Spaces:
Runtime error
Runtime error
| """ | |
| Train tab for Video Model Studio UI | |
| """ | |
| import gradio as gr | |
| import logging | |
| from typing import Dict, Any, List, Optional, Tuple | |
| from pathlib import Path | |
| from .base_tab import BaseTab | |
| from ..config import TRAINING_PRESETS, OUTPUT_PATH, MODEL_TYPES, ASK_USER_TO_DUPLICATE_SPACE, SMALL_TRAINING_BUCKETS | |
| from ..utils import TrainingLogParser | |
| logger = logging.getLogger(__name__) | |
| class TrainTab(BaseTab): | |
| """Train tab for model training""" | |
| def __init__(self, app_state): | |
| super().__init__(app_state) | |
| self.id = "train_tab" | |
| self.title = "4️⃣ Train" | |
| def create(self, parent=None) -> gr.TabItem: | |
| """Create the Train tab UI components""" | |
| with gr.TabItem(self.title, id=self.id) as tab: | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Row(): | |
| self.components["train_title"] = gr.Markdown("## 0 files available for training (0 bytes)") | |
| with gr.Row(): | |
| with gr.Column(): | |
| self.components["training_preset"] = gr.Dropdown( | |
| choices=list(TRAINING_PRESETS.keys()), | |
| label="Training Preset", | |
| value=list(TRAINING_PRESETS.keys())[0] | |
| ) | |
| self.components["preset_info"] = gr.Markdown() | |
| with gr.Row(): | |
| with gr.Column(): | |
| self.components["model_type"] = gr.Dropdown( | |
| choices=list(MODEL_TYPES.keys()), | |
| label="Model Type", | |
| value=list(MODEL_TYPES.keys())[0] | |
| ) | |
| self.components["model_info"] = gr.Markdown( | |
| value=self.get_model_info(list(MODEL_TYPES.keys())[0]) | |
| ) | |
| with gr.Row(): | |
| self.components["lora_rank"] = gr.Dropdown( | |
| label="LoRA Rank", | |
| choices=["16", "32", "64", "128", "256", "512", "1024"], | |
| value="128", | |
| type="value" | |
| ) | |
| self.components["lora_alpha"] = gr.Dropdown( | |
| label="LoRA Alpha", | |
| choices=["16", "32", "64", "128", "256", "512", "1024"], | |
| value="128", | |
| type="value" | |
| ) | |
| with gr.Row(): | |
| self.components["num_epochs"] = gr.Number( | |
| label="Number of Epochs", | |
| value=70, | |
| minimum=1, | |
| precision=0 | |
| ) | |
| self.components["batch_size"] = gr.Number( | |
| label="Batch Size", | |
| value=1, | |
| minimum=1, | |
| precision=0 | |
| ) | |
| with gr.Row(): | |
| self.components["learning_rate"] = gr.Number( | |
| label="Learning Rate", | |
| value=2e-5, | |
| minimum=1e-7 | |
| ) | |
| self.components["save_iterations"] = gr.Number( | |
| label="Save checkpoint every N iterations", | |
| value=500, | |
| minimum=50, | |
| precision=0, | |
| info="Model will be saved periodically after these many steps" | |
| ) | |
| with gr.Column(): | |
| with gr.Row(): | |
| # Check for existing checkpoints to determine button text | |
| has_checkpoints = len(list(OUTPUT_PATH.glob("checkpoint-*"))) > 0 | |
| start_text = "Continue Training" if has_checkpoints else "Start Training" | |
| self.components["start_btn"] = gr.Button( | |
| start_text, | |
| variant="primary", | |
| interactive=not ASK_USER_TO_DUPLICATE_SPACE | |
| ) | |
| # Just use stop and pause buttons for now to ensure compatibility | |
| self.components["stop_btn"] = gr.Button( | |
| "Stop at Last Checkpoint", | |
| variant="primary", | |
| interactive=False | |
| ) | |
| self.components["pause_resume_btn"] = gr.Button( | |
| "Resume Training", | |
| variant="secondary", | |
| interactive=False, | |
| visible=False | |
| ) | |
| # Add delete checkpoints button - THIS IS THE KEY FIX | |
| self.components["delete_checkpoints_btn"] = gr.Button( | |
| "Delete All Checkpoints", | |
| variant="stop", | |
| interactive=True | |
| ) | |
| with gr.Row(): | |
| with gr.Column(): | |
| self.components["status_box"] = gr.Textbox( | |
| label="Training Status", | |
| interactive=False, | |
| lines=4 | |
| ) | |
| with gr.Accordion("See training logs"): | |
| self.components["log_box"] = gr.TextArea( | |
| label="Finetrainers output (see HF Space logs for more details)", | |
