features
# =========================================================================
# Feature Category 6: Load Forecasts
# =========================================================================
def engineer_load_forecast_features(forecast_df: pl.DataFrame) -> pl.DataFrame:
"""Engineer ~24 load forecast features.
Features per zone:
- Load forecast
- Forecast error (forecast - actual, if available)
Args:
forecast_df: Load forecasts (12 zones)
Returns:
DataFrame with load forecast features, indexed by timestamp
"""
print("\n[6/8] Engineering load forecast features...")
# FIX: Resample to hourly (some zones have 15-min data for 2025)
forecast_df = forecast_df.with_columns([
pl.col('timestamp').dt.truncate('1h').alias('timestamp')
])
# Aggregate by hour (mean of sub-hourly values)
forecast_df = forecast_df.group_by(['timestamp', 'zone']).agg([
pl.col('forecast_mw').mean().alias('forecast_mw')
])
# Pivot to wide format
forecast_wide = forecast_df.pivot(
values='forecast_mw',
index='timestamp',
on='zone',
aggregate_function='first'
)
# Rename to load_forecast_<zone>
forecast_cols = [c for c in forecast_wide.columns if c != 'timestamp']
forecast_wide = forecast_wide.rename({c: f'load_forecast_{c}' for c in forecast_cols})
print(f" Created {len(forecast_wide.columns) - 1} load forecast features")
return forecast_wide
# =========================================================================
# Feature Category 7: Transmission Outages (ALL 176 CNECs)
# =========================================================================
def engineer_transmission_outage_features(
outages_df: pl.DataFrame,
cnec_master_df: pl.DataFrame,
hourly_range: pl.DataFrame
) -> pl.DataFrame:
"""Engineer 176 transmission outage features (ALL CNECs with EIC mapping).
Creates binary feature for each CNEC:
- 1 = Outage active on this CNEC at this timestamp
- 0 = No outage
Uses EIC codes from master CNEC list to map ENTSO-E outages to CNECs.
31 CNECs have historical outages, 145 are zero-filled (ready for future).
Args:
outages_df: ENTSO-E transmission outages with Asset_RegisteredResource.mRID (EIC)
cnec_master_df: Master CNEC list with cnec_eic column (176 rows)
hourly_range: Hourly timestamp range (Oct 2023 - Sept 2025)
Returns:
DataFrame with 176 transmission outage features, indexed by timestamp
"""
print("\n[7/8] Engineering transmission outage features (ALL 176 CNECs)...")
# Create EIC → CNEC mapping from master list
eic_to_cnec = dict(zip(cnec_master_df['cnec_eic'], cnec_master_df['cnec_name']))
all_cnec_eics = cnec_master_df['cnec_eic'].to_list()
print(f" Loaded {len(all_cnec_eics)} CNECs from master list")
# Process outages: expand start → end to hourly timestamps
if len(outages_df) == 0:
print(" WARNING: No transmission outages found in raw data")
# Create zero-filled features for all CNECs
features = hourly_range.clone()
for eic in all_cnec_eics:
features = features.with_columns(
pl.lit(0).alias(f'outage_cnec_{eic}')
)
print(f" Created {len(all_cnec_eics)} zero-filled outage features")
return features
# Parse outage periods (start_time → end_time)
outages_expanded = []
for row in outages_df.iter_rows(named=True):
eic = row.get('asset_eic', None)
start = row.get('start_time', None)
end = row.get('end_time', None)
if not eic or not start or not end:
continue
# Only process if EIC is in master CNEC list
if eic not in all_cnec_eics:
continue
# Create hourly range for this outage
outage_hours = pl.datetime_range(
start=start,
end=end,
interval='1h',
eager=True
)
for hour in outage_hours:
outages_expanded.append({
'timestamp': hour,
'cnec_eic': eic,
