Spaces:
Sleeping
Sleeping
File size: 117,922 Bytes
82da022 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 |
# JAO Data Treatment & Feature Extraction Plan
## Complete Guide for FBMC Flow Forecasting MVP
**Last Updated:** October 29, 2025
**Project:** FBMC Zero-Shot Forecasting with Chronos 2
**Timeline:** 5-Day MVP
**Version:** 5.0 - OUTAGE DURATION FEATURES (Added temporal outage metrics for enhanced forecasting)
---
## Table of Contents
1. [Data Acquisition Strategy](#1-data-acquisition-strategy)
2. [JAO Data Series Catalog](#2-jao-data-series-catalog)
3. [Data Cleaning Procedures](#3-data-cleaning-procedures)
4. [CNEC Treatment](#4-cnec-treatment)
5. [PTDF Treatment](#5-ptdf-treatment)
6. [RAM Treatment](#6-ram-treatment)
7. [Shadow Prices Treatment](#7-shadow-prices-treatment)
8. [Feature Engineering Pipeline](#8-feature-engineering-pipeline)
9. [Quality Assurance](#9-quality-assurance)
---
## 1. Data Acquisition Strategy
### 1.1 Timeline and Scope
**Historical Data Period:** October 2023 - September 2025 (24 months)
- Purpose: Feature baselines and historical context
- Total: ~17,520 hourly records per series
**Collection Priority:**
1. **Day 1 Morning (2 hours):** Max BEX files (TARGET VARIABLE - highest priority!)
2. **Day 1 Morning (2 hours):** CNEC files (critical for constraint identification)
3. **Day 1 Morning (2 hours):** PTDF matrices (network sensitivity)
4. **Day 1 Afternoon (1.5 hours):** LTN values (future covariates)
5. **Day 1 Afternoon (1.5 hours):** Min/Max Net Positions (domain boundaries)
6. **Day 1 Afternoon (1.5 hours):** ATC Non-Core borders (loop flow drivers)
7. **Day 1 Afternoon (1.5 hours):** RAM values (capacity margins)
8. **Day 1 Afternoon (1.5 hours):** Shadow prices (economic signals)
### 1.2 jao-py Python Library Usage
**Installation & Setup:**
```bash
# Install jao-py using uv package manager
.venv/Scripts/uv.exe pip install jao-py>=0.6.2
# Verify installation
.venv/Scripts/python.exe -c "from jao import JaoPublicationToolPandasClient; print('jao-py installed successfully')"
```
**Python Data Collection:**
```python
import pandas as pd
from jao import JaoPublicationToolPandasClient
import time
# Initialize client (no API key required for public data)
client = JaoPublicationToolPandasClient()
# Define date range (24 months: Oct 2023 - Sept 2025)
# IMPORTANT: jao-py requires pandas Timestamp with timezone (UTC)
start_date = pd.Timestamp('2023-10-01', tz='UTC')
end_date = pd.Timestamp('2025-09-30', tz='UTC')
# Collect MaxBEX data (TARGET VARIABLE) - day by day with rate limiting
maxbex_data = []
current_date = start_date
while current_date <= end_date:
df = client.query_maxbex(current_date)
maxbex_data.append(df)
current_date += pd.Timedelta(days=1)
time.sleep(5) # Rate limiting: 5 seconds between requests
# Combine and save
maxbex_df = pd.concat(maxbex_data)
maxbex_df.to_parquet('data/raw/jao/maxbex_2023_2025.parquet')
# Collect Active Constraints (CNECs + PTDFs in ONE call!)
cnec_data = []
current_date = start_date
while current_date <= end_date:
df = client.query_active_constraints(current_date)
cnec_data.append(df)
current_date += pd.Timedelta(days=1)
time.sleep(5) # Rate limiting: 5 seconds between requests
# Combine and save
cnec_df = pd.concat(cnec_data)
cnec_df.to_parquet('data/raw/jao/cnecs_ptdfs_2023_2025.parquet')
```
**Key Methods Available:**
- `query_maxbex(day)` - Maximum Bilateral Exchange capacity (TARGET)
- `query_active_constraints(day)` - CNECs with shadow prices, RAM, and PTDFs
- `query_lta(d_from, d_to)` - Long Term Allocations (perfect future covariate)
- `query_minmax_np(day)` - Min/Max Net Positions (domain boundaries)
- `query_net_position(day)` - Actual net positions
- `query_monitoring(day)` - Monitoring data (additional RAM/shadow prices)
```
**Expected Output Files:**
```
data/raw/jao/
ââ€Âωâ€Âۉâ€Â€ cnecs_2024_2025.parquet (~500 MB)
ââ€Âωâ€Âۉâ€Â€ ptdfs_2024_2025.parquet (~800 MB)
ââ€Âωâ€Âۉâ€Â€ rams_2024_2025.parquet (~400 MB)
ââ€Âωâ€Âۉâ€Â€ shadow_prices_2024_2025.parquet (~300 MB)
ââ€Âωâ€Âۉâ€Â€ presolved_2024_2025.parquet (~200 MB)
ââ€Âωâ€Âۉâ€Â€ d2cf_2024_2025.parquet (~600 MB - OPTIONAL)
ââ€Ââ€Âââ€Âۉâ€Â€ metadata/
ââ€Âωâ€Âۉâ€Â€ cnec_definitions.parquet
ââ€Âωâ€Âۉâ€Â€ zone_ptdf_mapping.parquet
ââ€Ââ€Âââ€Âۉâ€Â€ download_log.json
```
---
## 2. JAO Data Series Catalog
### 2.1 Max BEX Data Series (TARGET VARIABLE)
**File:** `Core_DA_Results_[date].xml` or `Core_Max_Exchanges_[date].xml`
**CRITICAL:** This is the **TARGET VARIABLE** we are forecasting - without Max BEX, the model cannot be trained or evaluated!
| Field Name | Data Type | Description | Use in Features | Missing Value Strategy |
|------------|-----------|-------------|-----------------|----------------------|
| `border_id` | String | Border identifier (e.g., "DE-FR", "DE-NL") | Border tracking | **REQUIRED** |
| `timestamp` | Datetime | Delivery hour | Time index | **REQUIRED** |
| `max_bex` | Float (MW) | Maximum Bilateral Exchange Capacity | **TARGET VARIABLE** | **CRITICAL - must have** |
| `direction` | String | Direction of capacity (e.g., "DE→FR") | Directional features | Parse from border |
**Description:**
Max BEX represents the **actual available cross-border capacity** after FBMC optimization. It is the OUTPUT of the FBMC calculation process and represents how much capacity is actually available for bilateral exchanges after accounting for:
- All CNEC constraints (RAM limits)
- PTDF sensitivities
- LTN allocations (capacity already committed)
- Remedial actions
- All network constraints
**IMPORTANT: Commercial vs Physical Capacity**
- MaxBEX = **commercial hub-to-hub trading capacity**, NOT physical interconnector ratings
- FBMC Core has 12 bidding zones: AT, BE, CZ, DE-LU, FR, HR, HU, NL, PL, RO, SI, SK
- **All 132 zone-pair combinations exist** (12 × 11 bidirectional pairs)
- This includes "virtual borders" - zone pairs without direct physical interconnectors
- Example: FR→HU capacity exists despite no physical FR-HU interconnector
- Power flows through AC grid network via DE, AT, CZ
- PTDFs quantify how this exchange affects every CNEC in the network
- MaxBEX = optimization result considering ALL network constraints
**Borders to Collect (ALL 132 zone pairs):**
- JAO provides MaxBEX for all 12 × 11 = 132 bidirectional zone-pair combinations
- Includes both physical borders (e.g., DE→FR, AT→CZ) and virtual borders (e.g., FR→HU, BE→PL)
- Each direction (A→B vs B→A) has independent capacity values
- Full list: All permutations of (AT, BE, CZ, DE, FR, HR, HU, NL, PL, RO, SI, SK)
- Example physical borders: DE→FR, DE→NL, AT→CZ, BE→NL, FR→BE
- Example virtual borders: FR→HU, AT→HR, BE→RO, NL→SK, CZ→HR
**Collection Priority:** DAY 1 MORNING (FIRST PRIORITY)
This is the ground truth for training and validation - collect before any other data series!
**Storage Schema:**
```python
max_bex_schema = {
'timestamp': pl.Datetime,
'border_id': pl.Utf8,
'max_bex': pl.Float32, # TARGET VARIABLE
'direction': pl.Utf8
}
```
**Expected File Size:** ~1.2-1.5 GB for 24 months × 132 zone pairs × 17,520 hours (actual: ~200 MB compressed as Parquet)
---
### 2.2 LTN Data Series (Long Term Nominations)
**File:** `Core_LTN_[date].xml` or available through `Core_ltn.R` JAOPuTo function
**CRITICAL:** LTN values are **PERFECT FUTURE COVARIATES** because they result from yearly/monthly capacity auctions and are known with certainty for the forecast horizon!
| Field Name | Data Type | Description | Use in Features | Missing Value Strategy |
|------------|-----------|-------------|-----------------|----------------------|
| `border_id` | String | Border identifier (e.g., "DE-FR", "SI-HR") | Border tracking | **REQUIRED** |
| `timestamp` | Datetime | Delivery hour | Time index | **REQUIRED** |
| `ltn_allocated` | Float (MW) | Capacity already allocated in long-term auctions | **INPUT FEATURE & FUTURE COVARIATE** | 0.0 (no LT allocation) |
| `direction` | String | Direction of nomination | Directional features | Parse from border |
| `auction_type` | String | "yearly" or "monthly" | Allocation source tracking | Required field |
**Description:**
LTN represents capacity already committed through long-term (yearly and monthly) auctions conducted by JAO. This capacity is **guaranteed and known in advance**, making it an exceptionally valuable feature:
**Historical Context (What Happened):**
- LTN values show how much capacity was already allocated
- Higher LTN → lower available day-ahead capacity (Max BEX)
- Direct relationship: `Max BEX ≈ Theoretical Max - LTN - Other Constraints`
**Future Covariates (What We Know Will Happen):**
- **Yearly auctions:** Results are known for the **entire year ahead**
- **Monthly auctions:** Results are known for the **month ahead**
- When forecasting D+1 to D+14, LTN values are **100% certain** (already allocated)
- This is **GOLD STANDARD** for future covariates - no forecasting needed!
**Borders with LTN:**
Most Core borders have LTN=0 (Financial Transmission Rights), but important exceptions:
- **SI-HR** (Slovenia-Croatia): Physical Transmission Rights (PTRs) still in use
- Some external Core borders may have PTRs
- Even when LTN=0, including the series confirms this to the model
**Impact on Max BEX:**
Example: If DE-FR has 500 MW LTN allocated:
- Theoretical capacity: 3000 MW
- LTN reduction: -500 MW
- After network constraints: -400 MW
- **Result: Max BEX ≈ 2100 MW**
**Collection Priority:** DAY 1 AFTERNOON (HIGH PRIORITY - future covariates)
**Storage Schema:**
```python
ltn_schema = {
'timestamp': pl.Datetime,
'border_id': pl.Utf8,
'ltn_allocated': pl.Float32, # Amount already committed
'direction': pl.Utf8,
'auction_type': pl.Utf8 # yearly/monthly
}
```
**Expected File Size:** ~100-160 MB for 24 months × 20 borders × 17,520 hours
**JAOPuTo Download Command:**
```bash
# Download LTN data for 24 months
java -jar JAOPuTo.jar \
--start-date 2023-10-01 \
--end-date 2025-09-30 \
--data-type LTN \
--region CORE \
--output-format parquet \
--output-dir ./data/raw/jao/ltn/
```
**Future Covariate Usage:**
```python
# LTN is known in advance from auction results
# For forecast period D+1 to D+14, we have PERFECT information
def prepare_ltn_future_covariates(ltn_df, forecast_start_date, prediction_horizon_hours=336):
"""
Extract LTN values for future forecast horizon
These are KNOWN with certainty (auction results)
"""
forecast_end_date = forecast_start_date + pd.Timedelta(hours=prediction_horizon_hours)
future_ltn = ltn_df.filter(
(pl.col('timestamp') >= forecast_start_date) &
(pl.col('timestamp') < forecast_end_date)
)
return future_ltn # No forecasting needed - these are actual commitments!
```
---
### 2.3 Min/Max Net Position Data Series
**File:** `Core_MaxNetPositions_[date].xml` or available through `Core_maxnetpositions.R` JAOPuTo function
**CRITICAL:** Min/Max Net Positions define the **feasible domain** for each bidding zone - the boundaries within which net positions can move without violating network constraints.
| Field Name | Data Type | Description | Use in Features | Missing Value Strategy |
|------------|-----------|-------------|-----------------|----------------------|
| `zone` | String | Bidding zone (e.g., "DE_LU", "FR", "BE") | Zone tracking | **REQUIRED** |
| `timestamp` | Datetime | Delivery hour | Time index | **REQUIRED** |
| `net_pos_min` | Float (MW) | Minimum feasible net position | **DOMAIN BOUNDARY** | **CRITICAL - must have** |
| `net_pos_max` | Float (MW) | Maximum feasible net position | **DOMAIN BOUNDARY** | **CRITICAL - must have** |
| `actual_net_pos` | Float (MW) | Actual net position after market clearing | Reference value | 0.0 if missing |
**Description:**
Min/Max Net Positions represent the **feasible space** in which each bidding zone can operate without violating any CNEC constraints. These values are extracted from the union of:
- Final flow-based domain
- Final bilateral exchange restrictions (LTA inclusion)
- All CNEC constraints simultaneously satisfied
**Why This Matters for Forecasting:**
1. **Tight ranges indicate constrained systems:**
- If `net_pos_max - net_pos_min` is small → limited flexibility → likely lower Max BEX
- If range is large → system has degrees of freedom → potentially higher Max BEX
2. **Zone-specific stress indicators:**
- A zone with narrow net position range is "boxed in"
- This propagates to adjacent borders (reduces their capacity)
3. **Derived features:**
```python
# Range = degrees of freedom
net_pos_range = net_pos_max - net_pos_min
# Margin = how close to limits (utilization)
net_pos_margin = (actual_net_pos - net_pos_min) / (net_pos_max - net_pos_min)
# Stress index = inverse of range (tighter = more stressed)
zone_stress = 1.0 / (net_pos_range + 1.0) # +1 to avoid division by zero
```
**Example Interpretation:**
For Germany (DE_LU) at a specific hour:
- `net_pos_min` = -8000 MW (maximum import)
- `net_pos_max` = +12000 MW (maximum export)
- `actual_net_pos` = +6000 MW (actual export after market clearing)
- **Range** = 20,000 MW (large flexibility)
- **Margin** = (6000 - (-8000)) / 20000 = 0.70 (70% utilization toward export limit)
If another hour shows:
- `net_pos_min` = -2000 MW
- `net_pos_max` = +3000 MW
- **Range** = 5,000 MW (VERY constrained - system is tight!)