| interactive=False, | |
| lines=40, | |
| max_lines=200, | |
| autoscroll=True | |
| ) | |
| return tab | |
| def connect_events(self) -> None: | |
| """Connect event handlers to UI components""" | |
| # Model type change event | |
| def update_model_info(model): | |
| params = self.get_default_params(MODEL_TYPES[model]) | |
| info = self.get_model_info(MODEL_TYPES[model]) | |
| return { | |
| self.components["model_info"]: info, | |
| self.components["num_epochs"]: params["num_epochs"], | |
| self.components["batch_size"]: params["batch_size"], | |
| self.components["learning_rate"]: params["learning_rate"], | |
| self.components["save_iterations"]: params["save_iterations"] | |
| } | |
| self.components["model_type"].change( | |
| fn=lambda v: self.app.update_ui_state(model_type=v), | |
| inputs=[self.components["model_type"]], | |
| outputs=[] | |
| ).then( | |
| fn=update_model_info, | |
| inputs=[self.components["model_type"]], | |
| outputs=[ | |
| self.components["model_info"], | |
| self.components["num_epochs"], | |
| self.components["batch_size"], | |
| self.components["learning_rate"], | |
| self.components["save_iterations"] | |
| ] | |
| ) | |
| # Training parameters change events | |
| self.components["lora_rank"].change( | |
| fn=lambda v: self.app.update_ui_state(lora_rank=v), | |
| inputs=[self.components["lora_rank"]], | |
| outputs=[] | |
| ) | |
| self.components["lora_alpha"].change( | |
| fn=lambda v: self.app.update_ui_state(lora_alpha=v), | |
| inputs=[self.components["lora_alpha"]], | |
| outputs=[] | |
| ) | |
| self.components["num_epochs"].change( | |
| fn=lambda v: self.app.update_ui_state(num_epochs=v), | |
| inputs=[self.components["num_epochs"]], | |
| outputs=[] | |
| ) | |
| self.components["batch_size"].change( | |
| fn=lambda v: self.app.update_ui_state(batch_size=v), | |
| inputs=[self.components["batch_size"]], | |
| outputs=[] | |
| ) | |
| self.components["learning_rate"].change( | |
| fn=lambda v: self.app.update_ui_state(learning_rate=v), | |
| inputs=[self.components["learning_rate"]], | |
| outputs=[] | |
| ) | |
| self.components["save_iterations"].change( | |
| fn=lambda v: self.app.update_ui_state(save_iterations=v), | |
| inputs=[self.components["save_iterations"]], | |
| outputs=[] | |
| ) | |
| # Training preset change event | |
| self.components["training_preset"].change( | |
| fn=lambda v: self.app.update_ui_state(training_preset=v), | |
| inputs=[self.components["training_preset"]], | |
| outputs=[] | |
| ).then( | |
| fn=self.update_training_params, | |
| inputs=[self.components["training_preset"]], | |
| outputs=[ | |
| self.components["model_type"], | |
| self.components["lora_rank"], | |
| self.components["lora_alpha"], | |
| self.components["num_epochs"], | |
| self.components["batch_size"], | |
| self.components["learning_rate"], | |
| self.components["save_iterations"], | |
| self.components["preset_info"] | |
| ] | |
| ) | |
| # Training control events | |
| self.components["start_btn"].click( | |
| fn=self.handle_training_start, | |
| inputs=[ | |
| self.components["training_preset"], | |
| self.components["model_type"], | |
| self.components["lora_rank"], | |
| self.components["lora_alpha"], | |
| self.components["num_epochs"], | |
| self.components["batch_size"], | |
| self.components["learning_rate"], | |
| self.components["save_iterations"], | |
| self.app.tabs["manage_tab"].components["repo_id"] | |
| ], | |
| outputs=[ | |
| self.components["status_box"], | |
| self.components["log_box"] | |
| ] | |
| ).success( | |
| fn=self.get_latest_status_message_logs_and_button_labels, | |
| outputs=[ | |
| self.components["status_box"], | |
| self.components["log_box"], | |
| self.components["start_btn"], | |
| self.components["stop_btn"], | |
| self.components["pause_resume_btn"] | |
| ] | |
| ) | |
| self.components["pause_resume_btn"].click( | |
| fn=self.handle_pause_resume, | |
| outputs=[ | |
| self.components["status_box"], | |
| self.components["log_box"], | |