'outage_active': 1
})
print(f" Expanded {len(outages_expanded)} hourly outage events")
if len(outages_expanded) == 0:
# No outages matched to CNECs - create zero-filled features
features = hourly_range.clone()
for eic in all_cnec_eics:
features = features.with_columns(
pl.lit(0).alias(f'outage_cnec_{eic}')
)
print(f" Created {len(all_cnec_eics)} zero-filled outage features (no matches)")
return features
# Convert to Polars DataFrame
outages_hourly = pl.DataFrame(outages_expanded)
# Remove timezone from timestamp to match hourly_range
outages_hourly = outages_hourly.with_columns(
pl.col('timestamp').dt.replace_time_zone(None)
)
# Pivot to wide format (one column per CNEC)
outages_wide = outages_hourly.pivot(
values='outage_active',
index='timestamp',
on='cnec_eic',
aggregate_function='max' # If multiple outages, max = 1
)
# Rename columns
outage_cols = [c for c in outages_wide.columns if c != 'timestamp']
outages_wide = outages_wide.rename({c: f'outage_cnec_{c}' for c in outage_cols})
# Join with hourly range to ensure complete timestamp coverage
features = hourly_range.join(outages_wide, on='timestamp', how='left')
# Fill nulls with 0 (no outage)
for col in features.columns:
if col.startswith('outage_cnec_'):
features = features.with_columns(
pl.col(col).fill_null(0).alias(col)
)
# Add zero-filled features for CNECs with no historical outages
existing_cnecs = [c.replace('outage_cnec_', '') for c in features.columns if c.startswith('outage_cnec_')]
missing_cnecs = [eic for eic in all_cnec_eics if eic not in existing_cnecs]
for eic in missing_cnecs:
features = features.with_columns(
pl.lit(0).alias(f'outage_cnec_{eic}')
)
cnecs_with_data = len(existing_cnecs)
cnecs_zero_filled = len(missing_cnecs)
print(f" Created {len(features.columns) - 1} transmission outage features:")
print(f" - {cnecs_with_data} CNECs with historical outages")
print(f" - {cnecs_zero_filled} CNECs zero-filled (ready for future)")
return features
# =========================================================================
# Feature Category 8: Generation Outages
# =========================================================================
def engineer_generation_outage_features(gen_outages_df: pl.DataFrame, hourly_range: pl.DataFrame) -> pl.DataFrame:
"""Engineer ~45 generation outage features (nuclear, coal, lignite by zone).
Features per zone and PSR type:
- Nuclear capacity offline (MW)
- Coal capacity offline (MW)
- Lignite capacity offline (MW)
- Total outage count
- Binary outage indicator
Args:
gen_outages_df: Generation unavailability data with columns:
['timestamp', 'zone', 'psr_type', 'capacity_mw', 'unit_name']
hourly_range: Hourly timestamps for alignment
Returns:
DataFrame with generation outage features, indexed by timestamp
"""
print("\n[8/8] Engineering generation outage features...")
if len(gen_outages_df) == 0:
print(" WARNING: No generation outages found - creating zero-filled features")
# Create zero-filled features for all zones
features = hourly_range.select('timestamp')
zones = ['FR', 'BE', 'CZ', 'HU', 'RO', 'SI', 'SK', 'DE_LU', 'PL']
for zone in zones:
features = features.with_columns([
pl.lit(0.0).alias(f'gen_outage_nuclear_mw_{zone}'),
pl.lit(0.0).alias(f'gen_outage_coal_mw_{zone}'),
pl.lit(0.0).alias(f'gen_outage_lignite_mw_{zone}'),
pl.lit(0).alias(f'gen_outage_count_{zone}'),
pl.lit(0).alias(f'gen_outage_active_{zone}')
])
print(f" Created {len(features.columns) - 1} zero-filled generation outage features")
return features
# Expand outages to hourly granularity (outages span multiple hours)
print(" Expanding outages to hourly timestamps...")
