Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import matplotlib.pyplot as plt
|
| 3 |
+
import gradio as gr
|
| 4 |
+
|
| 5 |
+
def get_initial_distribution(seed=42):
|
| 6 |
+
np.random.seed(seed) # For reproducibility
|
| 7 |
+
token_probs = np.random.rand(10)
|
| 8 |
+
token_probs /= np.sum(token_probs) # Normalize to sum to 1
|
| 9 |
+
return token_probs
|
| 10 |
+
|
| 11 |
+
def adjust_distribution(temperature, top_k, top_p, initial_probs):
|
| 12 |
+
# Apply temperature scaling
|
| 13 |
+
token_probs = np.exp(np.log(initial_probs) / temperature)
|
| 14 |
+
token_probs /= np.sum(token_probs)
|
| 15 |
+
|
| 16 |
+
# Apply Top-K filtering
|
| 17 |
+
if top_k > 0:
|
| 18 |
+
top_k_indices = np.argsort(token_probs)[-top_k:]
|
| 19 |
+
top_k_probs = np.zeros_like(token_probs)
|
| 20 |
+
top_k_probs[top_k_indices] = token_probs[top_k_indices]
|
| 21 |
+
top_k_probs /= np.sum(top_k_probs) # Normalize after filtering
|
| 22 |
+
token_probs = top_k_probs
|
| 23 |
+
|
| 24 |
+
# Apply top_p (nucleus) filtering
|
| 25 |
+
if top_p < 1.0:
|
| 26 |
+
# Sort probabilities in descending order and compute cumulative sum
|
| 27 |
+
sorted_indices = np.argsort(token_probs)[::-1]
|
| 28 |
+
cumulative_probs = np.cumsum(token_probs[sorted_indices])
|
| 29 |
+
|
| 30 |
+
# Find the cutoff index for nucleus sampling
|
| 31 |
+
cutoff_index = np.searchsorted(cumulative_probs, top_p) + 1
|
| 32 |
+
|
| 33 |
+
# Get the indices that meet the threshold
|
| 34 |
+
top_p_indices = sorted_indices[:cutoff_index]
|
| 35 |
+
top_p_probs = np.zeros_like(token_probs)
|
| 36 |
+
top_p_probs[top_p_indices] = token_probs[top_p_indices]
|
| 37 |
+
top_p_probs /= np.sum(top_p_probs) # Normalize after filtering
|
| 38 |
+
token_probs = top_p_probs
|
| 39 |
+
|
| 40 |
+
# Plotting the probabilities
|
| 41 |
+
plt.figure(figsize=(10, 6))
|
| 42 |
+
plt.bar(range(10), token_probs, tick_label=[f'Token {i}' for i in range(10)])
|
| 43 |
+
plt.xlabel('Tokens')
|
| 44 |
+
plt.ylabel('Probabilities')
|
| 45 |
+
plt.title('Token Probability Distribution')
|
| 46 |
+
plt.ylim(0, 1)
|
| 47 |
+
plt.grid(True)
|
| 48 |
+
plt.tight_layout()
|
| 49 |
+
|
| 50 |
+
return plt
|
| 51 |
+
|
| 52 |
+
initial_probs = get_initial_distribution()
|
| 53 |
+
|
| 54 |
+
def update_plot(temperature, top_k, top_p):
|
| 55 |
+
return adjust_distribution(temperature, top_k, top_p, initial_probs)
|
| 56 |
+
|
| 57 |
+
interface = gr.Interface(
|
| 58 |
+
fn=update_plot,
|
| 59 |
+
inputs=[
|
| 60 |
+
gr.Slider(0.1, 2.0, step=0.1, value=1.0, label="Temperature"),
|
| 61 |
+
gr.Slider(0, 10, step=1, value=5, label="Top-k"),
|
| 62 |
+
gr.Slider(0.0, 1.0, step=0.01, value=0.9, label="Top-p"),
|
| 63 |
+
],
|
| 64 |
+
outputs=gr.Plot(label="Token Probability Distribution"),
|
| 65 |
+
live=True
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
interface.launch()
|