fbmc-chronos2 / src /inference /chronos_pipeline.py
Evgueni Poloukarov
feat: implement zero-shot inference pipeline for Day 3
44b73f4
raw
history blame
8.94 kB
"""
Chronos 2 Zero-Shot Inference Pipeline
Handles:
1. Loading Chronos 2 Large model (710M params)
2. Running zero-shot inference using predict_df() API
3. GPU/CPU device mapping
4. Saving predictions to parquet
"""
from pathlib import Path
from typing import Optional, Dict, List
import pandas as pd
import torch
from datetime import datetime
import logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class ChronosForecaster:
"""
Zero-shot forecaster using Chronos 2 Large model.
Features:
- Multivariate forecasting (multiple borders simultaneously)
- Covariate support (615 future covariates)
- Large context window (up to 8,192 hours)
- DataFrame API for easy data handling
"""
def __init__(
self,
model_name: str = "amazon/chronos-2-large",
device: str = "auto",
torch_dtype: str = "float32"
):
"""
Initialize Chronos 2 forecaster.
Args:
model_name: HuggingFace model name (default: chronos-2-large)
device: Device to run on ('auto', 'cuda', 'cpu')
torch_dtype: Torch dtype ('float32', 'float16', 'bfloat16')
"""
self.model_name = model_name
self.device = self._resolve_device(device)
self.torch_dtype = self._resolve_dtype(torch_dtype)
self.pipeline = None
logger.info(f"ChronosForecaster initialized:")
logger.info(f" Model: {model_name}")
logger.info(f" Device: {self.device}")
logger.info(f" Dtype: {self.torch_dtype}")
def _resolve_device(self, device: str) -> str:
"""Resolve device string to actual device."""
if device == "auto":
return "cuda" if torch.cuda.is_available() else "cpu"
return device
def _resolve_dtype(self, dtype_str: str) -> torch.dtype:
"""Resolve dtype string to torch dtype."""
dtype_map = {
"float32": torch.float32,
"float16": torch.float16,
"bfloat16": torch.bfloat16
}
return dtype_map.get(dtype_str, torch.float32)
def load_model(self):
"""Load Chronos 2 model from HuggingFace."""
if self.pipeline is not None:
logger.info("Model already loaded")
return
logger.info(f"Loading {self.model_name}...")
logger.info("This may take a few minutes on first load...")
try:
from chronos import Chronos2Pipeline
# Load with device_map for GPU support
self.pipeline = Chronos2Pipeline.from_pretrained(
self.model_name,
device_map=self.device if self.device == "cuda" else None,
torch_dtype=self.torch_dtype
)
# Move to device if not using device_map
if self.device == "cpu":
self.pipeline = self.pipeline.to(self.device)
logger.info(f"Model loaded successfully on {self.device}")
# Print GPU info if available
if self.device == "cuda":
gpu_name = torch.cuda.get_device_name(0)
gpu_memory = torch.cuda.get_device_properties(0).total_memory / 1e9
logger.info(f"GPU: {gpu_name} ({gpu_memory:.1f} GB VRAM)")
except Exception as e:
logger.error(f"Failed to load model: {e}")
raise
def predict(
self,
context_df: pd.DataFrame,
future_df: pd.DataFrame,
prediction_length: int = 336,
id_column: str = "border",
timestamp_column: str = "timestamp",
num_samples: int = 100
) -> pd.DataFrame:
"""
Run zero-shot inference using Chronos 2.
Args:
context_df: Historical data (timestamp, border, target, features)
future_df: Future covariates (timestamp, border, future_covariates)
prediction_length: Number of hours to forecast
id_column: Column name for border ID
timestamp_column: Column name for timestamp
num_samples: Number of samples for probabilistic forecast
Returns:
forecasts_df: DataFrame with predictions (timestamp, border, mean, median, q10, q90)
"""
if self.pipeline is None:
self.load_model()
logger.info("Running zero-shot inference...")
logger.info(f"Context shape: {context_df.shape}")
logger.info(f"Future shape: {future_df.shape}")
logger.info(f"Prediction length: {prediction_length} hours")
logger.info(f"Borders: {context_df[id_column].nunique()}")
try:
# Run inference
forecasts = self.pipeline.predict_df(
context_df=context_df,
future_df=future_df,
prediction_length=prediction_length,
id_column=id_column,
timestamp_column=timestamp_column,
num_samples=num_samples
)
logger.info(f"Inference complete! Forecast shape: {forecasts.shape}")
# Add metadata
forecasts['forecast_date'] = context_df[timestamp_column].max()
forecasts['model'] = self.model_name
return forecasts
except Exception as e:
logger.error(f"Inference failed: {e}")
raise
def predict_single_border(
self,
border: str,
context_df: pd.DataFrame,
future_df: pd.DataFrame,
prediction_length: int = 336,
num_samples: int = 100
) -> pd.DataFrame:
"""
Run inference for a single border (useful for testing).
Args:
border: Border name (e.g., 'AT_CZ')
context_df: Historical data
future_df: Future covariates
prediction_length: Hours to forecast
num_samples: Samples for probabilistic forecast
Returns:
forecasts_df: Predictions for single border
"""
logger.info(f"Running inference for border: {border}")
# Filter for single border
context_border = context_df[context_df['border'] == border].copy()
future_border = future_df[future_df['border'] == border].copy()
# Run prediction
forecasts = self.predict(
context_df=context_border,
future_df=future_border,
prediction_length=prediction_length,
num_samples=num_samples
)
return forecasts
def save_forecasts(
self,
forecasts: pd.DataFrame,
output_path: str,
include_metadata: bool = True
):
"""
Save forecasts to parquet file.
Args:
forecasts: Forecast DataFrame
output_path: Path to save parquet file
include_metadata: Include model metadata
"""
logger.info(f"Saving forecasts to: {output_path}")
# Create output directory if needed
output_path = Path(output_path)
output_path.parent.mkdir(parents=True, exist_ok=True)
# Add metadata
if include_metadata:
forecasts = forecasts.copy()
forecasts['saved_at'] = datetime.now()
# Save to parquet
forecasts.to_parquet(output_path, index=False)
logger.info(f"Saved {len(forecasts)} rows to {output_path}")
def benchmark_inference(
self,
context_df: pd.DataFrame,
future_df: pd.DataFrame,
prediction_length: int = 336
) -> Dict[str, float]:
"""
Benchmark inference speed and memory usage.
Args:
context_df: Historical data
future_df: Future covariates
prediction_length: Hours to forecast
Returns:
metrics: Dict with inference_time_sec, gpu_memory_mb
"""
import time
logger.info("Benchmarking inference performance...")
# Record start time and memory
start_time = time.time()
if self.device == "cuda":
torch.cuda.reset_peak_memory_stats()
# Run inference
_ = self.predict(
context_df=context_df,
future_df=future_df,
prediction_length=prediction_length
)
# Record end time and memory
end_time = time.time()
inference_time = end_time - start_time
metrics = {
'inference_time_sec': inference_time,
'borders': context_df['border'].nunique(),
'prediction_length': prediction_length
}
if self.device == "cuda":
peak_memory = torch.cuda.max_memory_allocated() / 1e6 # MB
metrics['gpu_memory_mb'] = peak_memory
logger.info(f"Inference time: {inference_time:.2f}s")
if 'gpu_memory_mb' in metrics:
logger.info(f"Peak GPU memory: {metrics['gpu_memory_mb']:.1f} MB")
return metrics