# Create hourly records for each outage period
hourly_outages = []
for row in gen_outages_df.iter_rows(named=True):
start = row['start_time']
end = row['end_time']
# Generate hourly timestamps for outage period
outage_hours = pl.datetime_range(
start=start,
end=end,
interval='1h',
eager=True
).to_frame('timestamp')
# Add outage metadata
outage_hours = outage_hours.with_columns([
pl.lit(row['zone']).alias('zone'),
pl.lit(row['psr_type']).alias('psr_type'),
pl.lit(row['capacity_mw']).alias('capacity_mw'),
pl.lit(row['unit_name']).alias('unit_name')
])
hourly_outages.append(outage_hours)
# Combine all hourly outages
hourly_outages_df = pl.concat(hourly_outages)
print(f" Expanded to {len(hourly_outages_df):,} hourly outage records")
# Map PSR types to clean names
psr_map = {
'B14': 'nuclear',
'B05': 'coal',
'B02': 'lignite'
}
hourly_outages_df = hourly_outages_df.with_columns(
pl.col('psr_type').replace(psr_map).alias('psr_clean')
)
# Create features for each PSR type
all_features = [hourly_range.select('timestamp')]
for psr_code, psr_name in psr_map.items():
psr_outages = hourly_outages_df.filter(pl.col('psr_type') == psr_code)
if len(psr_outages) > 0:
# Aggregate capacity by zone and timestamp
psr_agg = psr_outages.group_by(['timestamp', 'zone']).agg(
pl.col('capacity_mw').sum().alias('capacity_mw')
)
# Pivot to wide format
psr_wide = psr_agg.pivot(
values='capacity_mw',
index='timestamp',
on='zone'
)
# Rename columns
rename_map = {
col: f'gen_outage_{psr_name}_mw_{col}'
for col in psr_wide.columns if col != 'timestamp'
}
psr_wide = psr_wide.rename(rename_map)
all_features.append(psr_wide)
# Create aggregate count and binary indicator features
total_agg = hourly_outages_df.group_by(['timestamp', 'zone']).agg([
pl.col('unit_name').n_unique().alias('outage_count'),
pl.lit(1).alias('outage_active')
])
# Pivot count
count_wide = total_agg.pivot(
values='outage_count',
index='timestamp',
on='zone'
).rename({
col: f'gen_outage_count_{col}'
for col in total_agg['zone'].unique() if col != 'timestamp'
})
# Pivot binary indicator
active_wide = total_agg.pivot(
values='outage_active',
index='timestamp',
on='zone'
).rename({
col: f'gen_outage_active_{col}'
for col in total_agg['zone'].unique() if col != 'timestamp'
})
all_features.extend([count_wide, active_wide])
# Join all features
features = all_features[0]
for feat_df in all_features[1:]:
features = features.join(feat_df, on='timestamp', how='left')
# Fill nulls with zeros (no outage)
feature_cols = [col for col in features.columns if col != 'timestamp']
features = features.with_columns([
pl.col(col).fill_null(0) for col in feature_cols
])
print(f" Created {len(features.columns) - 1} generation outage features")
print(f" - Nuclear: capacity offline per zone")
print(f" - Coal: capacity offline per zone")
print(f" - Lignite: capacity offline per zone")
print(f" - Count: number of units offline per zone")
print(f" - Active: binary indicator per zone")
return features
# =========================================================================
# Main Pipeline
# =========================================================================
def engineer_all_entsoe_features(
data_dir: Path = Path("data/raw"),
output_path: Path = Path("data/processed/features_entsoe_24month.parquet")
) -> pl.DataFrame:
"""Engineer all ENTSO-E features from 8 raw datasets.
