Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,60 +1,20 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import numpy as np
|
| 3 |
import random
|
| 4 |
-
import spaces
|
| 5 |
-
from diffusers import AuraFlowPipeline
|
| 6 |
import torch
|
| 7 |
-
from
|
| 8 |
|
| 9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 10 |
|
| 11 |
-
#
|
| 12 |
-
|
| 13 |
-
#torch._inductor.config.conv_1x1_as_mm = True
|
| 14 |
-
#torch._inductor.config.coordinate_descent_tuning = True
|
| 15 |
-
#torch._inductor.config.epilogue_fusion = False
|
| 16 |
-
#torch._inductor.config.coordinate_descent_check_all_directions = True
|
| 17 |
-
|
| 18 |
-
#pipe_v1 = AuraFlowPipeline.from_pretrained(
|
| 19 |
-
# "fal/AuraFlow",
|
| 20 |
-
# torch_dtype=torch.float16
|
| 21 |
-
#).to("cuda")
|
| 22 |
-
|
| 23 |
-
pipe_v2 = AuraFlowPipeline.from_pretrained(
|
| 24 |
-
"fal/AuraFlow-v0.2",
|
| 25 |
-
torch_dtype=torch.float16
|
| 26 |
-
).to("cuda")
|
| 27 |
-
|
| 28 |
pipe = AuraFlowPipeline.from_pretrained(
|
| 29 |
-
|
| 30 |
torch_dtype=torch.float16
|
| 31 |
-
).to(
|
| 32 |
-
#pipe.transformer.to(memory_format=torch.channels_last)
|
| 33 |
-
#pipe.transformer = torch.compile(pipe.transformer, mode="reduce-overhead", fullgraph=True)
|
| 34 |
-
#pipe.transformer.to(memory_format=torch.channels_last)
|
| 35 |
-
#pipe.vae.to(memory_format=torch.channels_last)
|
| 36 |
-
|
| 37 |
-
#pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True)
|
| 38 |
-
#pipe.vae.decode = torch.compile(pipe.vae.decode, mode="max-autotune", fullgraph=True)
|
| 39 |
|
| 40 |
MAX_SEED = np.iinfo(np.int32).max
|
| 41 |
MAX_IMAGE_SIZE = 1024
|
| 42 |
|
| 43 |
-
@spaces.GPU()
|
| 44 |
-
def infer_example(prompt, negative_prompt="", seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=28, model_version="0.2", comparison_mode=False, progress=gr.Progress(track_tqdm=True)):
|
| 45 |
-
generator = torch.Generator().manual_seed(seed)
|
| 46 |
-
image = pipe(
|
| 47 |
-
prompt = prompt,
|
| 48 |
-
negative_prompt = negative_prompt,
|
| 49 |
-
width = width,
|
| 50 |
-
height = height,
|
| 51 |
-
guidance_scale = guidance_scale,
|
| 52 |
-
num_inference_steps = num_inference_steps,
|
| 53 |
-
generator = generator
|
| 54 |
-
).images[0]
|
| 55 |
-
return image, seed
|
| 56 |
-
|
| 57 |
-
@spaces.GPU(duration=95)
|
| 58 |
def infer(prompt,
|
| 59 |
negative_prompt="",
|
| 60 |
seed=42,
|
|
@@ -63,68 +23,24 @@ def infer(prompt,
|
|
| 63 |
height=1024,
|
| 64 |
guidance_scale=5.0,
|
| 65 |
num_inference_steps=28,
|
| 66 |
-
|
| 67 |
-
comparison_mode=False,
|
| 68 |
-
progress=gr.Progress(track_tqdm=True)
|
| 69 |
-
):
|
| 70 |
|
| 71 |
if randomize_seed:
|
| 72 |
seed = random.randint(0, MAX_SEED)
|
| 73 |
|
| 74 |
-
generator = torch.Generator().manual_seed(seed)
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
generator = torch.Generator().manual_seed(seed)
|
| 86 |
-
image_2 = pipe(
|
| 87 |
-
prompt = prompt,
|
| 88 |
-
negative_prompt = negative_prompt,
|
| 89 |
-
width=width,
|
| 90 |
-
height=height,
|
| 91 |
-
guidance_scale = guidance_scale,
|
| 92 |
-
num_inference_steps = num_inference_steps,
|
| 93 |
-
generator = generator
|
| 94 |
-
).images[0]
|
| 95 |
-
return gr.update(visible=False), gr.update(visible=True, value=(image_1, image_2)), seed
|
| 96 |
-
if(model_version == "0.1"):
|
| 97 |
-
image = pipe_v1(
|
| 98 |
-
prompt = prompt,
|
| 99 |
-
negative_prompt = negative_prompt,
|
| 100 |
-
width=width,
|
| 101 |
-
height=height,
|
| 102 |
-
guidance_scale = guidance_scale,
|
| 103 |
-
num_inference_steps = num_inference_steps,
|
| 104 |
-
generator = generator
|
| 105 |
-
).images[0]
|
| 106 |
-
elif(model_version == "0.2"):
|
| 107 |
-
image = pipe_v2(
|
| 108 |
-
prompt = prompt,
|
| 109 |
-
negative_prompt = negative_prompt,
|
| 110 |
-
width=width,
|
| 111 |
-
height=height,
|
| 112 |
-
guidance_scale = guidance_scale,
|
| 113 |
-
num_inference_steps = num_inference_steps,
|
| 114 |
-
generator = generator
|
| 115 |
-
).images[0]
|
| 116 |
-
else:
|
| 117 |
-
image = pipe(
|
| 118 |
-
prompt = prompt,
|
| 119 |
-
negative_prompt = negative_prompt,
|
| 120 |
-
width=width,
|
| 121 |
-
height=height,
|
| 122 |
-
guidance_scale = guidance_scale,
|
| 123 |
-
num_inference_steps = num_inference_steps,
|
| 124 |
-
generator = generator
|
| 125 |
-
).images[0]
|
| 126 |
|
| 127 |
-
return
|
| 128 |
|
| 129 |
examples = [
|
| 130 |
"A photo of a lavender cat",
|
|
@@ -141,16 +57,24 @@ css="""
|
|
| 141 |
"""
|
| 142 |
|
| 143 |
with gr.Blocks(css=css) as demo:
|
| 144 |
-
|
| 145 |
with gr.Column(elem_id="col-container"):
|
| 146 |
-
gr.