| self.components["start_btn"], | |
| self.components["stop_btn"], | |
| self.components["pause_resume_btn"] | |
| ] | |
| ) | |
| self.components["stop_btn"].click( | |
| fn=self.handle_stop, | |
| outputs=[ | |
| self.components["status_box"], | |
| self.components["log_box"], | |
| self.components["start_btn"], | |
| self.components["stop_btn"], | |
| self.components["pause_resume_btn"] | |
| ] | |
| ) | |
| def handle_training_start(self, preset, model_type, *args): | |
| """Handle training start with proper log parser reset and checkpoint detection""" | |
| # Safely reset log parser if it exists | |
| if hasattr(self.app, 'log_parser') and self.app.log_parser is not None: | |
| self.app.log_parser.reset() | |
| else: | |
| logger.warning("Log parser not initialized, creating a new one") | |
| from ..utils import TrainingLogParser | |
| self.app.log_parser = TrainingLogParser() | |
| # Check for latest checkpoint | |
| checkpoints = list(OUTPUT_PATH.glob("checkpoint-*")) | |
| resume_from = None | |
| if checkpoints: | |
| # Find the latest checkpoint | |
| latest_checkpoint = max(checkpoints, key=os.path.getmtime) | |
| resume_from = str(latest_checkpoint) | |
| logger.info(f"Found checkpoint at {resume_from}, will resume training") | |
| # Convert model_type display name to internal name | |
| model_internal_type = MODEL_TYPES.get(model_type) | |
| if not model_internal_type: | |
| logger.error(f"Invalid model type: {model_type}") | |
| return f"Error: Invalid model type '{model_type}'", "Model type not recognized" | |
| # Start training (it will automatically use the checkpoint if provided) | |
| try: | |
| return self.app.trainer.start_training( | |
| model_internal_type, # Use internal model type | |
| *args, | |
| preset_name=preset, | |
| resume_from_checkpoint=resume_from | |
| ) | |
| except Exception as e: | |
| logger.exception("Error starting training") | |
| return f"Error starting training: {str(e)}", f"Exception: {str(e)}\n\nCheck the logs for more details." | |
| def get_model_info(self, model_type: str) -> str: | |
| """Get information about the selected model type""" | |
| if model_type == "hunyuan_video": | |
| return """### HunyuanVideo (LoRA) | |
| - Required VRAM: ~48GB minimum | |
| - Recommended batch size: 1-2 | |
| - Typical training time: 2-4 hours | |
| - Default resolution: 49x512x768 | |
| - Default LoRA rank: 128 (~600 MB)""" | |
| elif model_type == "ltx_video": | |
| return """### LTX-Video (LoRA) | |
| - Required VRAM: ~18GB minimum | |
| - Recommended batch size: 1-4 | |
| - Typical training time: 1-3 hours | |
| - Default resolution: 49x512x768 | |
| - Default LoRA rank: 128""" | |
| return "" | |
| def get_default_params(self, model_type: str) -> Dict[str, Any]: | |
| """Get default training parameters for model type""" | |
| if model_type == "hunyuan_video": | |
| return { | |
| "num_epochs": 70, | |
| "batch_size": 1, | |
| "learning_rate": 2e-5, | |
| "save_iterations": 500, | |
| "video_resolution_buckets": SMALL_TRAINING_BUCKETS, | |
| "video_reshape_mode": "center", | |
| "caption_dropout_p": 0.05, | |
| "gradient_accumulation_steps": 1, | |
| "rank": 128, | |
| "lora_alpha": 128 | |
| } | |
| else: # ltx_video | |
| return { | |
| "num_epochs": 70, | |
| "batch_size": 1, | |
| "learning_rate": 3e-5, | |
| "save_iterations": 500, | |
| "video_resolution_buckets": SMALL_TRAINING_BUCKETS, | |
| "video_reshape_mode": "center", | |
| "caption_dropout_p": 0.05, | |
| "gradient_accumulation_steps": 4, | |
| "rank": 128, | |
| "lora_alpha": 128 | |
| } | |
| def update_training_params(self, preset_name: str) -> Tuple: | |
| """Update UI components based on selected preset while preserving custom settings""" | |
| preset = TRAINING_PRESETS[preset_name] | |
| # Load current UI state to check if user has customized values | |
| current_state = self.app.load_ui_values() | |
| # Find the display name that maps to our model type | |
| model_display_name = next( | |