Args:
data_dir: Directory containing raw ENTSO-E data
output_path: Path to save engineered features
Returns:
DataFrame with ~324-424 ENTSO-E features, indexed by timestamp
"""
print("\n" + "="*70)
print("ENTSO-E FEATURE ENGINEERING PIPELINE")
print("="*70)
# Load master CNEC list (for transmission outage mapping)
cnec_master = pl.read_csv("data/processed/cnecs_master_176.csv")
print(f"\nLoaded master CNEC list: {len(cnec_master)} CNECs")
# Create hourly timestamp range (Oct 2023 - Sept 2025)
hourly_range = pl.DataFrame({
'timestamp': pl.datetime_range(
start=pl.datetime(2023, 10, 1, 0, 0),
end=pl.datetime(2025, 9, 30, 23, 0),
interval='1h',
eager=True
)
})
print(f"Created hourly range: {len(hourly_range)} timestamps")
# Load raw ENTSO-E datasets
generation_df = pl.read_parquet(data_dir / "entsoe_generation_by_psr_24month.parquet")
demand_df = pl.read_parquet(data_dir / "entsoe_demand_24month.parquet")
prices_df = pl.read_parquet(data_dir / "entsoe_prices_24month.parquet")
hydro_df = pl.read_parquet(data_dir / "entsoe_hydro_storage_24month.parquet")
pumped_df = pl.read_parquet(data_dir / "entsoe_pumped_storage_24month.parquet")
forecast_df = pl.read_parquet(data_dir / "entsoe_load_forecast_24month.parquet")
transmission_outages_df = pl.read_parquet(data_dir / "entsoe_transmission_outages_24month.parquet")
# Check for generation outages file
gen_outages_path = data_dir / "entsoe_generation_outages_24month.parquet"
if gen_outages_path.exists():
gen_outages_df = pl.read_parquet(gen_outages_path)
else:
print("\nWARNING: Generation outages file not found, skipping...")
gen_outages_df = pl.DataFrame()
print(f"\nLoaded 8 ENTSO-E datasets:")
print(f" - Generation: {len(generation_df):,} rows")
print(f" - Demand: {len(demand_df):,} rows")
print(f" - Prices: {len(prices_df):,} rows")
print(f" - Hydro storage: {len(hydro_df):,} rows")
print(f" - Pumped storage: {len(pumped_df):,} rows")
print(f" - Load forecast: {len(forecast_df):,} rows")
print(f" - Transmission outages: {len(transmission_outages_df):,} rows")
print(f" - Generation outages: {len(gen_outages_df):,} rows")
# Engineer features for each category
gen_features = engineer_generation_features(generation_df)
demand_features = engineer_demand_features(demand_df)
price_features = engineer_price_features(prices_df)
hydro_features = engineer_hydro_storage_features(hydro_df)
pumped_features = engineer_pumped_storage_features(pumped_df)
forecast_features = engineer_load_forecast_features(forecast_df)
transmission_outage_features = engineer_transmission_outage_features(
transmission_outages_df, cnec_master, hourly_range
)
if len(gen_outages_df) > 0:
gen_outage_features = engineer_generation_outage_features(gen_outages_df, hourly_range)
else:
gen_outage_features = engineer_generation_outage_features(pl.DataFrame(), hourly_range)
# Merge all features on timestamp
print("\n" + "="*70)
print("MERGING ALL FEATURES")
print("="*70)
features = hourly_range.clone()
# Standardize timestamps (remove timezone, cast to datetime[μs])
def standardize_timestamp(df):
"""Remove timezone and cast timestamp to datetime[μs]."""