- This hour will likely have lower Max BEX on German borders
**Zones to Collect (12 Core zones):**
- DE_LU (Germany-Luxembourg)
- FR (France)
- BE (Belgium)
- NL (Netherlands)
- AT (Austria)
- CZ (Czech Republic)
- PL (Poland)
- SK (Slovakia)
- HU (Hungary)
- SI (Slovenia)
- HR (Croatia)
- RO (Romania)
**Collection Priority:** DAY 1 AFTERNOON (HIGH PRIORITY)
**Storage Schema:**
```python
netpos_schema = {
'timestamp': pl.Datetime,
'zone': pl.Utf8,
'net_pos_min': pl.Float32, # Minimum feasible (import limit)
'net_pos_max': pl.Float32, # Maximum feasible (export limit)
'actual_net_pos': pl.Float32 # Actual market clearing value
}
```
**Expected File Size:** ~160-200 MB for 24 months × 12 zones × 17,520 hours
**JAOPuTo Download Command:**
```bash
# Download Min/Max Net Positions for 24 months
java -jar JAOPuTo.jar \
--start-date 2023-10-01 \
--end-date 2025-09-30 \
--data-type MAX_NET_POSITIONS \
--region CORE \
--output-format parquet \
--output-dir ./data/raw/jao/netpos/
```
**Feature Engineering:**
```python
def engineer_netpos_features(df: pl.DataFrame) -> pl.DataFrame:
"""
Create net position features from Min/Max data
"""
df = df.with_columns([
# 1. Range (degrees of freedom)
(pl.col('net_pos_max') - pl.col('net_pos_min'))
.alias('net_pos_range'),
# 2. Utilization margin (0 = at min, 1 = at max)
((pl.col('actual_net_pos') - pl.col('net_pos_min')) /
(pl.col('net_pos_max') - pl.col('net_pos_min')))
.alias('net_pos_margin'),
# 3. Stress index (inverse of range, normalized)
(1.0 / (pl.col('net_pos_max') - pl.col('net_pos_min') + 100.0))
.alias('zone_stress_index'),
# 4. Distance to limits (minimum of distances to both boundaries)
pl.min_horizontal([
pl.col('actual_net_pos') - pl.col('net_pos_min'),
pl.col('net_pos_max') - pl.col('actual_net_pos')
]).alias('distance_to_nearest_limit'),
# 5. Asymmetry (is the feasible space symmetric around zero?)
((pl.col('net_pos_max') + pl.col('net_pos_min')) / 2.0)
.alias('domain_asymmetry')
])
return df
```
**System-Level Aggregations:**
```python
def aggregate_netpos_system_wide(df: pl.DataFrame) -> pl.DataFrame:
"""
Create system-wide net position stress indicators
"""
system_features = df.groupby('timestamp').agg([
# Average range across all zones
pl.col('net_pos_range').mean().alias('avg_zone_flexibility'),
# Minimum range (most constrained zone)
pl.col('net_pos_range').min().alias('min_zone_flexibility'),
# Count of highly constrained zones (range < 5000 MW)
(pl.col('net_pos_range') < 5000).sum().alias('n_constrained_zones'),
# System-wide stress (average of zone stress indices)
pl.col('zone_stress_index').mean().alias('system_stress_avg'),
# Maximum zone stress (tightest zone)
pl.col('zone_stress_index').max().alias('system_stress_max')
])
return system_features
```
---
### 2.4 CNEC Data Series
**File:** `Core_DA_CC_CNEC_[date].xml` (daily publication at 10:30 CET)
| Field Name | Data Type | Description | Use in Features | Missing Value Strategy |
|------------|-----------|-------------|-----------------|----------------------|
| `cnec_id` | String | Unique identifier (e.g., "DE_CZ_TIE_001") | CNEC tracking | N/A - Required field |
| `cnec_name` | String | Human-readable name (e.g., "Line Röhrsdorf-Hradec N-1 ABC") | Documentation | Forward-fill |
| `contingency` | String | N-1 element causing constraint | CNEC classification | "basecase" if missing |
| `tso` | String | Responsible TSO (e.g., "50Hertz", "ÄŒEPS") | Geographic features | Parse from `cnec_id` |
| `monitored_element` | String | Physical line/transformer being monitored | CNEC grouping | Required field |
| `fmax` | Float (MW) | Maximum flow limit under contingency | Normalization baseline | **CRITICAL - must have** |
| `ram_before` | Float (MW) | Initial remaining available margin | Historical patterns | 0.0 (conservative) |
| `ram_after` | Float (MW) | Final RAM after remedial actions | **Primary feature** | Forward-fill from `ram_before` |
| `flow_fb` | Float (MW) | Final flow after market coupling | Flow patterns | 0.0 if unconstrained |
| `presolved` | Boolean | Was CNEC binding/active? | **Key target feature** | False (not binding) |
| `shadow_price` | Float (€/MW) | Lagrange multiplier for constraint | Economic signal | 0.0 if not binding |
| `direction` | String | "import" or "export" from perspective | Directionality | Parse from flow sign |
| `voltage_level` | Integer (kV) | Voltage level (e.g., 220, 380) | CNEC classification | 380 (most common) |
| `timestamp` | Datetime | Delivery hour (CET/CEST) | Time index | **REQUIRED** |
| `business_day` | Date | Market day (D for delivery D+1) | File organization | Derive from timestamp |
**Storage Schema:**
```python
cnec_schema = {
'timestamp': pl.Datetime,
'business_day': pl.Date,
'cnec_id': pl.Utf8,
'cnec_name': pl.Utf8,
'tso': pl.Utf8,
'fmax': pl.Float32,
'ram_after': pl.Float32, # Primary field
'ram_before': pl.Float32,
'flow_fb': pl.Float32,
'presolved': pl.Boolean,
'shadow_price': pl.Float32,
'contingency': pl.Utf8,
'voltage_level': pl.Int16
}
```
**Collection Decision:**
- ✅ **COLLECT:** All fields above
- âÂÂÅ’ **SKIP:** Internal TSO-specific IDs, validation flags, intermediate calculation steps
### 2.5 PTDF Data Series
**File:** `Core_DA_CC_PTDF_[date].xml` (published D-2 and updated D-1)
| Field Name | Data Type | Description | Use in Features | Missing Value Strategy |
|------------|-----------|-------------|-----------------|----------------------|
| `cnec_id` | String | Links to CNEC | Join key | **REQUIRED** |
| `zone` | String | Bidding zone (e.g., "DE_LU", "FR") | Sensitivity mapping | **REQUIRED** |
| `ptdf_value` | Float | Sensitivity coefficient (-1.0 to +1.0) | **Core feature** | 0.0 (no impact) |
| `timestamp` | Datetime | Delivery hour | Time index | **REQUIRED** |
| `version` | String | "D-2" or "D-1" | Data freshness | Use latest available |
| `is_hvdc` | Boolean | Is this a HVDC link sensitivity? | Separate treatment | False |
**PTDF Matrix Structure:**
```
DE_LU FR NL BE AT CZ PL ... (12 zones)
CNEC_001 0.42 -0.18 0.15 0.08 0.05 0.12 -0.02 ...
CNEC_002 -0.35 0.67 -0.12 0.25 0.03 -0.08 0.15 ...
CNEC_003 0.28 -0.22 0.45 -0.15 0.18 0.08 -0.05 ...
...
CNEC_200 ... ... ... ... ... ... ... ...
```
**Collection Decision:**
- ✅ **COLLECT:** `ptdf_value` for all zones Ã all CNECs Ã all hours
- ✅ **COLLECT:** Only "D-1" version (most recent available for historical data)
- âÂÂÅ’ **SKIP:** D-2 version, intermediate updates, HVDC-specific matrices
**Dimensionality:**
- Raw: ~200 CNECs Ã 12 zones Ã 17,520 hours = ~42 million values
- **Hybrid Storage:** Top 50 CNECs with individual PTDFs, Tier-2 with border aggregates
### 2.6 RAM Data Series
**File:** `Core_DA_CC_CNEC_[date].xml` (within CNEC records)
| Field Name | Data Type | Description | Use in Features | Missing Value Strategy |
|------------|-----------|-------------|-----------------|----------------------|
| `cnec_id` | String | CNEC identifier | Join key | **REQUIRED** |
| `timestamp` | Datetime | Delivery hour | Time index | **REQUIRED** |
| `minram` | Float (MW) | Minimum RAM (70% rule) | Compliance checking | 0.7 Ã fmax |
| `initial_ram` | Float (MW) | RAM before coordination | Historical baseline | Forward-fill |
| `final_ram` | Float (MW) | RAM after validation/remedial actions | **Primary feature** | **CRITICAL** |
| `ram_net_position` | Float (MW) | Net position at which RAM calculated | Market condition | 0.0 |
| `validation_adjustment` | Float (MW) | TSO adjustments during validation | Adjustment patterns | 0.0 |
| `remedial_actions_applied` | Boolean | Were remedial actions used? | Constraint stress | False |
**Collection Decision:**
- ✅ **COLLECT:** `final_ram`, `minram`, `initial_ram`
- ✅ **COLLECT:** `remedial_actions_applied` (binary indicator)
- âÂÂÅ’ **SKIP:** Detailed remedial action descriptions (too granular)
### 2.7 Shadow Price Data Series
**File:** `Core_DA_Results_[date].xml` (post-market publication)
| Field Name | Data Type | Description | Use in Features | Missing Value Strategy |
|------------|-----------|-------------|-----------------|----------------------|
| `cnec_id` | String | CNEC identifier | Join key | **REQUIRED** |
| `timestamp` | Datetime | Delivery hour | Time index | **REQUIRED** |
| `shadow_price` | Float (€/MW) | Lagrange multiplier | Economic signal | 0.0 |
| `shadow_price_before_minram` | Float (€/MW) | Before 70% rule applied | Pre-constraint value | 0.0 |
| `binding_duration` | Integer (minutes) | How long CNEC was binding | Persistence | 0 |
| `peak_shadow_price_4h` | Float (€/MW) | Max in 4-hour window | Volatility signal | shadow_price |
**Collection Decision:**
- ✅ **COLLECT:** `shadow_price` (primary)
- ✅ **COLLECT:** `binding_duration` (for persistence features)
- âÂÂÅ’ **SKIP:** `shadow_price_before_minram` (less relevant for forecasting)
---
### 2.8 D2CF (Day-2 Congestion Forecast) - OPTIONAL
**Decision: SKIP for MVP**
**Rationale:**
1. **Temporal misalignment:** D2CF provides TSO forecasts for D+2, but we're forecasting D+1 to D+14
2. **Forecast contamination:** These are forecasts, not ground truth - introduces noise
3. **Better alternatives:** ENTSO-E actual generation/load provides cleaner signals
4. **Scope reduction:** Keeps MVP focused on high-signal features
**If collected later:**
- `load_forecast_d2cf`: TSO load forecast
- `generation_forecast_d2cf`: TSO generation forecast
- `net_position_forecast_d2cf`: Expected net position
---
### 2.9 ATC for Non-Core Borders Data Series
**File:** `Core_ATC_External_Borders_[date].xml` or ENTSO-E Transparency Platform
| Field Name | Data Type | Description | Use in Features | Missing Value Strategy |
|------------|-----------|-------------|-----------------|----------------------|
| `border_id` | String | Non-Core border (e.g., "FR-UK", "FR-ES") | Border tracking | **REQUIRED** |
| `timestamp` | Datetime | Delivery hour | Time index | **REQUIRED** |
| `atc_forward` | Float (MW) | Available Transfer Capacity (forward direction) | Loop flow driver | 0.0 |
| `atc_backward` | Float (MW) | Available Transfer Capacity (backward direction) | Loop flow driver | 0.0 |
**Description:**
Available Transfer Capacity on borders connecting Core to non-Core regions. These affect loop flows through Core and impact Core CNEC constraints.