| key for key, value in MODEL_TYPES.items() | |
| if value == preset["model_type"] | |
| ) | |
| # Get preset description for display | |
| description = preset.get("description", "") | |
| # Get max values from buckets | |
| buckets = preset["training_buckets"] | |
| max_frames = max(frames for frames, _, _ in buckets) | |
| max_height = max(height for _, height, _ in buckets) | |
| max_width = max(width for _, _, width in buckets) | |
| bucket_info = f"\nMaximum video size: {max_frames} frames at {max_width}x{max_height} resolution" | |
| info_text = f"{description}{bucket_info}" | |
| # Return values in the same order as the output components | |
| # Use preset defaults but preserve user-modified values if they exist | |
| lora_rank_val = current_state.get("lora_rank") if current_state.get("lora_rank") != preset.get("lora_rank", "128") else preset["lora_rank"] | |
| lora_alpha_val = current_state.get("lora_alpha") if current_state.get("lora_alpha") != preset.get("lora_alpha", "128") else preset["lora_alpha"] | |
| num_epochs_val = current_state.get("num_epochs") if current_state.get("num_epochs") != preset.get("num_epochs", 70) else preset["num_epochs"] | |
| batch_size_val = current_state.get("batch_size") if current_state.get("batch_size") != preset.get("batch_size", 1) else preset["batch_size"] | |
| learning_rate_val = current_state.get("learning_rate") if current_state.get("learning_rate") != preset.get("learning_rate", 3e-5) else preset["learning_rate"] | |
| save_iterations_val = current_state.get("save_iterations") if current_state.get("save_iterations") != preset.get("save_iterations", 500) else preset["save_iterations"] | |
| return ( | |
| model_display_name, | |
| lora_rank_val, | |
| lora_alpha_val, | |
| num_epochs_val, | |
| batch_size_val, | |
| learning_rate_val, | |
| save_iterations_val, | |
| info_text | |
| ) | |
| def update_training_ui(self, training_state: Dict[str, Any]): | |
| """Update UI components based on training state""" | |
| updates = {} | |
| # Update status box with high-level information | |
| status_text = [] | |
| if training_state["status"] != "idle": | |
| status_text.extend([ | |
| f"Status: {training_state['status']}", | |
| f"Progress: {training_state['progress']}", | |
| f"Step: {training_state['current_step']}/{training_state['total_steps']}", | |
| # Epoch information | |
| # there is an issue with how epoch is reported because we display: | |
| # Progress: 96.9%, Step: 872/900, Epoch: 12/50 | |
| # we should probably just show the steps | |
| #f"Epoch: {training_state['current_epoch']}/{training_state['total_epochs']}", | |
| f"Time elapsed: {training_state['elapsed']}", | |
| f"Estimated remaining: {training_state['remaining']}", | |
| "", | |
| f"Current loss: {training_state['step_loss']}", | |
| f"Learning rate: {training_state['learning_rate']}", | |
| f"Gradient norm: {training_state['grad_norm']}", | |
| f"Memory usage: {training_state['memory']}" | |
| ]) | |
| if training_state["error_message"]: | |
| status_text.append(f"\nError: {training_state['error_message']}") | |
| updates["status_box"] = "\n".join(status_text) | |
| # Update button states | |
| updates["start_btn"] = gr.Button( | |
| "Start training", | |
| interactive=(training_state["status"] in ["idle", "completed", "error", "stopped"]), | |
| variant="primary" if training_state["status"] == "idle" else "secondary" | |
| ) | |
| updates["stop_btn"] = gr.Button( | |
| "Stop training", | |
| interactive=(training_state["status"] in ["training", "initializing"]), | |
| variant="stop" | |
| ) | |
| return updates | |
| def handle_pause_resume(self): | |
| status, _, _ = self.get_latest_status_message_and_logs() | |
| if status == "paused": | |
| self.app.trainer.resume_training() | |
| else: | |
| self.app.trainer.pause_training() | |
| return self.get_latest_status_message_logs_and_button_labels() | |
| def handle_stop(self): | |
| self.app.trainer.stop_training() | |
| return self.get_latest_status_message_logs_and_button_labels() | |