if 'timestamp' in df.columns:
# Check if timestamp has timezone
if hasattr(df['timestamp'].dtype, 'time_zone') and df['timestamp'].dtype.time_zone is not None:
df = df.with_columns(pl.col('timestamp').dt.replace_time_zone(None))
# Cast to datetime[μs]
df = df.with_columns(pl.col('timestamp').cast(pl.Datetime('us')))
return df
gen_features = standardize_timestamp(gen_features)
demand_features = standardize_timestamp(demand_features)
price_features = standardize_timestamp(price_features)
hydro_features = standardize_timestamp(hydro_features)
pumped_features = standardize_timestamp(pumped_features)
forecast_features = standardize_timestamp(forecast_features)
transmission_outage_features = standardize_timestamp(transmission_outage_features)
# Join each feature set
features = features.join(gen_features, on='timestamp', how='left')
features = features.join(demand_features, on='timestamp', how='left')
features = features.join(price_features, on='timestamp', how='left')
features = features.join(hydro_features, on='timestamp', how='left')
features = features.join(pumped_features, on='timestamp', how='left')
features = features.join(forecast_features, on='timestamp', how='left')
features = features.join(transmission_outage_features, on='timestamp', how='left')
features = features.join(gen_outage_features, on='timestamp', how='left')
print(f"\nFinal feature matrix shape: {features.shape}")
print(f" - Timestamps: {len(features):,}")
print(f" - Features: {len(features.columns) - 1:,}")
# Check for nulls
null_counts = features.null_count()
total_nulls = sum([null_counts[col][0] for col in features.columns if col != 'timestamp'])
null_pct = (total_nulls / (len(features) * (len(features.columns) - 1))) * 100
print(f"\nData quality:")
print(f" - Total nulls: {total_nulls:,} ({null_pct:.2f}%)")
print(f" - Completeness: {100 - null_pct:.2f}%")
# Clean up redundant features
print("\n" + "="*70)
print("CLEANING REDUNDANT FEATURES")
print("="*70)
features_before = len(features.columns) - 1
# Remove 100% null features
null_pcts = {}
for col in features.columns:
if col != 'timestamp':
null_count = features[col].null_count()
null_pct_col = (null_count / len(features)) * 100
if null_pct_col >= 100.0:
null_pcts[col] = null_pct_col
if null_pcts:
print(f"\nRemoving {len(null_pcts)} features with 100% nulls:")
for col in null_pcts:
print(f" - {col}")
features = features.drop(list(null_pcts.keys()))
# Remove zero-variance features (constants)
# EXCEPT transmission outage features - keep them even if zero-filled for future inference
zero_var_cols = []
for col in features.columns:
if col != 'timestamp':
# Skip transmission outage features (needed for future inference)
if col.startswith('outage_cnec_'):
continue
# Check if all values are the same (excluding nulls)
non_null = features[col].drop_nulls()
if len(non_null) > 0 and non_null.n_unique() == 1:
zero_var_cols.append(col)
if zero_var_cols:
print(f"\nRemoving {len(zero_var_cols)} zero-variance features (keeping transmission outages)")
features = features.drop(zero_var_cols)
# Remove duplicate columns
# EXCEPT transmission outage features - keep all CNECs even if identical (all zeros)
dup_groups = {}
cols_to_check = [c for c in features.columns if c != 'timestamp']
for i, col1 in enumerate(cols_to_check):
if col1 in dup_groups.values(): # Already marked as duplicate
continue
# Skip transmission outage features (each CNEC needs its own column for inference)
if col1.startswith('outage_cnec_'):
continue
for col2 in cols_to_check[i+1:]:
if col2 in dup_groups.values(): # Already marked as duplicate
continue
# Skip transmission outage features
if col2.startswith('outage_cnec_'):
continue
# Check if columns are identical
if features[col1].equals(features[col2]):
dup_groups[col2] = col1 # col2 is duplicate of col1
if dup_groups:
print(f"\nRemoving {len(dup_groups)} duplicate columns (keeping transmission outages)")
features = features.drop(list(dup_groups.keys()))
features_after = len(features.columns) - 1
features_removed = features_before - features_after
print(f"\n[CLEANUP SUMMARY]")
print(f" Features before: {features_before}")
print(f" Features after: {features_after}")
print(f" Features removed: {features_removed} ({features_removed/features_before*100:.1f}%)")
# Save features
output_path.parent.mkdir(parents=True, exist_ok=True)
features.write_parquet(output_path)
file_size_mb = output_path.stat().st_size / (1024 * 1024)
print(f"\nSaved ENTSO-E features to: {output_path}")
print(f"File size: {file_size_mb:.2f} MB")
print("\n" + "="*70)
print("ENTSO-E FEATURE ENGINEERING COMPLETE")
print("="*70)
return features
if __name__ == "__main__":
# Run feature engineering pipeline
features = engineer_all_entsoe_features()
print("\n[SUCCESS] ENTSO-E features engineered and saved!")
print(f"Feature count: {len(features.columns) - 1}")
print(f"Timestamp range: {features['timestamp'].min()} to {features['timestamp'].max()}")
|