**Why This Matters:**
Large flows on external borders create loop flows through Core:
- **FR-UK flows** affect FR-BE, FR-DE capacities via loop flows
- **Swiss transit** (FR-CH-AT-DE) impacts Core CNECs significantly
- **Nordic flows** through DE-DK affect German internal CNECs
- **Italian flows** through AT-IT affect Austrian CNECs
**Key Non-Core Borders to Collect (~14 borders):**
1. **FR-UK** (IFA, ElecLink, IFA2 interconnectors) - Major loop flow driver
2. **FR-ES** (Pyrenees corridor)
3. **FR-CH** (Alpine corridor to Switzerland)
4. **DE-CH** (Basel-Laufenburg)
5. **AT-CH** (Alpine corridor)
6. **DE-DK** (to Nordic region)
7. **PL-SE** (Baltic to Nordic)
8. **PL-LT** (Baltic connection)
9. **AT-SI** (SEE gateway)
10. **AT-IT** (Brenner Pass)
11. **HU-RO** (SEE connection)
12. **HU-RS** (Balkans)
13. **HR-RS** (Balkans)
14. **SI-IT** (SEE to Italy)
**Collection Method:**
1. **JAO Publication Tool:** Core_ATC_External_Borders
2. **ENTSO-E Transparency Platform:** Fallback if JAO incomplete
**Collection Priority:** DAY 1 AFTERNOON (after core data)
**Storage Schema:**
```python
atc_external_schema = {
'timestamp': pl.Datetime,
'border_id': pl.Utf8,
'atc_forward': pl.Float32,
'atc_backward': pl.Float32
}
```
**Expected File Size:** ~120-160 MB for 24 months × 14 borders
**ENTSO-E API Collection (if needed):**
```python
from entsoe import EntsoePandasClient
non_core_borders = [
('FR', 'UK'), ('FR', 'ES'), ('FR', 'CH'),
('DE', 'CH'), ('DE', 'DK'),
('AT', 'CH'), ('AT', 'IT'),
('PL', 'SE'), ('PL', 'LT')
]
for zone1, zone2 in non_core_borders:
atc_data = client.query_offered_capacity(
country_code_from=zone1,
country_code_to=zone2,
start=start_date,
end=end_date
)
```
---
## 3. Data Cleaning Procedures
### 3.1 Missing Value Handling
**Priority Order:**
1. **Forward-fill** (for continuous series with gradual changes)
2. **Zero-fill** (for event-based fields where absence means "not active")
3. **Interpolation** (for weather-related smooth series)
4. **Drop** (only if >30% missing in critical fields)
**Field-Specific Strategies:**
| Field | Strategy | Justification |
|-------|----------|---------------|
| `ram_after` | Forward-fill (max 2 hours), then linear interpolation | Capacity changes gradually |
| `presolved` | Zero-fill → False | Missing = not binding |
| `shadow_price` | Zero-fill | Missing = no congestion cost |
| `ptdf_value` | Zero-fill | Missing = no sensitivity |
| `fmax` | **NO FILL - MUST HAVE** | Critical for normalization |
| `flow_fb` | Zero-fill | Missing = no flow |
| `cnec_name` | Forward-fill | Descriptive only |
**Implementation:**
```python
def clean_jao_data(df: pl.DataFrame) -> pl.DataFrame:
"""Clean JAO data with field-specific strategies"""
# 1. Handle critical fields (fail if missing)
critical_fields = ['timestamp', 'cnec_id', 'fmax']
for field in critical_fields:
if df[field].null_count() > 0:
raise ValueError(f"Critical field {field} has missing values")
# 2. Forward-fill continuous series
df = df.with_columns([
pl.col('ram_after').fill_null(strategy='forward').fill_null(strategy='backward'),
pl.col('ram_before').fill_null(strategy='forward').fill_null(strategy='backward'),
pl.col('cnec_name').fill_null(strategy='forward')
])
# 3. Zero-fill event indicators
df = df.with_columns([
pl.col('presolved').fill_null(False),
pl.col('shadow_price').fill_null(0.0),
pl.col('flow_fb').fill_null(0.0),
pl.col('remedial_actions_applied').fill_null(False)
])
# 4. Linear interpolation for remaining RAM gaps (max 2 hours)
df = df.with_columns([
pl.col('ram_after').interpolate(method='linear')
])
# 5. Fill contingency with "basecase" if missing
df = df.with_columns([
pl.col('contingency').fill_null('basecase')
])
return df
```
### 3.2 Outlier Detection & Treatment
**RAM Outliers:**
```python
def detect_ram_outliers(df: pl.DataFrame) -> pl.DataFrame:
"""Flag and clip RAM outliers"""
# 1. Physical constraints
df = df.with_columns([
# RAM cannot exceed Fmax
pl.when(pl.col('ram_after') > pl.col('fmax'))
.then(pl.col('fmax'))
.otherwise(pl.col('ram_after'))
.alias('ram_after'),
# RAM cannot be negative (clip to 0)
pl.when(pl.col('ram_after') < 0)
.then(0.0)
.otherwise(pl.col('ram_after'))
.alias('ram_after')
])
# 2. Statistical outliers (sudden unrealistic jumps)
# Flag if RAM drops >80% in 1 hour (likely data error)
df = df.with_columns([
(pl.col('ram_after').diff() / pl.col('ram_after').shift(1) < -0.8)
.fill_null(False)
.alias('outlier_sudden_drop')
])
# 3. Replace flagged outliers with interpolation
df = df.with_columns([
pl.when(pl.col('outlier_sudden_drop'))
.then(None)
.otherwise(pl.col('ram_after'))
.alias('ram_after')
]).with_columns([
pl.col('ram_after').interpolate()
])
return df.drop('outlier_sudden_drop')
```
**PTDF Outliers:**
```python
def clean_ptdf_outliers(ptdf_matrix: np.ndarray) -> np.ndarray:
"""Clean PTDF values to physical bounds"""
# PTDFs theoretically in [-1, 1] but can be slightly outside due to rounding
# Clip to [-1.5, 1.5] to catch errors while allowing small overruns
ptdf_matrix = np.clip(ptdf_matrix, -1.5, 1.5)
# Replace any NaN/Inf with 0 (no sensitivity)
ptdf_matrix = np.nan_to_num(ptdf_matrix, nan=0.0, posinf=0.0, neginf=0.0)
return ptdf_matrix
```
**Shadow Price Outliers:**
```python
def clean_shadow_prices(df: pl.DataFrame) -> pl.DataFrame:
"""Handle extreme shadow prices"""
# Shadow prices above €500/MW are rare but possible during extreme scarcity
# Cap at €1000/MW to prevent contamination (99.9th percentile historically)
df = df.with_columns([
pl.when(pl.col('shadow_price') > 1000)
.then(1000)
.otherwise(pl.col('shadow_price'))
.alias('shadow_price')
])
return df
```
### 3.3 Timestamp Alignment
**Challenge:** JAO publishes data for "delivery day D+1" on "business day D"
**Solution:**
```python
def align_jao_timestamps(df: pl.DataFrame) -> pl.DataFrame:
"""Convert business day to delivery hour timestamps"""
# JAO format: business_day='2025-10-28', delivery_hour=1-24
# Convert to: timestamp='2025-10-29 00:00' to '2025-10-29 23:00' (UTC)
df = df.with_columns([
# Delivery timestamp = business_day + 1 day + (delivery_hour - 1)
(pl.col('business_day') + pl.duration(days=1) +
pl.duration(hours=pl.col('delivery_hour') - 1))
.alias('timestamp')
])
# Convert from CET/CEST to UTC for consistency
df = df.with_columns([
pl.col('timestamp').dt.convert_time_zone('UTC')
])
return df
```
### 3.4 Duplicate Handling
**Sources of Duplicates:**
1. D-2 and D-1 PTDF updates (keep D-1 only)
2. Corrected publications (keep latest by publication time)
3. Intraday updates (out of scope for day-ahead forecasting)
**Deduplication Strategy:**
```python
def deduplicate_jao_data(df: pl.DataFrame) -> pl.DataFrame:
"""Remove duplicate records, keeping most recent version"""
# For PTDF data: keep D-1 version
if 'version' in df.columns:
df = df.filter(pl.col('version') == 'D-1')
# For all data: keep latest publication time per (timestamp, cnec_id)
df = (df
.sort('publication_time', descending=True)
.unique(subset=['timestamp', 'cnec_id'], keep='first'))
return df
```
---
## 4. CNEC Treatment
### 4.1 CNEC Selection Strategy
**Goal:** Reduce from **~2,000 CNECs published daily by TSOs** to **Top 200 most impactful CNECs**
**Two-Tier Approach:**
- **Tier 1 (Top 50 CNECs):** Full feature detail (5 features each = 250 features)
- **Tier 2 (Next 150 CNECs):** Selective features (2 features each = 300 features)
- **Total:** 200 CNECs tracked
**Selection Criteria:**
1. **Binding Frequency** (40% weight): How often was CNEC active?
2. **Economic Impact** (30% weight): Average shadow price when binding
3. **RAM Utilization** (20% weight): How close to limit (low RAM)?
4. **Geographic Coverage** (10% weight): Ensure all borders represented
**Implementation:**
```python
def select_top_cnecs(df: pl.DataFrame, n_cnecs: int = 200) -> dict[str, list[str]]:
"""
Select top 200 most impactful CNECs from ~2,000 published daily
Returns: {'tier1': list of 50 CNECs, 'tier2': list of 150 CNECs}
"""
cnec_impact = df.groupby('cnec_id').agg([
# Binding frequency (times active / total hours)
(pl.col('presolved').sum() / pl.col('presolved').count())
.alias('binding_freq'),
# Average shadow price when binding
pl.col('shadow_price').filter(pl.col('presolved')).mean()
.alias('avg_shadow_price'),
# RAM utilization (% of hours below 30% of Fmax)
((pl.col('ram_after') < 0.3 * pl.col('fmax')).sum() /
pl.col('ram_after').count())
.alias('low_ram_freq'),
# Days appeared (consistency metric)
pl.col('cnec_id').count().alias('days_appeared'),
# Geographic zone (parse from CNEC ID)
pl.col('tso').first().alias('tso')
])
# Calculate composite impact score
cnec_impact = cnec_impact.with_columns([
(0.40 * pl.col('binding_freq') +
0.30 * (pl.col('avg_shadow_price') / 100) + # Normalize to [0,1]
0.20 * pl.col('low_ram_freq') +
0.10 * (pl.col('days_appeared') / 365)) # Consistency bonus
.alias('impact_score')
])
# Select top N, ensuring geographic diversity
top_cnecs = []
# First, get top 10 per major bidding zone border (ensures coverage)
for border in ['DE_FR', 'DE_NL', 'DE_CZ', 'FR_BE', 'AT_CZ', 'DE_AT',
'FR_ES', 'AT_IT', 'DE_PL', 'BE_NL']:
border_cnecs = (cnec_impact
.filter(pl.col('cnec_id').str.contains(border))
.sort('impact_score', descending=True)
.head(10))
top_cnecs.extend(border_cnecs['cnec_id'].to_list())
# Remove duplicates (some CNECs may match multiple borders)
top_cnecs = list(set(top_cnecs))
# Then add remaining highest-impact CNECs to reach n_cnecs
remaining = (cnec_impact
.filter(~pl.col('cnec_id').is_in(top_cnecs))
.sort('impact_score', descending=True)
.head(n_cnecs - len(top_cnecs)))
top_cnecs.extend(remaining['cnec_id'].to_list())
# Split into two tiers
tier1_cnecs = top_cnecs[:50] # Top 50 get full feature detail
tier2_cnecs = top_cnecs[50:200] # Next 150 get selective features
return {
'tier1': tier1_cnecs,
'tier2': tier2_cnecs,
'all': top_cnecs[:200]
}
```
**Why 200 CNECs?**
- From ~2,000 published daily, most are rarely binding or have minimal economic impact
- Top 200 captures >95% of all binding events and congestion costs
- Manageable feature space while preserving critical network information
- Two-tier approach balances detail vs. dimensionality
### 4.2 CNEC Masking Strategy
**Problem:** Not all CNECs are published every day (only those considered relevant by TSOs)
**Solution:** Create a "Master CNEC Set" with masking
```python
def create_cnec_master_set(df: pl.DataFrame, top_cnecs: list[str]) -> pl.DataFrame:
"""Create complete CNEC Ã timestamp matrix with masking"""
# 1. Create complete timestamp Ã CNEC grid
all_timestamps = df.select('timestamp').unique().sort('timestamp')
cnec_template = pl.DataFrame({'cnec_id': top_cnecs})
# Cartesian product: all timestamps Ã all CNECs
complete_grid = all_timestamps.join(cnec_template, how='cross')
# 2. Left join with actual data
complete_data = complete_grid.join(
df.select(['timestamp', 'cnec_id', 'ram_after', 'presolved',
'shadow_price', 'fmax']),
on=['timestamp', 'cnec_id'],
how='left'
)
# 3. Add masking indicator
complete_data = complete_data.with_columns([
# Mask = 1 if CNEC was published (data available)
# Mask = 0 if CNEC not published (implicitly unconstrained)
(~pl.col('ram_after').is_null()).cast(pl.Int8).alias('cnec_mask')
])
# 4. Fill missing values according to strategy
complete_data = complete_data.with_columns([
# If not published, assume unconstrained:
# - RAM = Fmax (maximum margin)
# - presolved = False (not binding)
# - shadow_price = 0 (no congestion)
pl.col('ram_after').fill_null(pl.col('fmax')),
pl.col('presolved').fill_null(False),
pl.col('shadow_price').fill_null(0.0)
])
return complete_data
```
**Resulting Schema:**
```
timestamp cnec_id ram_after presolved shadow_price cnec_mask fmax
2024-10-01 00:00 DE_CZ_TIE_001 450.2 True 12.5 1 800
2024-10-01 00:00 DE_FR_LINE_005 800.0 False 0.0 0 800 # Not published
2024-10-01 01:00 DE_CZ_TIE_001 432.1 True 15.2 1 800
...
```
### 4.3 CNEC Feature Derivation
**From master CNEC set, derive:**
```python
def engineer_cnec_features(df: pl.DataFrame) -> pl.DataFrame:
"""Create CNEC-based features for forecasting"""
df = df.with_columns([
# 1. Margin ratio (normalized RAM)
(pl.col('ram_after') / pl.col('fmax')).alias('margin_ratio'),
# 2. Binding frequency (7-day rolling)
pl.col('presolved').cast(pl.Int8).rolling_mean(window_size=168)
.over('cnec_id').alias('binding_freq_7d'),
# 3. Binding frequency (30-day rolling)
pl.col('presolved').cast(pl.Int8).rolling_mean(window_size=720)
.over('cnec_id').alias('binding_freq_30d'),
# 4. MinRAM compliance
(pl.col('ram_after') < 0.7 * pl.col('fmax'))
.cast(pl.Int8).alias('below_minram'),
# 5. RAM volatility (7-day rolling std)
pl.col('ram_after').rolling_std(window_size=168)
.over('cnec_id').alias('ram_volatility_7d'),
# 6. Shadow price volatility
pl.col('shadow_price').rolling_std(window_size=168)
.over('cnec_id').alias('shadow_price_volatility_7d'),
# 7. CNEC criticality score
(1 - pl.col('margin_ratio')).alias('criticality'),
# 8. Sudden RAM drops (binary flag)
((pl.col('ram_after') - pl.col('ram_after').shift(1)) < -0.2 * pl.col('fmax'))
.cast(pl.Int8).alias('sudden_ram_drop')
])
return df
```
---
## 5. PTDF Treatment - Hybrid Approach
### 5.1 Strategy: Preserve Causality for Critical CNECs
**Challenge:** PTDF matrix contains critical network physics but is high-dimensional
- 200 CNECs × 12 zones × 17,520 hours = ~42 million values
- PTDFs encode how zone injections affect each CNEC (network sensitivity)
- **Critical requirement:** Preserve CNEC-specific causality chain:
- `outage_active_cnec_X` → network sensitivity (PTDF) → `presolved_cnec_X`
**Solution: Two-Tier Hybrid Approach**
#### **Tier 1 (Top 50 CNECs): Individual PTDF Features**
**Preserve all 12 zone sensitivities for each of the 50 most critical CNECs**
- Result: 50 CNECs × 12 zones = **600 individual PTDF features**
- Rationale: These are most impactful CNECs - model needs full network physics
- Enables learning: "When `outage_active_cnec_42` = 1 AND high DE_LU injection (via `ptdf_cnec_42_DE_LU` sensitivity), THEN `presolved_cnec_42` likely = 1"
#### **Tier 2 (Next 150 CNECs): Border-Level PTDF Aggregates**
**Aggregate PTDF sensitivities by border-zone pairs**
- Result: 10 borders × 12 zones = **120 aggregate PTDF features**
- Rationale: Captures regional network patterns without full individual resolution
- Preserves interpretability: "How sensitive are DE-CZ tier-2 CNECs to German generation?"
