Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import spaces
|
| 2 |
+
from diffusers import AuraFlowPipeline
|
| 3 |
+
import torch
|
| 4 |
+
import gradio as gr
|
| 5 |
+
|
| 6 |
+
def initialize_auraflow_pipeline():
|
| 7 |
+
"""Initialize and return the AuraFlowPipeline."""
|
| 8 |
+
pipeline = AuraFlowPipeline.from_pretrained(
|
| 9 |
+
"fal/AuraFlow-v0.3",
|
| 10 |
+
torch_dtype=torch.float16,
|
| 11 |
+
variant="fp16",
|
| 12 |
+
).to("cuda")
|
| 13 |
+
return pipeline
|
| 14 |
+
|
| 15 |
+
def generate_image(pipeline, prompt, width, height, num_inference_steps, seed, guidance_scale):
|
| 16 |
+
"""Generate an image using the AuraFlowPipeline."""
|
| 17 |
+
generator = torch.Generator().manual_seed(seed)
|
| 18 |
+
|
| 19 |
+
image = pipeline(
|
| 20 |
+
prompt=prompt,
|
| 21 |
+
width=width,
|
| 22 |
+
height=height,
|
| 23 |
+
num_inference_steps=num_inference_steps,
|
| 24 |
+
generator=generator,
|
| 25 |
+
guidance_scale=guidance_scale,
|
| 26 |
+
).images[0]
|
| 27 |
+
|
| 28 |
+
return image
|
| 29 |
+
|
| 30 |
+
# Initialize the pipeline once
|
| 31 |
+
auraflow_pipeline = initialize_auraflow_pipeline()
|
| 32 |
+
|
| 33 |
+
# Gradio interface
|
| 34 |
+
def gradio_generate_image(prompt, width, height, num_inference_steps, seed, guidance_scale):
|
| 35 |
+
return generate_image(auraflow_pipeline, prompt, width, height, num_inference_steps, seed, guidance_scale)
|
| 36 |
+
|
| 37 |
+
# Create Gradio Blocks
|
| 38 |
+
with gr.Blocks() as demo:
|
| 39 |
+
gr.Markdown("# AuraFlow Image Generation")
|
| 40 |
+
|
| 41 |
+
with gr.Row():
|
| 42 |
+
with gr.Column():
|
| 43 |
+
prompt_input = gr.Textbox(label="Prompt", placeholder="Enter your image prompt here...")
|
| 44 |
+
width_input = gr.Slider(minimum=512, maximum=2048, step=64, value=1536, label="Width")
|
| 45 |
+
height_input = gr.Slider(minimum=512, maximum=2048, step=64, value=768, label="Height")
|
| 46 |
+
steps_input = gr.Slider(minimum=10, maximum=100, step=1, value=50, label="Number of Inference Steps")
|
| 47 |
+
seed_input = gr.Number(label="Seed", value=1)
|
| 48 |
+
guidance_input = gr.Slider(minimum=1, maximum=10, step=0.1, value=3.5, label="Guidance Scale")
|
| 49 |
+
generate_btn = gr.Button("Generate Image")
|
| 50 |
+
|
| 51 |
+
with gr.Column():
|
| 52 |
+
image_output = gr.Image(label="Generated Image")
|
| 53 |
+
|
| 54 |
+
generate_btn.click(
|
| 55 |
+
fn=gradio_generate_image,
|
| 56 |
+
inputs=[prompt_input, width_input, height_input, steps_input, seed_input, guidance_input],
|
| 57 |
+
outputs=image_output
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
# Launch the Gradio interface
|
| 61 |
+
demo.launch()
|