Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from langchain.text_splitter import CharacterTextSplitter
|
| 2 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
| 3 |
+
from langchain.vectorstores import Chroma
|
| 4 |
+
from langchain import HuggingFacePipeline
|
| 5 |
+
from langchain.chains import RetrievalQA
|
| 6 |
+
from transformers import AutoTokenizer
|
| 7 |
+
import pickle
|
| 8 |
+
import os
|
| 9 |
+
|
| 10 |
+
with open('shakespeare.pkl', 'rb') as fp:
|
| 11 |
+
data = pickle.load(fp)
|
| 12 |
+
|
| 13 |
+
bloomz_tokenizer = AutoTokenizer.from_pretrained('bigscience/bloomz-1b7')
|
| 14 |
+
|
| 15 |
+
text_splitter = CharacterTextSplitter.from_huggingface_tokenizer(bloomz_tokenizer, chunk_size=100, chunk_overlap=0, separator='\n')
|
| 16 |
+
|
| 17 |
+
documents = text_splitter.split_documents(data)
|
| 18 |
+
|
| 19 |
+
embeddings = HuggingFaceEmbeddings()
|
| 20 |
+
|
| 21 |
+
persist_directory = "vector_db"
|
| 22 |
+
|
| 23 |
+
vectordb = Chroma.from_documents(documents=documents, embedding=embeddings, persist_directory=persist_directory)
|
| 24 |
+
|
| 25 |
+
vectordb.persist()
|
| 26 |
+
vectordb = None
|
| 27 |
+
|
| 28 |
+
vectordb_persist = Chroma(persist_directory=persist_directory, embedding_function=embeddings)
|
| 29 |
+
|
| 30 |
+
llm = HuggingFacePipeline.from_model_id(
|
| 31 |
+
model_id="bigscience/bloomz-1b7",
|
| 32 |
+
task="text-generation",
|
| 33 |
+
model_kwargs={"temperature" : 0, "max_length" : 500})
|
| 34 |
+
|
| 35 |
+
doc_retriever = vectordb_persist.as_retriever()
|
| 36 |
+
|
| 37 |
+
shakespeare_qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=doc_retriever)
|
| 38 |
+
|
| 39 |
+
def make_inference(query):
|
| 40 |
+
inference = shakespeare_qa.run(query)
|
| 41 |
+
return inference
|
| 42 |
+
|
| 43 |
+
if __name__ == "__main__":
|
| 44 |
+
# make a gradio interface
|
| 45 |
+
import gradio as gr
|
| 46 |
+
|
| 47 |
+
gr.Interface(
|
| 48 |
+
make_inference,
|
| 49 |
+
gr.inputs.Textbox(lines=2, label="Query"),
|
| 50 |
+
gr.outputs.Textbox(label="Response"),
|
| 51 |
+
title="Ask_Shakespeare",
|
| 52 |
+
description="️building_w_llms_qa_Shakespeare allows you to ask questions about the Shakespeare's plays.",
|
| 53 |
+
).launch()
|