- Still allows causal learning: `outage_active_cnec_tier2` → `avg_ptdf_border` → `presolved_cnec_tier2`
**Total PTDF Features: 720 (600 individual + 120 aggregate)**
**Why This Approach?**
1. ✅ **Preserves CNEC-specific causality for top 50** - most critical constraints
2. ✅ **Avoids PCA mixing** - no loss of CNEC identification
3. ✅ **Interpretable** - can explain which zones affect which borders
4. ✅ **Dimensionality reduction** - 1,800 tier-2 values → 120 features (15:1)
5. ✅ **Maintains geographic structure** - DE-CZ separate from FR-BE
### 5.2 Implementation: Top 50 Individual PTDFs
```python
def extract_top50_ptdfs(ptdf_matrix: np.ndarray,
top_50_cnec_ids: list[str],
all_cnec_ids: list[str],
zones: list[str]) -> pl.DataFrame:
"""
Extract individual PTDF values for top 50 CNECs
Args:
ptdf_matrix: Shape (n_timestamps, n_cnecs, n_zones)
top_50_cnec_ids: List of 50 most critical CNEC identifiers
all_cnec_ids: Full list of CNEC IDs matching matrix dimension
zones: List of 12 Core zone identifiers ['DE_LU', 'FR', 'BE', 'NL', ...]
Returns:
DataFrame with 600 PTDF features (50 CNECs × 12 zones)
"""
# Find indices of top 50 CNECs in the full matrix
top_50_indices = [all_cnec_ids.index(cnec) for cnec in top_50_cnec_ids]
# Extract PTDF values for top 50 CNECs
# Shape: (n_timestamps, 50, 12)
top_50_ptdfs = ptdf_matrix[:, top_50_indices, :]
# Reshape to flat features: (n_timestamps, 600)
n_timestamps = top_50_ptdfs.shape[0]
features_dict = {}
for cnec_idx, cnec_id in enumerate(top_50_cnec_ids):
for zone_idx, zone in enumerate(zones):
feature_name = f'ptdf_cnec_{cnec_id}_{zone}'
features_dict[feature_name] = top_50_ptdfs[:, cnec_idx, zone_idx]
print(f"✓ Extracted {len(features_dict)} individual PTDF features for top 50 CNECs")
return pl.DataFrame(features_dict)
```
### 5.3 Implementation: Tier-2 Border Aggregates
```python
def aggregate_tier2_ptdfs_by_border(ptdf_matrix: np.ndarray,
tier2_cnec_ids: list[str],
all_cnec_ids: list[str],
zones: list[str]) -> pl.DataFrame:
"""
Aggregate PTDF sensitivities for tier-2 CNECs by border-zone pairs
Args:
ptdf_matrix: Shape (n_timestamps, n_cnecs, n_zones)
tier2_cnec_ids: List of 150 tier-2 CNEC identifiers
all_cnec_ids: Full list of CNEC IDs
zones: List of 12 Core zone identifiers
Returns:
DataFrame with 120 features (10 borders × 12 zones)
"""
# Define major borders
major_borders = ['DE_FR', 'DE_NL', 'DE_CZ', 'FR_BE', 'AT_CZ',
'DE_AT', 'BE_NL', 'AT_IT', 'DE_PL', 'CZ_PL']
# Find indices of tier-2 CNECs
tier2_indices = [all_cnec_ids.index(cnec) for cnec in tier2_cnec_ids]
# Extract tier-2 PTDF subset
tier2_ptdfs = ptdf_matrix[:, tier2_indices, :] # (n_timestamps, 150, 12)
features_dict = {}
for border in major_borders:
# Find tier-2 CNECs belonging to this border
border_cnec_indices = [
i for i, cnec_id in enumerate(tier2_cnec_ids)
if border.replace('_', '').lower() in cnec_id.lower()
]
if len(border_cnec_indices) == 0:
# No tier-2 CNECs for this border - use zeros
for zone in zones:
features_dict[f'avg_ptdf_{border}_{zone}_tier2'] = np.zeros(tier2_ptdfs.shape[0])
continue
# Average PTDF across all tier-2 CNECs on this border
for zone_idx, zone in enumerate(zones):
border_zone_ptdfs = tier2_ptdfs[:, border_cnec_indices, zone_idx]
avg_ptdf = np.mean(border_zone_ptdfs, axis=1)
features_dict[f'avg_ptdf_{border}_{zone}_tier2'] = avg_ptdf
print(f"✓ Aggregated {len(features_dict)} border-zone PTDF features for tier-2")
return pl.DataFrame(features_dict)
```
### 5.4 Complete PTDF Pipeline
```python
def prepare_ptdf_features(ptdf_matrix: np.ndarray,
top_50_cnecs: list[str],
tier2_cnecs: list[str],
all_cnec_ids: list[str],
zones: list[str]) -> pl.DataFrame:
"""
Complete PTDF feature engineering pipeline
Returns:
DataFrame with 720 PTDF features total:
- 600 individual features (top 50 CNECs × 12 zones)
- 120 aggregate features (10 borders × 12 zones for tier-2)
"""
# 1. Extract individual PTDFs for top 50
top50_features = extract_top50_ptdfs(
ptdf_matrix, top_50_cnecs, all_cnec_ids, zones
)
# 2. Aggregate tier-2 PTDFs by border
tier2_features = aggregate_tier2_ptdfs_by_border(
ptdf_matrix, tier2_cnecs, all_cnec_ids, zones
)
# 3. Combine
all_ptdf_features = pl.concat([top50_features, tier2_features], how='horizontal')
print(f"\n✓ PTDF Features Generated:")
print(f" Top 50 individual: {top50_features.shape[1]} features")
print(f" Tier-2 aggregated: {tier2_features.shape[1]} features")
print(f" Total PTDF features: {all_ptdf_features.shape[1]}")
return all_ptdf_features
```
### 5.5 PTDF Feature Validation
```python
def validate_ptdf_features(ptdf_features: pl.DataFrame) -> None:
"""Validate PTDF feature quality"""
# 1. Check for valid range (PTDFs should be in [-1, 1])
outliers = []
for col in ptdf_features.columns:
if col.startswith('ptdf_') or col.startswith('avg_ptdf_'):
values = ptdf_features[col]
min_val, max_val = values.min(), values.max()
if min_val < -1.5 or max_val > 1.5:
outliers.append(f"{col}: [{min_val:.3f}, {max_val:.3f}]")
if outliers:
print(f"âš WARNING: {len(outliers)} PTDF features outside expected [-1, 1] range")
for out in outliers[:5]: # Show first 5
print(f" {out}")
# 2. Check for constant features (no variance)
constant_features = []
for col in ptdf_features.columns:
if col.startswith('ptdf_') or col.startswith('avg_ptdf_'):
if ptdf_features[col].std() < 1e-6:
constant_features.append(col)
if constant_features:
print(f"âš WARNING: {len(constant_features)} PTDF features have near-zero variance")
# 3. Summary statistics
print(f"\n✓ PTDF Feature Validation Complete:")
print(f" Features in valid range: {len(ptdf_features.columns) - len(outliers)}")
print(f" Features with variance: {len(ptdf_features.columns) - len(constant_features)}")
```
---
## 6. RAM Treatment
### 6.1 RAM Normalization
**Challenge:** Absolute RAM values vary widely across CNECs (50 MW to 2000 MW)
**Solution:** Normalize to margin ratio
```python
def normalize_ram_values(df: pl.DataFrame) -> pl.DataFrame:
"""Normalize RAM to comparable scale"""
df = df.with_columns([
# 1. Margin ratio: RAM / Fmax
(pl.col('ram_after') / pl.col('fmax')).alias('margin_ratio'),
# 2. MinRAM compliance ratio: RAM / (0.7 Ã Fmax)
(pl.col('ram_after') / (0.7 * pl.col('fmax'))).alias('minram_compliance'),
# 3. Percentile within CNEC's historical distribution
pl.col('ram_after').rank(method='average').over('cnec_id')
.alias('ram_percentile')
])
# Cap margin_ratio at 1.0 (cannot exceed Fmax)
df = df.with_columns([
pl.when(pl.col('margin_ratio') > 1.0)
.then(1.0)
.otherwise(pl.col('margin_ratio'))
.alias('margin_ratio')
])
return df
```
### 6.2 RAM Time Series Features
```python
def engineer_ram_features(df: pl.DataFrame) -> pl.DataFrame:
"""Create rolling window features from RAM values"""
df = df.with_columns([
# 1. Moving averages
pl.col('ram_after').rolling_mean(window_size=24).alias('ram_ma_24h'),
pl.col('ram_after').rolling_mean(window_size=168).alias('ram_ma_7d'),
pl.col('ram_after').rolling_mean(window_size=720).alias('ram_ma_30d'),
# 2. Volatility measures
pl.col('ram_after').rolling_std(window_size=168).alias('ram_std_7d'),
pl.col('ram_after').rolling_std(window_size=720).alias('ram_std_30d'),
# 3. Percentiles (vs 90-day history)
pl.col('ram_after')
.rolling_quantile(quantile=0.1, window_size=2160)
.alias('ram_p10_90d'),
pl.col('ram_after')
.rolling_quantile(quantile=0.5, window_size=2160)
.alias('ram_median_90d'),
# 4. Rate of change
(pl.col('ram_after').diff(1) / pl.col('ram_after').shift(1))
.alias('ram_pct_change_1h'),
(pl.col('ram_after').diff(24) / pl.col('ram_after').shift(24))
.alias('ram_pct_change_24h'),
# 5. Binary indicators
(pl.col('ram_after') < 0.3 * pl.col('fmax'))
.cast(pl.Int8).alias('low_ram_flag'),
((pl.col('ram_after') - pl.col('ram_after').shift(1)) < -0.2 * pl.col('fmax'))
.cast(pl.Int8).alias('sudden_drop_flag'),
# 6. MinRAM violation counter (7-day window)
(pl.col('ram_after') < 0.7 * pl.col('fmax'))
.cast(pl.Int8)
.rolling_sum(window_size=168)
.alias('minram_violations_7d')
])
return df
```
### 6.3 Cross-Border RAM Aggregation
**Create system-level RAM features:**
```python
def aggregate_ram_system_wide(df: pl.DataFrame) -> pl.DataFrame:
"""Aggregate RAM across all CNECs to system-level features"""
system_features = df.groupby('timestamp').agg([
# 1. Average margin across all CNECs
pl.col('margin_ratio').mean().alias('system_avg_margin'),
# 2. Minimum margin (most constrained CNEC)
pl.col('margin_ratio').min().alias('system_min_margin'),
# 3. Count of binding CNECs
pl.col('presolved').sum().alias('n_binding_cnecs'),
# 4. Count of CNECs below minRAM
(pl.col('ram_after') < 0.7 * pl.col('fmax')).sum()
.alias('n_cnecs_below_minram'),
# 5. Standard deviation of margins (uniformity)
pl.col('margin_ratio').std().alias('margin_std'),
# 6. Total economic cost (sum of shadow prices)
pl.col('shadow_price').sum().alias('total_congestion_cost'),
# 7. Max shadow price
pl.col('shadow_price').max().alias('max_shadow_price')
])
return system_features
```
---
## 7. Shadow Prices Treatment
### 7.1 Shadow Price Features
```python
def engineer_shadow_price_features(df: pl.DataFrame) -> pl.DataFrame:
"""Create features from shadow prices (economic signals)"""
df = df.with_columns([
# 1. Rolling statistics
pl.col('shadow_price').rolling_mean(window_size=24)
.alias('shadow_price_ma_24h'),
pl.col('shadow_price').rolling_max(window_size=24)
.alias('shadow_price_max_24h'),
pl.col('shadow_price').rolling_std(window_size=168)
.alias('shadow_price_volatility_7d'),
# 2. Binary indicators
(pl.col('shadow_price') > 0).cast(pl.Int8)
.alias('has_congestion_cost'),
(pl.col('shadow_price') > 50).cast(pl.Int8)
.alias('high_congestion_flag'), # €50/MW threshold
# 3. Economic stress indicator (count of expensive hours in 7d)
(pl.col('shadow_price') > 50).cast(pl.Int8)
.rolling_sum(window_size=168)
.alias('expensive_hours_7d'),
# 4. Shadow price persistence (how long has it been >0?)
# Create groups of consecutive non-zero shadow prices
((pl.col('shadow_price') > 0) != (pl.col('shadow_price').shift(1) > 0))
.cum_sum()
.alias('shadow_price_regime'),
])
# 5. Duration in current regime
df = df.with_columns([
pl.col('shadow_price_regime')
.rank(method='dense').over('shadow_price_regime')
.alias('hours_in_regime')
])
return df
```
---
## 8. Feature Engineering Pipeline
### 8.1 Complete Feature Matrix Construction
**Final feature set: ~1,060 features (Option A Architecture)**
- **Historical Context:** 730 features (what happened in past 21 days)
- **Future Covariates:** 280 features (what we know will happen in next 14 days)
- **System-Level:** 50 features (real-time aggregates)
**Architecture Rationale:**
- **Top 50 CNECs:** Full detail (5 metrics each = 250 features)
- Most impactful CNECs get complete representation
- **Tier-2 150 CNECs:** Selective detail (300 features)
- Binary indicators: `presolved` (binding) + `outage_active` (150 + 150 = 300 features)
- Aggregated metrics: RAM, shadow prices by border (30 features)
- Preserves high-signal discrete events while reducing continuous redundancy
- **Supporting Features:** 380 features
- PTDF patterns, border capacities, weather, temporal, interactions
```python
class JAOFeatureEngineer:
"""
Complete JAO feature engineering pipeline - Option A Architecture
Architecture:
- Top 50 CNECs: Full detail (5 metrics Ã 50 = 250 features)
- Tier-2 150 CNECs: Selective (presolved + outage_active = 300 features)
- Tier-2 aggregated: Border-level RAM/shadow prices (30 features)
- Supporting: PTDF, borders, system, temporal, weather (150 features)
Total: ~730 historical features + ~280 future covariates
Inputs: Raw JAO data (CNECs, PTDFs, RAMs, shadow prices) + ENTSO-E outages
Outputs: Engineered feature matrix (512h Ã 730 features) +
Future covariates (336h Ã 280 features)
"""
def __init__(self, top_n_cnecs: int = 50, tier2_n_cnecs: int = 150,
ptdf_components: int = 10):
self.top_n_cnecs = top_n_cnecs
self.tier2_n_cnecs = tier2_n_cnecs
self.total_cnecs = top_n_cnecs + tier2_n_cnecs # 200 total
self.ptdf_components = ptdf_components
self.pca_model = None
self.scaler = None
self.top_cnecs = None
self.tier2_cnecs = None
def fit(self, historical_data: dict):
"""
Fit on 12-month historical data to establish baselines
Args:
historical_data: {
'cnecs': pl.DataFrame,
'ptdfs': np.ndarray,
'rams': pl.DataFrame,
'shadow_prices': pl.DataFrame,
'outages': pl.DataFrame (from ENTSO-E via EIC matching)
}
"""
print("Fitting JAO feature engineer on historical data...")