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
|
| 152 |
with gr.Row():
|
| 153 |
-
|
| 154 |
prompt = gr.Text(
|
| 155 |
label="Prompt",
|
| 156 |
show_label=False,
|
|
@@ -158,18 +82,11 @@ with gr.Blocks(css=css) as demo:
|
|
| 158 |
placeholder="Enter your prompt",
|
| 159 |
container=False,
|
| 160 |
)
|
| 161 |
-
|
| 162 |
run_button = gr.Button("Run", scale=0)
|
| 163 |
|
| 164 |
result = gr.Image(label="Result", show_label=False)
|
| 165 |
-
|
| 166 |
-
comparison_mode = gr.Checkbox(label="Comparison mode", info="Compare v0.2 with v0.3", value=False)
|
| 167 |
with gr.Accordion("Advanced Settings", open=False):
|
| 168 |
-
|
| 169 |
-
model_version = gr.Dropdown(
|
| 170 |
-
["0.2", "0.3"], label="Model version", value="0.3"
|
| 171 |
-
)
|
| 172 |
-
|
| 173 |
negative_prompt = gr.Text(
|
| 174 |
label="Negative prompt",
|
| 175 |
max_lines=1,
|
|
@@ -187,7 +104,6 @@ with gr.Blocks(css=css) as demo:
|
|
| 187 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 188 |
|
| 189 |
with gr.Row():
|
| 190 |
-
|
| 191 |
width = gr.Slider(
|
| 192 |
label="Width",
|
| 193 |
minimum=256,
|
|
@@ -195,7 +111,6 @@ with gr.Blocks(css=css) as demo:
|
|
| 195 |
step=32,
|
| 196 |
value=1024,
|
| 197 |
)
|
| 198 |
-
|
| 199 |
height = gr.Slider(
|
| 200 |
label="Height",
|
| 201 |
minimum=256,
|
|
@@ -205,7 +120,6 @@ with gr.Blocks(css=css) as demo:
|
|
| 205 |
)
|
| 206 |
|
| 207 |
with gr.Row():
|
| 208 |
-
|
| 209 |
guidance_scale = gr.Slider(
|
| 210 |
label="Guidance scale",
|
| 211 |
minimum=0.0,
|
|
@@ -213,7 +127,6 @@ with gr.Blocks(css=css) as demo:
|
|
| 213 |
step=0.1,
|
| 214 |
value=5.0,
|
| 215 |
)
|
| 216 |
-
|
| 217 |
num_inference_steps = gr.Slider(
|
| 218 |
label="Number of inference steps",
|
| 219 |
minimum=1,
|
|
@@ -223,18 +136,18 @@ with gr.Blocks(css=css) as demo:
|
|
| 223 |
)
|
| 224 |
|
| 225 |
gr.Examples(
|
| 226 |
-
examples
|
| 227 |
-
fn
|
| 228 |
-
inputs
|
| 229 |
-
outputs
|
| 230 |
cache_examples="lazy"
|
| 231 |
)
|
| 232 |
|
| 233 |
gr.on(
|
| 234 |
triggers=[run_button.click, prompt.submit, negative_prompt.submit],
|
| 235 |
-
fn
|
| 236 |
-
inputs
|
| 237 |
-
outputs
|
| 238 |
)
|
| 239 |
|
| 240 |
-
demo.queue().launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import numpy as np
|
| 3 |
import random
|
|
|
|
|
|
|
| 4 |
import torch
|
| 5 |
+
from diffusers import AuraFlowPipeline
|
| 6 |
|
| 7 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 8 |
|
| 9 |
+
# Initialize the AuraFlow v0.3 pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
pipe = AuraFlowPipeline.from_pretrained(
|
| 11 |
+
"fal/AuraFlow-v0.3",
|
| 12 |
torch_dtype=torch.float16
|
| 13 |
+
).to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
MAX_SEED = np.iinfo(np.int32).max
|
| 16 |
MAX_IMAGE_SIZE = 1024
|
| 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
def infer(prompt,
|
| 19 |
negative_prompt="",
|
| 20 |
seed=42,
|
|
|
|
| 23 |
height=1024,
|
| 24 |
guidance_scale=5.0,
|
| 25 |
num_inference_steps=28,
|
| 26 |
+
progress=gr.Progress(track_tqdm=True)):