| def get_latest_status_message_and_logs(self) -> Tuple[str, str, str]: | |
| """Get latest status message, log content, and status code in a safer way""" | |
| state = self.app.trainer.get_status() | |
| logs = self.app.trainer.get_logs() | |
| # Check if training process died unexpectedly | |
| training_died = False | |
| if state["status"] == "training" and not self.app.trainer.is_training_running(): | |
| state["status"] = "error" | |
| state["message"] = "Training process terminated unexpectedly." | |
| training_died = True | |
| # Look for error in logs | |
| error_lines = [] | |
| for line in logs.splitlines(): | |
| if "Error:" in line or "Exception:" in line or "Traceback" in line: | |
| error_lines.append(line) | |
| if error_lines: | |
| state["message"] += f"\n\nPossible error: {error_lines[-1]}" | |
| # Ensure log parser is initialized | |
| if not hasattr(self.app, 'log_parser') or self.app.log_parser is None: | |
| from ..utils import TrainingLogParser | |
| self.app.log_parser = TrainingLogParser() | |
| logger.info("Initialized missing log parser") | |
| # Parse new log lines | |
| if logs and not training_died: | |
| last_state = None | |
| for line in logs.splitlines(): | |
| try: | |
| state_update = self.app.log_parser.parse_line(line) | |
| if state_update: | |
| last_state = state_update | |
| except Exception as e: | |
| logger.error(f"Error parsing log line: {str(e)}") | |
| continue | |
| if last_state: | |
| ui_updates = self.update_training_ui(last_state) | |
| state["message"] = ui_updates.get("status_box", state["message"]) | |
| # Parse status for training state | |
| if "completed" in state["message"].lower(): | |
| state["status"] = "completed" | |
| elif "error" in state["message"].lower(): | |
| state["status"] = "error" | |
| elif "failed" in state["message"].lower(): | |
| state["status"] = "error" | |
| elif "stopped" in state["message"].lower(): | |
| state["status"] = "stopped" | |
| return (state["status"], state["message"], logs) | |
| def get_latest_status_message_logs_and_button_labels(self) -> Tuple: | |
| """Get latest status message, logs and button states""" | |
| status, message, logs = self.get_latest_status_message_and_logs() | |
| # Add checkpoints detection | |
| has_checkpoints = len(list(OUTPUT_PATH.glob("checkpoint-*"))) > 0 | |
| button_updates = self.update_training_buttons(status, has_checkpoints).values() | |
| # Return in order expected by timer | |
| return (message, logs, *button_updates) | |
| def update_training_buttons(self, status: str, has_checkpoints: bool = None) -> Dict: | |
| """Update training control buttons based on state""" | |
| if has_checkpoints is None: | |
| has_checkpoints = len(list(OUTPUT_PATH.glob("checkpoint-*"))) > 0 | |
| is_training = status in ["training", "initializing"] | |
| is_completed = status in ["completed", "error", "stopped"] | |
| start_text = "Continue Training" if has_checkpoints else "Start Training" | |
| # Only include buttons that we know exist in components | |
| result = { | |
| "start_btn": gr.Button( | |
| value=start_text, | |
| interactive=not is_training, | |
| variant="primary" if not is_training else "secondary", | |
| ), | |
| "stop_btn": gr.Button( | |
| value="Stop at Last Checkpoint", | |
| interactive=is_training, | |
| variant="primary" if is_training else "secondary", | |
| ) | |
| } | |
| # Add delete_checkpoints_btn only if it exists in components | |
| if "delete_checkpoints_btn" in self.components: | |
| result["delete_checkpoints_btn"] = gr.Button( | |
| value="Delete All Checkpoints", | |
| interactive=has_checkpoints and not is_training, | |
| variant="stop", | |
| ) | |
| else: | |
| # Add pause_resume_btn as fallback | |
| result["pause_resume_btn"] = gr.Button( | |
| value="Resume Training" if status == "paused" else "Pause Training", | |
| interactive=(is_training or status == "paused") and not is_completed, | |
| variant="secondary", | |
| visible=False | |
| ) | |
| return result |