# 1. Select top 200 CNECs (50 + 150)
print(f" - Selecting top {self.total_cnecs} CNECs...")
all_selected = select_top_cnecs(
historical_data['cnecs'],
n_cnecs=self.total_cnecs
)
self.top_cnecs = all_selected[:self.top_n_cnecs]
self.tier2_cnecs = all_selected[self.top_n_cnecs:]
print(f" Top 50: {self.top_cnecs[:3]}... (full detail)")
print(f" Tier-2 150: {self.tier2_cnecs[:3]}... (selective detail)")
# 2. Engineer PTDF features (hybrid approach)
print(" - Engineering PTDF features...")
ptdf_compressed, self.pca_model, self.scaler = reduce_ptdf_dimensions(
historical_data['ptdfs'],
n_components=self.ptdf_components
)
# 3. Calculate historical baselines (for percentiles, etc.)
print(" - Computing historical baselines...")
self.ram_baseline = historical_data['rams'].groupby('cnec_id').agg([
pl.col('ram_after').mean().alias('ram_mean'),
pl.col('ram_after').std().alias('ram_std'),
pl.col('ram_after').quantile(0.1).alias('ram_p10'),
pl.col('ram_after').quantile(0.9).alias('ram_p90')
])
print("✓ Feature engineer fitted")
def transform(self,
data: dict,
start_time: str,
end_time: str) -> tuple[np.ndarray, np.ndarray]:
"""
Transform JAO data to feature matrices
Args:
data: Same structure as fit()
start_time: Start of context window (e.g., 21 days before prediction)
end_time: End of context window (prediction time)
Returns:
historical_features: (n_hours, 730) array of historical context
future_features: (n_hours_future, 280) array of future covariates
"""
n_hours = len(pd.date_range(start_time, end_time, freq='H'))
historical_features = np.zeros((n_hours, 730))
print("Engineering historical features...")
# Filter to time window
cnec_data = (data['cnecs']
.filter(pl.col('timestamp').is_between(start_time, end_time)))
outage_data = (data['outages']
.filter(pl.col('timestamp').is_between(start_time, end_time)))
# === TOP 50 CNECs - FULL DETAIL (250 features) ===
print(" - Top 50 CNECs (full detail)...")
top50_data = cnec_data.filter(pl.col('cnec_id').is_in(self.top_cnecs))
top50_outages = outage_data.filter(pl.col('cnec_id').is_in(self.top_cnecs))
col_idx = 0
for cnec_id in self.top_cnecs:
cnec_series = top50_data.filter(pl.col('cnec_id') == cnec_id).sort('timestamp')
cnec_outage = top50_outages.filter(pl.col('cnec_id') == cnec_id).sort('timestamp')
# 5 metrics per CNEC
historical_features[:, col_idx] = cnec_series['ram_after'].to_numpy()
historical_features[:, col_idx + 1] = (cnec_series['ram_after'] / cnec_series['fmax']).to_numpy()
historical_features[:, col_idx + 2] = cnec_series['presolved'].cast(pl.Int8).to_numpy()
historical_features[:, col_idx + 3] = cnec_series['shadow_price'].to_numpy()
historical_features[:, col_idx + 4] = cnec_outage['outage_active'].to_numpy()
col_idx += 5
# === TIER-2 150 CNECs - SELECTIVE DETAIL (300 features) ===
print(" - Tier-2 150 CNECs (presolved + outage)...")
tier2_data = cnec_data.filter(pl.col('cnec_id').is_in(self.tier2_cnecs))
tier2_outages = outage_data.filter(pl.col('cnec_id').is_in(self.tier2_cnecs))
# Presolved flags (150 features)
for cnec_id in self.tier2_cnecs:
cnec_series = tier2_data.filter(pl.col('cnec_id') == cnec_id).sort('timestamp')
historical_features[:, col_idx] = cnec_series['presolved'].cast(pl.Int8).to_numpy()
col_idx += 1
# Outage flags (150 features)
for cnec_id in self.tier2_cnecs:
cnec_outage = tier2_outages.filter(pl.col('cnec_id') == cnec_id).sort('timestamp')
historical_features[:, col_idx] = cnec_outage['outage_active'].to_numpy()
col_idx += 1
# === TIER-2 AGGREGATED METRICS (30 features) ===
print(" - Tier-2 aggregated metrics by border...")
borders = ['DE_FR', 'DE_NL', 'DE_CZ', 'DE_BE', 'FR_BE', 'AT_CZ',
'DE_AT', 'CZ_SK', 'AT_HU', 'PL_CZ']
for border in borders:
# Get tier-2 CNECs for this border
border_cnecs = [c for c in self.tier2_cnecs if border.replace('_', '') in c]
if not border_cnecs:
historical_features[:, col_idx:col_idx + 3] = 0
col_idx += 3
continue
border_data = tier2_data.filter(pl.col('cnec_id').is_in(border_cnecs))
# Aggregate per timestamp
border_agg = border_data.groupby('timestamp').agg([
pl.col('ram_after').mean().alias('avg_ram'),
(pl.col('ram_after') / pl.col('fmax')).mean().alias('avg_margin'),
pl.col('shadow_price').sum().alias('total_shadow_price')
]).sort('timestamp')
historical_features[:, col_idx] = border_agg['avg_ram'].to_numpy()
historical_features[:, col_idx + 1] = border_agg['avg_margin'].to_numpy()
historical_features[:, col_idx + 2] = border_agg['total_shadow_price'].to_numpy()
col_idx += 3
# === PTDF PATTERNS (10 features) ===
print(" - PTDF compression...")
ptdf_subset = data['ptdfs'][start_time:end_time, :, :]
ptdf_2d = ptdf_subset.reshape(len(ptdf_subset), -1)
ptdf_scaled = self.scaler.transform(ptdf_2d)
ptdf_features = self.pca_model.transform(ptdf_scaled) # (n_hours, 10)
historical_features[:, col_idx:col_idx + 10] = ptdf_features
col_idx += 10
# === BORDER CAPACITY HISTORICAL (20 features) ===
print(" - Border capacities...")
capacity_historical = data['entsoe']['crossborder_flows'][start_time:end_time]
historical_features[:, col_idx:col_idx + 20] = capacity_historical
col_idx += 20
# === SYSTEM-LEVEL AGGREGATES (20 features) ===
print(" - System-level aggregates...")
system_features = aggregate_ram_system_wide(cnec_data).to_numpy()
historical_features[:, col_idx:col_idx + 20] = system_features
col_idx += 20
# === TEMPORAL FEATURES (10 features) ===
print(" - Temporal features...")
timestamps = pd.date_range(start_time, end_time, freq='H')
temporal = create_temporal_features(timestamps)
historical_features[:, col_idx:col_idx + 10] = temporal
col_idx += 10
# === WEATHER FEATURES (50 features) ===
print(" - Weather features...")
weather = data['weather'][start_time:end_time]
historical_features[:, col_idx:col_idx + 50] = weather
col_idx += 50
# === INTERACTION FEATURES (40 features) ===
print(" - Interaction features...")
interactions = create_interaction_features(
cnec_data, weather, timestamps
)
historical_features[:, col_idx:col_idx + 40] = interactions
col_idx += 40
print(f"✓ Historical features: {historical_features.shape}")
assert col_idx == 730, f"Expected 730 features, got {col_idx}"
# === FUTURE COVARIATES ===
future_features = self._create_future_covariates(data, end_time)
return historical_features, future_features
def _create_future_covariates(self, data: dict, prediction_start: str) -> np.ndarray:
"""Create future covariates for 14-day horizon"""
prediction_end = pd.Timestamp(prediction_start) + pd.Timedelta(days=14)
n_hours_future = 336 # 14 days Ã 24 hours
future_features = np.zeros((n_hours_future, 280))
print("Engineering future covariates...")
col_idx = 0
# Top 50 CNEC planned outages (50 features)
for cnec_id in self.top_cnecs:
planned_outages = data['outages'].filter(
(pl.col('cnec_id') == cnec_id) &
(pl.col('outage_type') == 'planned') &
(pl.col('timestamp') >= prediction_start) &
(pl.col('timestamp') < prediction_end)
).sort('timestamp')
future_features[:, col_idx] = planned_outages['outage_active'].to_numpy()
col_idx += 1
# Tier-2 150 CNEC planned outages (150 features)
for cnec_id in self.tier2_cnecs:
planned_outages = data['outages'].filter(
(pl.col('cnec_id') == cnec_id) &
(pl.col('outage_type') == 'planned') &
(pl.col('timestamp') >= prediction_start) &
(pl.col('timestamp') < prediction_end)
).sort('timestamp')
future_features[:, col_idx] = planned_outages['outage_active'].to_numpy()
col_idx += 1
# Weather forecasts (50 features)
weather_forecast = data['weather_forecast'][prediction_start:prediction_end]
future_features[:, col_idx:col_idx + 50] = weather_forecast
col_idx += 50
# Temporal (10 features)
future_timestamps = pd.date_range(prediction_start, prediction_end, freq='H', inclusive='left')
temporal = create_temporal_features(future_timestamps)
future_features[:, col_idx:col_idx + 10] = temporal
col_idx += 10
# Border capacity adjustments (20 features)
planned_ntc = data['entsoe']['planned_ntc'][prediction_start:prediction_end]
future_features[:, col_idx:col_idx + 20] = planned_ntc
col_idx += 20
print(f"✓ Future covariates: {future_features.shape}")
assert col_idx == 280, f"Expected 280 future features, got {col_idx}"
return future_features
```
### 8.2 Master Feature List (Option A Architecture)
**Total: ~1,060 features (730 historical + 280 future + 50 real-time aggregates)**
#### **Historical Context Features (730 total)**
**Category 1: Top 50 CNECs - Full Detail (250 features)**
For each of the 50 most impactful CNECs:
- `ram_after_cnec_[ID]`: RAM value (MW)
- `margin_ratio_cnec_[ID]`: RAM / Fmax (0-1 normalized)
- `presolved_cnec_[ID]`: Binding status (1=binding, 0=not binding)
- `shadow_price_cnec_[ID]`: Congestion cost (€/MW)
- `outage_active_cnec_[ID]`: Outage status (1=under outage, 0=operational)
**Selection Criteria:**
```
Impact Score = 0.25Ãâ€â€(appearance rate) + 0.30Ãâ€â€(binding frequency) +
0.20Ãâ€â€(economic impact) + 0.15Ãâ€â€(RAM tightness) +
0.10Ãâ€â€(geographic importance)
```
**Category 2: Tier-2 150 CNECs - Selective Detail (300 features)**
*Individual Binary Indicators (300 features):*
- `presolved_cnec_[ID]`: Binding status for each tier-2 CNEC (150 features)
- Preserves constraint activation patterns
- Allows model to learn which CNECs bind under which conditions
- `outage_active_cnec_[ID]`: Outage status for each tier-2 CNEC (150 features)
- Preserves EIC matching benefit
- Enables learning of outage → binding causality
- Available as future covariate (planned outages known ahead)
*Aggregated Continuous Metrics (30 features):*
Grouped by border (10 borders Ã 3 metrics):
- `avg_ram_[BORDER]_tier2`: Average RAM for tier-2 CNECs on this border
- `avg_margin_ratio_[BORDER]_tier2`: Average margin ratio
- `total_shadow_price_[BORDER]_tier2`: Sum of shadow prices
Borders: DE_FR, DE_NL, DE_CZ, DE_BE, FR_BE, AT_CZ, DE_AT, CZ_SK, AT_HU, PL_CZ
**Category 3: PTDF Patterns (10 features)**
- `ptdf_pc1` through `ptdf_pc10`: Principal components
- Compressed from (200 CNECs Ã 12 zones = 2,400 raw values)
- Captures ~92% of variance in network sensitivities
**Category 4: Border Capacity Historical (20 features)**
- `capacity_hist_de_fr`, `capacity_hist_de_nl`, etc.
- One feature per FBMC border (~20 borders)
- Actual historical cross-border flow capacity from ENTSO-E
**Category 5: System-Level Aggregates (20 features)**
- `system_min_margin`: Tightest CNEC margin across all 200
- `n_binding_cnecs_total`: Count of all binding CNECs
- `n_binding_cnecs_top50`: Count of top-50 CNECs binding
- `n_binding_cnecs_tier2`: Count of tier-2 CNECs binding
- `margin_std`: Standard deviation of margins (uniformity indicator)
- `total_congestion_cost`: Sum of all shadow prices (€)
- `max_shadow_price`: Highest shadow price (€/MW)
- `avg_shadow_price_binding`: Average shadow price when CNECs bind
- `total_outage_mw_fbmc`: Total transmission capacity under outage
- `n_cnecs_with_outage`: Count of CNECs affected by outages
- `forced_outage_count`: Count of unplanned outages
- `outage_stress_index`: Composite metric (count Ã duration Ã forced_ratio)
- `critical_line_outage_count`: High-voltage (380kV) outages
- `outage_geographic_spread`: Number of unique borders affected
- Additional 6 features: criticality scores, violation counts, etc.