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
if randomize_seed:
|
| 29 |
seed = random.randint(0, MAX_SEED)
|
| 30 |
|
| 31 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
| 32 |
+
|
| 33 |
+
image = pipe(
|
| 34 |
+
prompt=prompt,
|
| 35 |
+
negative_prompt=negative_prompt,
|
| 36 |
+
width=width,
|
| 37 |
+
height=height,
|
| 38 |
+
guidance_scale=guidance_scale,
|
| 39 |
+
num_inference_steps=num_inference_steps,
|
| 40 |
+
generator=generator
|
| 41 |
+
).images[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
+
return image, seed
|
| 44 |
|
| 45 |
examples = [
|
| 46 |
"A photo of a lavender cat",
|
|
|
|
| 57 |
"""
|
| 58 |
|
| 59 |
with gr.Blocks(css=css) as demo:
|
|
|
|
| 60 |
with gr.Column(elem_id="col-container"):
|
| 61 |
+
gr.HTML(
|
| 62 |
+
"""
|
| 63 |
+
<h1 style='text-align: center'>
|
| 64 |
+
AuraFlow v0.3
|
| 65 |
+
</h1>
|
| 66 |
+
"""
|
| 67 |
+
)
|
| 68 |
+
gr.HTML(
|
| 69 |
+
"""
|
| 70 |
+
<h3 style='text-align: center'>
|
| 71 |
+
Follow me for more!
|
| 72 |
+
<a href='https://twitter.com/kadirnar_ai' target='_blank'>Twitter</a> | <a href='https://github.com/kadirnar' target='_blank'>Github</a> | <a href='https://www.linkedin.com/in/kadir-nar/' target='_blank'>Linkedin</a> | <a href='https://www.huggingface.co/kadirnar/' target='_blank'>HuggingFace</a>
|
| 73 |
+
</h3>
|
| 74 |
+
"""
|
| 75 |
+
)
|
| 76 |
|
| 77 |
with gr.Row():
|
|
|
|
| 78 |
prompt = gr.Text(
|
| 79 |
label="Prompt",
|
| 80 |
show_label=False,
|
|
|
|
| 82 |
placeholder="Enter your prompt",
|
| 83 |
container=False,
|
| 84 |
)
|
|
|
|
| 85 |
run_button = gr.Button("Run", scale=0)
|
| 86 |
|
| 87 |
result = gr.Image(label="Result", show_label=False)
|
| 88 |
+
|
|
|
|
| 89 |
with gr.Accordion("Advanced Settings", open=False):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
negative_prompt = gr.Text(
|
| 91 |
label="Negative prompt",
|
| 92 |
max_lines=1,
|
|
|
|
| 104 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 105 |
|
| 106 |
with gr.Row():
|
|
|
|
| 107 |
width = gr.Slider(
|
| 108 |
label="Width",
|
| 109 |
minimum=256,
|
|
|
|
| 111 |
step=32,
|
| 112 |
value=1024,
|
| 113 |
)
|
|
|
|
| 114 |
height = gr.Slider(
|
| 115 |
label="Height",
|
| 116 |
minimum=256,
|
|
|
|
| 120 |
)
|
| 121 |
|
| 122 |
with gr.Row():
|
|
|
|
| 123 |
guidance_scale = gr.Slider(
|
| 124 |
label="Guidance scale",
|
| 125 |
minimum=0.0,
|
|
|
|
| 127 |
step=0.1,
|
| 128 |
value=5.0,
|
| 129 |
)
|
|
|
|
| 130 |
num_inference_steps = gr.Slider(
|
| 131 |
label="Number of inference steps",
|
| 132 |
minimum=1,
|
|
|
|
| 136 |
)
|
| 137 |
|
| 138 |
gr.Examples(
|
| 139 |
+
examples=examples,
|
| 140 |
+
fn=infer,
|
| 141 |
+
inputs=[prompt],
|
| 142 |
+
outputs=[result, seed],
|
| 143 |
cache_examples="lazy"
|
| 144 |
)
|
| 145 |
|
| 146 |
gr.on(
|
| 147 |
triggers=[run_button.click, prompt.submit, negative_prompt.submit],
|
| 148 |
+
fn=infer,
|
| 149 |
+
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
| 150 |
+
outputs=[result, seed]
|
| 151 |
)
|
| 152 |
|
| 153 |
+
demo.queue().launch()
|