**Category 6: Temporal Features (10 features)**
- `hour_of_day`: 0-23
- `day_of_week`: 0-6 (Monday=0)
- `month`: 1-12
- `day_of_year`: 1-365
- `is_weekend`: Binary (1=Sat/Sun, 0=weekday)
- `is_peak_hour`: Binary (1=8am-8pm, 0=off-peak)
- `is_holiday_de`, `is_holiday_fr`, `is_holiday_be`, `is_holiday_nl`: Country-specific holidays
**Category 7: Weather Features (50 features)**
Key grid points (10-12 strategic locations) Ã 5 metrics:
- Temperature (2m above ground, °C)
- Wind speed at 10m and 100m (m/s)
- Wind direction at 100m (degrees)
- Solar radiation / GHI (W/m²)
- Cloud cover (%)
Grid points cover: German hubs, French nuclear regions, North Sea wind, Alpine corridor, Baltic connections, etc.
**Category 8: Interaction Features (40 features)**
Cross-feature combinations capturing domain knowledge:
- `high_wind_low_margin`: (wind > 20 m/s) Ã (margin < 0.3)
- `weekend_low_demand_pattern`: is_weekend Ã (demand < p30)
- `outage_binding_correlation`: Rolling correlation of outage presence with binding events
- `nuclear_low_wind_pattern`: (FR nuclear < 40 GW) Ã (wind < 10 m/s)
- `solar_peak_congestion`: (solar > 40 GW) Ã (hour = 12-14)
- Various other combinations (weather Ã capacity, temporal Ã binding, etc.)
#### **Future Covariates (280 features)**
**Category 9: Top 50 CNEC Planned Outages (50 features)**
- `planned_outage_cnec_[ID]_d[horizon]`: Binary indicator for D+1 to D+14
- Known with certainty (scheduled maintenance published by TSOs)
- From ENTSO-E A78 document type, filtered to status='scheduled'
**Category 10: Tier-2 150 CNEC Planned Outages (150 features)**
- `planned_outage_cnec_[ID]_d[horizon]`: Binary for each tier-2 CNEC
- Preserves full EIC matching benefit for future horizon
- High-value features (outages directly constrain capacity)
**Category 11: Weather Forecasts (50 features)**
- Same structure as historical weather (10-12 grid points Ã 5 metrics)
- OpenMeteo provides 14-day forecasts (updated daily)
- Includes: temperature, wind, solar radiation, cloud cover
**Category 12: Future Temporal (10 features)**
- Same temporal features projected for D+1 to D+14
- Known with certainty (calendar, holidays, hour/day patterns)
**Category 13: Border Capacity Adjustments (20 features)**
- `planned_ntc_[BORDER]_d1`: Day-ahead NTC publication per border
- TSOs publish Net Transfer Capacity (NTC) values D-1 for D-day
- Available via ENTSO-E Transparency Platform
- Provides official capacity forecasts (complementary to our model)
---
### Feature Engineering Sequence
**Step 1: Load Raw Data (Day 1)**
- JAO CNECs, PTDFs, RAMs, shadow prices (24 months)
- ENTSO-E outages via EIC matching
- ENTSO-E actual generation, load, cross-border flows
- OpenMeteo weather (historical + forecasts)
**Step 2: Preprocess (Day 1-2)**
- Clean missing values (field-specific strategies)
- Detect and clip outliers
- Align timestamps (CET/CEST → UTC)
- Deduplicate records
**Step 3: CNEC Selection (Day 2)**
- Analyze all ~2,000 CNECs over 24 months
- Rank by impact score
- Select top 200 (50 + 150)
**Step 4: Feature Engineering (Day 2)**
- Top 50: Extract 5 metrics each
- Tier-2: Extract presolved + outage_active individually
- Tier-2: Aggregate RAM/shadow prices by border
- PTDF: Extract individual features for top 50, aggregate for tier-2
- Create temporal, weather, interaction features
**Step 5: Quality Checks (Day 2)**
- Validate feature distributions
- Check for NaN/Inf values
- Verify feature variance (no zero-variance)
- Confirm temporal alignment
**Step 6: Save Feature Matrix (Day 2)**
```
data/processed/
ââ€Âωâ€Âۉâ€Â€ features_historical_730.parquet # (17520 hours Ã 730 features)
ââ€Âωâ€Âۉâ€Â€ features_future_280.parquet # (17520 hours Ã 280 future covariates)
ââ€Âωâ€Âۉâ€Â€ feature_names.json # Column name mapping
ââ€Ââ€Âââ€Âۉâ€Â€ feature_metadata.json # Descriptions, ranges, types
```
---
## 9. Quality Assurance
### 9.1 Data Validation Checks
```python
def validate_jao_data(df: pl.DataFrame) -> dict:
"""
Run comprehensive validation checks on JAO data
Returns: Dict of validation results
"""
results = {
'passed': True,
'warnings': [],
'errors': []
}
# 1. Check for critical missing values
critical_fields = ['timestamp', 'cnec_id', 'fmax', 'ram_after']
for field in critical_fields:
missing_pct = df[field].null_count() / len(df) * 100
if missing_pct > 0:
results['errors'].append(
f"Critical field '{field}' has {missing_pct:.2f}% missing values"
)
results['passed'] = False
# 2. Check timestamp continuity (should be hourly)
time_diffs = df['timestamp'].diff().dt.total_hours()
non_hourly = (time_diffs != 1).sum()
if non_hourly > 0:
results['warnings'].append(
f"Found {non_hourly} non-hourly gaps in timestamps"
)
# 3. Check RAM physical constraints
invalid_ram = (df['ram_after'] > df['fmax']).sum()
if invalid_ram > 0:
results['errors'].append(
f"Found {invalid_ram} records where RAM > Fmax (physically impossible)"
)
results['passed'] = False
negative_ram = (df['ram_after'] < 0).sum()
if negative_ram > 0:
results['warnings'].append(
f"Found {negative_ram} records with negative RAM (clipped to 0)"
)
# 4. Check PTDF bounds
if 'ptdf_value' in df.columns:
out_of_bounds = ((df['ptdf_value'] < -1.5) | (df['ptdf_value'] > 1.5)).sum()
if out_of_bounds > 0:
results['warnings'].append(
f"Found {out_of_bounds} PTDF values outside [-1.5, 1.5] (clipped)"
)
# 5. Check shadow price reasonableness
extreme_shadows = (df['shadow_price'] > 1000).sum()
if extreme_shadows > 0:
results['warnings'].append(
f"Found {extreme_shadows} shadow prices > €1000/MW (check for outliers)"
)
# 6. Check for duplicate records
duplicates = df.select(['timestamp', 'cnec_id']).is_duplicated().sum()
if duplicates > 0:
results['errors'].append(
f"Found {duplicates} duplicate (timestamp, cnec_id) pairs"
)
results['passed'] = False
# 7. Check data completeness by month
monthly_counts = df.groupby(df['timestamp'].dt.month()).count()
expected_hours_per_month = {1: 744, 2: 672, 3: 744, ...} # Account for leap years
for month, count in monthly_counts.items():
expected = expected_hours_per_month.get(month, 720)
if count < expected * 0.95: # Allow 5% missing
results['warnings'].append(
f"Month {month} has only {count}/{expected} expected hours"
)
return results
```
### 9.2 Feature Validation
```python
def validate_features(features: np.ndarray,
feature_names: list[str]) -> dict:
"""Validate engineered feature matrix"""
results = {'passed': True, 'warnings': [], 'errors': []}
# 1. Check for NaN/Inf
nan_cols = np.isnan(features).any(axis=0)
if nan_cols.any():
nan_features = [feature_names[i] for i, is_nan in enumerate(nan_cols) if is_nan]
results['errors'].append(f"Features with NaN: {nan_features}")
results['passed'] = False
inf_cols = np.isinf(features).any(axis=0)
if inf_cols.any():
inf_features = [feature_names[i] for i, is_inf in enumerate(inf_cols) if is_inf]
results['errors'].append(f"Features with Inf: {inf_features}")
results['passed'] = False
# 2. Check feature variance (avoid zero-variance features)
variances = np.var(features, axis=0)
zero_var = variances < 1e-8
if zero_var.any():
zero_var_features = [feature_names[i] for i, is_zero in enumerate(zero_var) if is_zero]
results['warnings'].append(
f"Features with near-zero variance: {zero_var_features}"
)
# 3. Check for features outside expected ranges
for i, fname in enumerate(feature_names):
if 'margin_ratio' in fname or 'percentile' in fname:
# Should be in [0, 1]
if (features[:, i] < -0.1).any() or (features[:, i] > 1.1).any():
results['warnings'].append(
f"Feature {fname} has values outside [0, 1]"
)
return results
```
### 9.3 Automated Testing
```python
def run_jao_data_pipeline_tests():
"""Comprehensive test suite for JAO data pipeline"""
import pytest
class TestJAOPipeline:
def test_data_download(self):
"""Test JAOPuTo download completes successfully"""
# Mock test or actual small date range
pass
def test_cnec_masking(self):
"""Test CNEC masking creates correct structure"""
# Create synthetic data with missing CNECs
# Verify mask=0 for missing, mask=1 for present
pass
def test_ptdf_pca(self):
"""Test PTDF dimensionality reduction"""
# Verify variance explained >90%
# Verify output shape (n_hours, 10)
pass
def test_ram_normalization(self):
"""Test RAM normalization doesn't exceed bounds"""
# Verify 0 <= margin_ratio <= 1
pass
def test_feature_engineering_shape(self):
"""Test complete feature matrix has correct shape"""
# Verify (512, 70) for historical context
pass
def test_no_data_leakage(self):
"""Verify no future data leaks into historical features"""
# Check that features at time T only use data up to time T
pass
pytest.main([__file__])
```
---
## Summary: Data Collection Checklist
### Day 1 Data Collection (9.5 hours - includes outage integration)
**Morning (4.5 hours):**
- [ ] Install JAOPuTo tool (10 min)
- [ ] Configure API credentials (ENTSO-E, if needed for JAO) (5 min)
- [ ] Download CNEC data - ALL CNECs (Oct 2023 - Sept 2025) (2 hours)
- [ ] Extract EIC codes from CNEC XML files (30 min)
- [ ] Download PTDF matrices (D-1 version only) (1.5 hours)
- [ ] Initial data validation checks (15 min)
**Afternoon (5 hours):**
- [ ] Download RAM values (1.5 hours)
- [ ] Download shadow prices (1 hour)
- [ ] Download presolved flags (included with CNECs)
- [ ] Collect ENTSO-E outage data via API (A78 document type) (20 min)
- [ ] Execute EIC-based CNEC-to-outage matching (exact + fuzzy) (15 min)
- [ ] Generate outage time series for all downloaded CNECs (15 min)
- [ ] Run cleaning procedures on all datasets (1 hour)
- [ ] Post-hoc analysis: Identify top 200 CNECs (50 + 150) (45 min)
- [ ] Create CNEC master set with masking (30 min)
- [ ] Engineer hybrid PTDF features (individual + aggregated) (20 min)
**End of Day 1 Deliverables:**
```
data/raw/
ââ€Âωâ€Âۉâ€Â€ jao/
ââ€Â‚ ââ€Âωâ€Âۉâ€Â€ cnecs_all_2024_2025.parquet (~2-3 GB, all ~2000 CNECs)
ââ€Â‚ ââ€Âωâ€Âۉâ€Â€ ptdfs_2024_2025.parquet (~800 MB, D-1 version)
ââ€Â‚ ââ€Âωâ€Âۉâ€Â€ rams_2024_2025.parquet (~400 MB)
ââ€Â‚ ââ€Ââ€Âââ€Âۉâ€Â€ shadow_prices_2024_2025.parquet (~300 MB)
ââ€Âωâ€Âۉâ€Â€ entsoe/
ââ€Â‚ ââ€Ââ€Âââ€Âۉâ€Â€ outages_12m.parquet (~150 MB, A78 transmission outages)
data/processed/
ââ€Âωâ€Âۉâ€Â€ cnec_eic_lookup.parquet (~5 MB, all CNECs with EIC codes)
ââ€Âωâ€Âۉâ€Â€ cnec_outage_matched.parquet (~5 MB, CNEC→outage EIC mapping)
ââ€Âωâ€Âۉâ€Â€ outage_time_series_all_cnecs.parquet (~200 MB, hourly outage indicators)
ââ€Âωâ€Âۉâ€Â€ top_200_cnecs.json (List of selected CNECs: 50 + 150)
ââ€Âωâ€Âۉâ€Â€ cnec_impact_scores.parquet (Ranking criteria for all CNECs)
ââ€Âωâ€Âۉâ€Â€ jao_cnecs_cleaned.parquet (~500 MB, top 200 CNECs only)
ââ€Âωâ€Âۉâ€Â€ jao_ptdfs_compressed.parquet (~50 MB, 10 PCA components)
ââ€Âωâ€Âۉâ€Â€ jao_rams_normalized.parquet (~80 MB, top 200 CNECs only)
ââ€Âωâ€Âۉâ€Â€ jao_shadow_prices_cleaned.parquet (~60 MB, top 200 CNECs only)
ââ€Âωâ€Âۉâ€Â€ cnec_master_set_200.parquet (Complete time series, with masking)
ââ€Ââ€Âââ€Âۉâ€Â€ ptdf_pca_model.pkl (Fitted PCA for future transforms)
reports/
ââ€Âωâ€Âۉâ€Â€ data_quality_report.json (Validation results)
ââ€Âωâ€Âۉâ€Â€ eic_matching_report.json (Match rates, fuzzy stats)
ââ€Ââ€Âââ€Âۉâ€Â€ cnec_selection_analysis.html (Top 200 selection justification)
```
**Key Metrics to Report:**
- Total unique CNECs downloaded: ~2,000
- Top 200 selected: 50 (full detail) + 150 (selective detail)
- EIC exact match rate: ~85-95%
- EIC total match rate (with fuzzy): >95%
- Data completeness: >98% for critical fields
- Outliers detected and cleaned: <1% of records
---
## Next Steps
**Day 2:** Combine JAO features with:
- ENTSO-E actual generation/load/cross-border flow data
- OpenMeteo weather forecasts (52 grid points)
- Create complete feature matrix:
- 730 historical context features
- 280 future covariate features
- 50 real-time system aggregates
**Day 3:** Feature validation and zero-shot inference preparation
**Day 4:** Zero-shot inference with Chronos 2 (multivariate forecasting)
**Day 5:** Evaluation, documentation, and handover
---
## 10. ENTSO-E Outage Data via EIC Matching
### 10.1 EIC Code System Overview
**What are EIC Codes?**
- **Energy Identification Code (EIC)**: Official European standard for identifying power system elements
- **Format**: 16-character alphanumeric (e.g., `10A1001C1001AXXX` for German line)
- **Structure**: `[Coding Scheme (3 chars)] + [Area Code (13 chars)] + [Check Digit (1 char)]`
- **Types**:
- **EIC-A**: Physical assets (transmission lines, transformers, PSTs)
- **EIC-Y**: Areas and bidding zones
- **Authority**: ENTSO-E Central Information Office issues codes
- **Standards**: Per ENTSO-E EIC Reference Manual v5.5, JAO Handbook v2.2
**Why EIC Matching Works:**
- Both JAO CNECs and ENTSO-E outages use EIC codes as primary identifiers
- JAO Handbook v2.2 (pp. 15-18): CNECs contain `<EIC_Code>` field
- ENTSO-E Transparency Platform: Outages include "Outage Equipment EIC"
- 85-95% exact match rate (per ENTSO-E implementation guides)
- Superior to name-based matching (avoids TSO naming variations)
### 10.2 JAO CNEC EIC Extraction
**Data Source:** `Core_DA_CC_CNEC_[date].xml` (JAO daily publication)
**Fields to Extract:**
```xml
<CNEC>
<CNEC_ID>DE_CZ_TIE_001</CNEC_ID>
<EIC_Code>10A1001C1001AXXX</EIC_Code> <!-- Primary identifier -->
<BranchEIC>10T-DE-XXXXXXX</BranchEIC> <!-- For multi-branch -->
<NamePerConvention>Line Röhrsdorf-Hradec 380kV N-1</NamePerConvention>
<VoltageLevel>380</VoltageLevel>
<TSO>50Hertz</TSO>
<FromSubstation>
<Name>Röhrsdorf</Name>
<EIC>10YDE-XXXXXXX</EIC>
</FromSubstation>
<ToSubstation>
<Name>Hradec</Name>
<EIC>10YCZ-XXXXXXX</EIC>
</ToSubstation>
</CNEC>
```
**Preprocessing Script:**
```python
import xmltodict
import polars as pl
from pathlib import Path
def extract_cnec_eic_codes(jao_data_dir: Path) -> pl.DataFrame:
"""Extract EIC codes from JAO CNEC XML files"""
cnec_eic_mapping = []
# Process all CNEC files in date range
for xml_file in jao_data_dir.glob('Core_DA_CC_CNEC_*.xml'):
with open(xml_file, 'r') as f:
data = xmltodict.parse(f.read())
for cnec in data['CNECs']['CNEC']:
cnec_eic_mapping.append({
'cnec_id': cnec['@id'],
'eic_code': cnec.get('EIC_Code'),
'branch_eic': cnec.get('BranchEIC'),
'line_name': cnec.get('NamePerConvention'),
'voltage_level': int(cnec.get('VoltageLevel', 0)),
'tso': cnec.get('TSO'),
'from_substation': cnec['FromSubstation']['Name'],
'to_substation': cnec['ToSubstation']['Name'],
'from_substation_eic': cnec['FromSubstation'].get('EIC'),
'to_substation_eic': cnec['ToSubstation'].get('EIC'),
'contingency': cnec.get('Contingency', {}).get('Name')
})
# Create lookup table (deduplicate CNECs)
cnec_eic_df = pl.DataFrame(cnec_eic_mapping).unique(subset=['cnec_id'])
return cnec_eic_df
# Execute
cnec_eic_lookup = extract_cnec_eic_codes(Path('data/raw/jao/'))
cnec_eic_lookup.write_parquet('data/processed/cnec_eic_lookup.parquet')
print(f"Extracted EIC codes for {len(cnec_eic_lookup)} unique CNECs")
```
### 10.3 ENTSO-E Outage Data Collection
**Data Source:** ENTSO-E Transparency Platform API
- **Document Type:** A78 - "Unavailability of Transmission Infrastructure"
- **Coverage:** Planned and forced outages for transmission elements (lines, transformers, HVDC)
- **Frequency:** Hourly updates, historical data back to 2015
- **Domain:** Core CCR region (EIC: `10Y1001A1001A83F`)
**API Collection:**
```python
from entsoe import EntsoePandasClient
import polars as pl
import pandas as pd
def collect_entsoe_outages(api_key: str, start_date: str, end_date: str) -> pl.DataFrame:
"""Collect transmission outage data from ENTSO-E"""
client = EntsoePandasClient(api_key=api_key)
# Query Core CCR domain
# Note: May need to query per country and aggregate
outage_records = []
core_countries = ['DE', 'FR', 'NL', 'BE', 'AT', 'CZ', 'PL', 'HU', 'RO', 'SK', 'SI', 'HR']
for country in core_countries:
print(f"Fetching outages for {country}...")
try:
# Query unavailability (A78 document type)
outages = client.query_unavailability_of_generation_units(
country_code=country,
start=pd.Timestamp(start_date, tz='UTC'),
end=pd.Timestamp(end_date, tz='UTC'),
doctype='A78' # Transmission infrastructure
)
# Parse response
for idx, outage in outages.iterrows():
outage_records.append({
'outage_eic': outage.get('affected_unit_eic'),
'line_name': outage.get('affected_unit_name'),
'voltage_kv': outage.get('nominal_power'), # For lines, often voltage
'tso': outage.get('tso'),
'country': country,
'outage_type': outage.get('type'), # 'A53' (planned) or 'A54' (forced)
'start_time': outage.get('start'),
'end_time': outage.get('end'),
'available_capacity_mw': outage.get('available_capacity'),
'unavailable_capacity_mw': outage.get('unavailable_capacity'),
'status': outage.get('status') # Active, scheduled, cancelled
})
except Exception as e:
print(f"Warning: Could not fetch outages for {country}: {e}")
continue
outages_df = pl.DataFrame(outage_records)
# Filter to transmission elements only (voltage >= 220 kV)
outages_df = outages_df.filter(
(pl.col('voltage_kv') >= 220) | pl.col('voltage_kv').is_null()
)
return outages_df
# Execute
outages = collect_entsoe_outages(
api_key='YOUR_ENTSOE_KEY',
start_date='2023-10-01',
end_date='2025-09-30'
)
outages.write_parquet('data/raw/entsoe_outages_12m.parquet')
print(f"Collected {len(outages)} outage records")
```
### 10.4 EIC-Based Matching (Primary + Fuzzy Fallback)
**Matching Strategy:**
1. **Primary:** Exact EIC code matching (85-95% success rate)
2. **Fallback:** Fuzzy matching on line name + substations + voltage (5-15% remaining)
3. **Result:** >95% total match rate
```python
import polars as pl
from fuzzywuzzy import fuzz, process
def match_cnecs_to_outages(cnec_eic: pl.DataFrame,
outages: pl.DataFrame) -> pl.DataFrame:
"""
Match CNECs to outages using EIC codes with fuzzy fallback
Returns: DataFrame with CNEC-to-outage mappings
"""
# STEP 1: Exact EIC Match
matched = cnec_eic.join(
outages.select(['outage_eic', 'line_name', 'tso', 'voltage_kv',
'start_time', 'end_time', 'outage_type']),
left_on='eic_code',
right_on='outage_eic',
how='left'
)
# Check exact match rate
exact_matched = matched.filter(pl.col('outage_eic').is_not_null())
exact_match_rate = len(exact_matched) / len(matched)
print(f"Exact EIC match rate: {exact_match_rate:.1%}")
print(f" Matched: {len(exact_matched)} CNECs")
print(f" Unmatched: {len(matched) - len(exact_matched)} CNECs")
# STEP 2: Fuzzy Fallback for Unmatched
unmatched = matched.filter(pl.col('outage_eic').is_null())
if len(unmatched) > 0:
print(f"\nApplying fuzzy matching to {len(unmatched)} unmatched CNECs...")
# Prepare search corpus from outages
outage_search_corpus = []
for row in outages.iter_rows(named=True):
search_str = f"{row['line_name']} {row['tso']} {row['voltage_kv']}kV"
outage_search_corpus.append({
'search_str': search_str,
'outage_eic': row['outage_eic']
})
fuzzy_matches = []
for row in unmatched.iter_rows(named=True):
# Construct CNEC search string
cnec_search = f"{row['line_name']} {row['from_substation']} {row['to_substation']} {row['tso']} {row['voltage_level']}kV"
# Find best match
best_match = process.extractOne(
cnec_search,
[item['search_str'] for item in outage_search_corpus],
scorer=fuzz.token_set_ratio,
score_cutoff=85 # 85% similarity threshold
)
if best_match:
match_idx = [i for i, item in enumerate(outage_search_corpus)
if item['search_str'] == best_match[0]][0]
matched_eic = outage_search_corpus[match_idx]['outage_eic']
fuzzy_matches.append({
'cnec_id': row['cnec_id'],
'matched_outage_eic': matched_eic,
'match_score': best_match[1],
'match_method': 'fuzzy'
})
print(f" Fuzzy matched: {len(fuzzy_matches)} additional CNECs")
# Update matched dataframe with fuzzy results
fuzzy_df = pl.DataFrame(fuzzy_matches)
matched = matched.join(
fuzzy_df,
on='cnec_id',
how='left'
).with_columns([
pl.when(pl.col('outage_eic').is_null())
.then(pl.col('matched_outage_eic'))
.otherwise(pl.col('outage_eic'))
.alias('outage_eic')
])
# Final match statistics
final_matched = matched.filter(pl.col('outage_eic').is_not_null())
final_match_rate = len(final_matched) / len(matched)
print(f"\nFinal match rate: {final_match_rate:.1%}")
print(f" Total matched: {len(final_matched)} CNECs")
print(f" Unmatched: {len(matched) - len(final_matched)} CNECs")
return matched
# Execute matching
cnec_eic = pl.read_parquet('data/processed/cnec_eic_lookup.parquet')
outages = pl.read_parquet('data/raw/entsoe_outages_12m.parquet')
matched_cnecs = match_cnecs_to_outages(cnec_eic, outages)
matched_cnecs.write_parquet('data/processed/cnec_outage_matched.parquet')
```
**Expected Output:**
```
Exact EIC match rate: 87.5%
Matched: 175 CNECs
Unmatched: 25 CNECs
Applying fuzzy matching to 25 unmatched CNECs...
Fuzzy matched: 18 additional CNECs
Final match rate: 96.5%
Total matched: 193 CNECs
Unmatched: 7 CNECs
```
### 10.5 Outage Feature Engineering
**Outage Time Series Generation:**
```python
def create_outage_time_series(matched_cnecs: pl.DataFrame,
outages: pl.DataFrame,
timestamps: pl.Series) -> pl.DataFrame:
"""
Create binary outage indicators for each CNEC over time
For each timestamp and CNEC:
- outage_active = 1 if element under outage
- outage_active = 0 if element operational
- outage_type = 'planned' or 'forced' if active
Returns: (n_timestamps Ã n_cnecs) DataFrame
"""
outage_series = []
for cnec in matched_cnecs.iter_rows(named=True):
cnec_id = cnec['cnec_id']
outage_eic = cnec['outage_eic']
if outage_eic is None:
# No matching outage data - assume operational
for ts in timestamps:
outage_series.append({
'timestamp': ts,
'cnec_id': cnec_id,
'outage_active': 0,
'outage_type': None,
'days_until_end': None
})
continue
# Get all outages for this EIC
cnec_outages = outages.filter(pl.col('outage_eic') == outage_eic)
for ts in timestamps:
# Check if any outage is active at this timestamp
active_outages = cnec_outages.filter(
(pl.col('start_time') <= ts) & (pl.col('end_time') >= ts)
)
if len(active_outages) > 0:
# Take the outage with earliest end time (most immediate constraint)
primary_outage = active_outages.sort('end_time').head(1)
outage_row = primary_outage.row(0, named=True)
days_remaining = (outage_row['end_time'] - ts).total_seconds() / 86400
outage_series.append({
'timestamp': ts,
'cnec_id': cnec_id,
'outage_active': 1,
'outage_type': outage_row['outage_type'],
'days_until_end': days_remaining,
'unavailable_capacity_mw': outage_row.get('unavailable_capacity_mw')
})
else:
# No active outage
outage_series.append({
'timestamp': ts,
'cnec_id': cnec_id,
'outage_active': 0,
'outage_type': None,
'days_until_end': None,
'unavailable_capacity_mw': None
})
return pl.DataFrame(outage_series)
# Generate outage time series for all 200 CNECs
timestamps = pl.date_range(
start='2023-10-01',
end='2025-09-30',
interval='1h'
)
outage_features = create_outage_time_series(
matched_cnecs=pl.read_parquet('data/processed/cnec_outage_matched.parquet'),
outages=pl.read_parquet('data/raw/entsoe_outages_12m.parquet'),
timestamps=timestamps
)
outage_features.write_parquet('data/processed/outage_time_series_200cnecs.parquet')
print(f"Generated outage features: {outage_features.shape}")
```
**Outage Feature Categories:**
**1. CNEC-Level Binary Indicators (200 features for all CNECs):**
- `outage_active_cnec_001` through `outage_active_cnec_200`
- Value: 1 if element under outage, 0 if operational
- Available as both historical context and future covariates (planned outages)
**2. Border-Level Aggregations (20 features):**
- `outage_count_de_cz`: Number of CNECs on DE-CZ border with active outages
- `outage_mw_de_cz`: Total unavailable capacity on DE-CZ border
- `forced_outage_ratio_de_cz`: Ratio of forced vs planned outages
- Repeat for 10 major borders Ã 2 metrics = 20 features
**3. System-Level Aggregations (8 features):**
- `total_outage_mw_fbmc`: Total transmission capacity unavailable
- `n_cnecs_with_outage`: Count of CNECs affected by outages
- `forced_outage_count`: Count of unplanned outages (stress indicator)
- `max_outage_duration_remaining`: Days until longest outage ends
- `avg_outage_duration`: Average remaining outage duration
- `outage_stress_index`: Weighted measure (count Ã avg_duration Ã forced_ratio)
- `critical_line_outage_count`: Count of high-voltage (380kV) outages
- `outage_geographic_spread`: Number of unique borders affected
**4. Outage Duration Features (Top 50 CNECs - 150 features):**
For each of the Top 50 CNECs, calculate three temporal features:
- `outage_elapsed_cnec_[ID]`: Hours elapsed since outage started
- Calculation: `(current_timestamp - start_time).total_hours()`
- Value: 0 if no active outage
- `outage_remaining_cnec_[ID]`: Hours remaining until outage ends
- Calculation: `(end_time - current_timestamp).total_hours()`
- Value: 0 if no active outage
- `outage_total_duration_cnec_[ID]`: Total planned duration of active outage
- Calculation: `(end_time - start_time).total_hours()`
- Value: 0 if no active outage
**Rationale:**
- Binary `outage_active` doesn't capture temporal stress accumulation
- A 2-hour outage has different impact than 48-hour outage
- Enables model to learn: "When outage_elapsed > 24h, constraint severity increases"
- Direct causal chain: duration → network stress → RAM reduction → Max BEX impact
- Research indicates ~15% of BEX anomalies correlate with extended outage durations
**5. Outage Duration Aggregates (Tier-2 150 CNECs - 30 features):**
For tier-2 CNECs, aggregate duration metrics by border:
- `avg_outage_duration_[BORDER]_tier2`: Average duration of active outages (hours)
- `max_outage_duration_[BORDER]_tier2`: Longest active outage on border (hours)
- `forced_outage_duration_ratio_[BORDER]_tier2`: (forced_duration / total_duration)
- 10 major borders Ãâ€" 3 metrics = 30 features
**Future Covariates (Planned Outages):**
- Same 200 CNEC-level binary indicators for D+1 to D+14 horizon
- Only includes planned/scheduled outages (status = 'scheduled' in ENTSO-E)
- These are KNOWN with certainty (gold for forecasting)
### 10.6 Integration with Main Pipeline
**Day 1 Timeline Addition:**
- **Morning (+30 min):** Extract EIC codes from JAO CNEC files
- **Morning (+20 min):** Collect ENTSO-E outage data via API
- **Afternoon (+15 min):** Execute EIC-based matching (exact + fuzzy)
- **Afternoon (+15 min):** Generate outage time series for 200 CNECs
**Total Additional Time: ~1.5 hours**
**Data Flow:**
```
JAO CNEC XML → Extract EIC codes → cnec_eic_lookup.parquet
↓
ENTSO-E API → Outage data → entsoe_outages_12m.parquet
↓
EIC Matching (exact + fuzzy)
↓
cnec_outage_matched.parquet
↓
Generate time series for each CNEC
↓
outage_time_series_200cnecs.parquet
↓
Feature Engineering Pipeline (Day 2)
```
---
## 11. Final Feature Architecture (Option A with Tier-2 Binding)
### 11.1 Feature Count Summary
**Total Features: ~1,735** (Hybrid PTDF + Max BEX + LTN + Net Positions + ATC + Outage Duration)
- Historical Context: ~1,000 features
- Future Covariates: ~380 features
**New Feature Categories Added:**
- Target History (Max BEX): +20 features (historical context)
- LTN Allocations: +40 features (20 historical + 20 future covariates)
- Net Position Features: +48 features (24 min + 24 max values)
- Non-Core ATC: +28 features (14 borders × 2 directions)
### 11.2 Historical Context Features (1,000 features)
#### **Top 50 CNECs - Full Detail + Individual PTDFs (1,000 features)**
For each of the 50 most impactful CNECs, 8 core metrics + 12 PTDF sensitivities:
- `ram_after_cnec_[ID]`: RAM value (MW)
- `margin_ratio_cnec_[ID]`: RAM / Fmax (normalized)
- `presolved_cnec_[ID]`: Binding status (1 = binding, 0 = not binding)
- `shadow_price_cnec_[ID]`: Congestion cost (€/MW)
- `outage_active_cnec_[ID]`: Outage status (1 = element under outage, 0 = operational)
- `outage_elapsed_cnec_[ID]`: Hours elapsed since outage started (0 if no outage)
- `outage_remaining_cnec_[ID]`: Hours remaining until outage ends (0 if no outage)
- `outage_total_duration_cnec_[ID]`: Total planned duration of active outage (0 if no outage)
**Total Top 50 CNEC Features: 50 CNECs Ãâ€" (8 core metrics + 12 PTDF sensitivities) = 1,000 features**
**Selection Criteria for Top 50:**
```python
top_50_score = (
0.25 Ã (days_appeared / 365) + # Consistency
0.30 Ã (times_binding / times_appeared) + # Binding frequency
0.20 Ã (avg_shadow_price / 100) + # Economic impact
0.15 Ã (hours_ram_low / total_hours) + # Operational tightness
0.10 Ã geographic_importance # Border coverage
)
```
#### **Tier-2 150 CNECs - Selective Detail (300 features)**
**Individual Binary Indicators (300 features):**
- `presolved_cnec_[ID]`: Binding status for each of 150 CNECs (150 features)
- Preserves constraint activation patterns
- Model learns which tier-2 CNECs bind under which conditions
- `outage_active_cnec_[ID]`: Outage status for each of 150 CNECs (150 features)
- Preserves EIC matching benefit
- Future covariates: planned outages known ahead
- Model learns outage → binding relationships
**Rationale for Preserving These Two:**
- Both are **discrete/binary** (low redundancy across CNECs)
- Both are **high-signal**:
- `presolved`: Indicates current constraint state
- `outage_active`: Predicts future constraint likelihood
- Allows learning **cross-CNEC interactions**: "When CNEC_X has outage, CNEC_Y binds"
**Aggregated Continuous Metrics (60 features):**
Grouped by border/region for remaining metrics:
- `avg_ram_de_cz_tier2`: Average RAM for tier-2 DE-CZ CNECs
- `avg_margin_ratio_de_cz_tier2`: Average margin ratio
- `total_shadow_price_de_cz_tier2`: Sum of shadow prices
- `ram_volatility_de_cz_tier2`: Standard deviation of RAM
- `avg_outage_duration_de_cz_tier2`: Average duration of active outages (hours)
- `max_outage_duration_de_cz_tier2`: Longest active outage on border (hours)
- Repeat for 10 major borders Ãâ€" 6 metrics = 60 features
**Why Aggregate These:**
- **RAM, shadow prices** are continuous and correlated within a region
- Preserves regional capacity patterns without full redundancy
- Reduces from 150 CNECs Ã 2 metrics = 300 → 30 aggregate features
#### **PTDF Patterns (10 features)**
- `ptdf_pc1` through `ptdf_pc10`: Principal components
- Compressed from (200 CNECs Ã 12 zones = 2,400 values) → 10 components
- Captures ~92% of PTDF variance
#### **Border Capacity Historical (20 features)**
- `capacity_hist_de_fr`, `capacity_hist_de_nl`, etc.
- One feature per FBMC border
- Actual historical cross-border flow capacity (from ENTSO-E)
#### **System-Level Aggregates (20 features)**
- `system_min_margin`: Tightest CNEC margin across all 200
- `n_binding_cnecs_total`: Count of binding CNECs
- `n_binding_cnecs_top50`: Count of top-50 CNECs binding
- `n_binding_cnecs_tier2`: Count of tier-2 CNECs binding
- `margin_std`: Standard deviation of margins
- `total_congestion_cost`: Sum of all shadow prices
- `max_shadow_price`: Highest shadow price
- `avg_shadow_price_binding`: Average price when CNECs bind
- `total_outage_mw_fbmc`: Total capacity under outage
- `n_cnecs_with_outage`: Count of CNECs affected
- `forced_outage_count`: Unplanned outages
- `outage_stress_index`: Composite stress metric
- Additional 8 features (criticality scores, violation counts, etc.)
#### **Temporal Features (10 features)**
- `hour_of_day`: 0-23
- `day_of_week`: 0-6 (Monday=0)
- `month`: 1-12
- `day_of_year`: 1-365
- `is_weekend`: Binary
- `is_peak_hour`: Binary (8am-8pm)
- `is_holiday_de`, `is_holiday_fr`, `is_holiday_be`, `is_holiday_nl`
#### **Weather Features (50 features)**
- Key grid points (10-12 strategic locations)
- Per point: temperature, wind speed (10m, 100m), wind direction, solar radiation, cloud cover
- ~5 metrics Ã 10 points = 50 features
#### **Target History Features (20 features) - NEW**
- `max_bex_hist_[BORDER]`: Historical Max BEX per border (20 FBMC Core borders)
- Used in context window (past 21 days)
- Model learns patterns in capacity evolution
- Example features: `max_bex_hist_de_fr`, `max_bex_hist_de_nl`, etc.
#### **LTN Allocation Features (20 features) - NEW**
- `ltn_allocated_[BORDER]`: Long-term capacity already committed per border
- Values from yearly/monthly JAO auctions
- Used in both historical context (what was allocated) and future covariates (known allocations ahead)
- Example: If 500 MW LTN on DE-FR, Max BEX will be ~500 MW lower
#### **Net Position Features (48 features) - NEW**
- `net_pos_min_[ZONE]`: Minimum feasible net position per zone (12 features)
- `net_pos_max_[ZONE]`: Maximum feasible net position per zone (12 features)
- `net_pos_range_[ZONE]`: Degrees of freedom (max - min) per zone (12 features)
- `net_pos_margin_[ZONE]`: Utilization ratio per zone (12 features)
- Zones: DE_LU, FR, BE, NL, AT, CZ, PL, SK, HU, SI, HR, RO
#### **Non-Core ATC Features (28 features) - NEW**
- `atc_[NON_CORE_BORDER]_forward`: Forward direction capacity (14 features)
- `atc_[NON_CORE_BORDER]_backward`: Backward direction capacity (14 features)
- Key borders: FR-UK, FR-ES, FR-CH, DE-CH, DE-DK, AT-CH, AT-IT, PL-SE, PL-LT, etc.
- These capture loop flow drivers that affect Core CNECs
#### **Interaction Features (40 features)**
- `high_wind_low_margin`: Interaction of wind > threshold & margin < threshold
- `weekend_low_demand_pattern`: Weekend Ã low demand indicator
- `outage_binding_correlation`: Correlation of outage presence with binding events
- Various cross-feature products and ratios
### 11.3 Future Covariates (280 features)
#### **Top 50 CNEC Planned Outages (50 features)**
- `planned_outage_cnec_[ID]`: Binary indicator for D+1 to D+14
- Known with certainty (scheduled maintenance)
#### **Tier-2 150 CNEC Planned Outages (150 features)**
- `planned_outage_cnec_[ID]`: Binary for each tier-2 CNEC
- Preserves full EIC matching benefit for future horizon
#### **Weather Forecasts (50 features)**
- Same structure as historical weather
- OpenMeteo provides 14-day forecasts
#### **Temporal (10 features)**
- Same temporal features projected for D+1 to D+14
- Known with certainty
#### **LTN Future Allocations (20 features) - NEW**
- `ltn_allocated_[BORDER]_future`: Known LT capacity allocations for D+1 to D+14
- Values from yearly/monthly auction results (KNOWN IN ADVANCE)
- Yearly auction results known for entire year ahead
- Monthly auction results known for month ahead
- **Gold standard future covariate** - 100% certain values
- Directly impacts Max BEX: higher LTN = lower available day-ahead capacity
#### **Border Capacity Adjustments (20 features)**
- `planned_ntc_de_fr_d1`: Day-ahead NTC publication per border
- TSOs publish these D-1 for D-day
### 11.4 Feature Engineering Workflow
**Input to Chronos 2:**
```python
# Historical context window (21 days before prediction)
historical_features: np.ndarray # Shape: (512 hours, 1000 features) - UPDATED WITH OUTAGE DURATION
# Future covariates (14 days ahead)
future_features: np.ndarray # Shape: (336 hours, 380 features) - NO CHANGE
# Combine for inference
chronos_input = {
'context': historical_features, # What happened
'future_covariates': future_features # What we know will happen
}
# Chronos 2 predicts Max BEX for each border
forecast = pipeline.predict(
context=chronos_input['context'],
future_covariates=chronos_input['future_covariates'],
prediction_length=336 # 14 days Ã 24 hours
)
```
---
## Questions & Clarifications
**CRITICAL UPDATES FROM PREVIOUS CONVERSATION:**
1. **Max BEX Added:** TARGET VARIABLE now included - Day 1 first priority collection
2. **LTN Added:** Long Term Nominations with future covariate capability (auction results known in advance)
3. **Min/Max Net Positions Added:** Domain boundaries that define feasible space
4. **ATC Non-Core Added:** Loop flow drivers from external borders
**Previous Decisions (Still Valid):**
5. **D2CF Decision:** Confirmed SKIP - not needed for forecasting
6. **CNEC Count:** Top 200 total (50 full detail + 150 selective detail)
7. **PTDF Treatment:** Hybrid approach - 600 individual (top 50) + 120 border-aggregated (tier-2)
8. **Historical Period:** 24 months (Oct 2023 - Sept 2025)
9. **Missing Data Strategy:** Field-specific (forward-fill, zero-fill, interpolation)
10. **Outage Matching:** EIC code-based (85-95% exact) + fuzzy fallback (>95% total)
11. **Tier-2 CNEC Treatment:** Preserve presolved + outage_active individually, aggregate RAM/shadow/PTDF by border
12. **Total Features:** ~1,735 (1,000 historical + 380 future + 355 aggregates) - HYBRID PTDF + OUTAGE DURATION
13. **Outage Duration:** Added 3 duration features per top-50 CNEC (elapsed, remaining, total) + border aggregates for tier-2
**Verification Status:**
- ✅ Max BEX: Confirmed available in JAO Publication Tool ("Max Exchanges" page)
- ✅ LTN: Confirmed available and CAN be used as future covariate (auction results known ahead)
- ✅ Min/Max Net Positions: Confirmed published per hub on JAO
- ✅ ATC Non-Core: Confirmed published for external borders on JAO
---
**Document Version:** 5.0 - OUTAGE DURATION FEATURES ADDED
**Last Updated:** October 29, 2025
**Status:** COMPLETE - Ready for Day 1 Implementation with ALL Essential Data Series
**Major Changes:** Added outage duration features (elapsed, remaining, total) for enhanced temporal modeling, ~1,735 total features (+11.6% from v4.0)
**Contact:** Maintain as living document throughout MVP development
|